Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-vqtzn Total loading time: 0 Render date: 2025-07-26T04:54:53.628Z Has data issue: false hasContentIssue false

Tutoring Strategies in Game-Tree Search

Published online by Cambridge University Press:  27 June 2025

Get access

Summary

Introduction. According to the analysis of grandmaster-like strategies in Shogi [Iida and Uiterwijk 1993], it is important for a teacher, at the beginning stages of teaching, to intentionally lose an occasional game against a novice opponent, or to play less than optimally in order to give the novice some prospects of winning, without this being noticed by the opponent. Such a strategy is called a tutoring strategy in game-tree search.

In this work we consider a loss-oriented search strategy (LO-search for short), by which a player attempts to lose a game, and we show an algorithm for LOsearch based on the minimax strategy and OM-search (opponent-model search; see [Iida et al. 1993]). We further describe characteristics of LO-search, including the concept of intentional error. We next discuss the situation in which a player will notice such an intentional error. We then describe a tutoring search (TUsearch for short) by which a player attempts to lose a game without this being noticed by the opponent.

LO-search is based on OM-search, since LO-search also takes the opponent model into account. OM-search is predicated on the assumption that one has complete knowledge of the opponent's strategy and that this strategy is completely contained in the opponent's evaluation function. In OM-search, two values are computed for all positions in a search tree. For clarity, the players are distinguished as a max player and a min player.

Loss-Oriented Search. In order to play games, the minimax strategy or variations thereof have been used by many game-playing programs.

Information

Type
Chapter
Information
Games of No Chance
Combinatorial Games at MSRI, 1994
, pp. 433 - 436
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×