Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-bw5xj Total loading time: 0 Render date: 2025-07-24T05:27:11.563Z Has data issue: false hasContentIssue false

Richman Games

Published online by Cambridge University Press:  27 June 2025

Get access

Summary

A Richman game is a combinatorial game in which, rather than alternating moves, the two players bid for the privilege of making the next move. We find optimal strategies for both the case where a player knows how much money his or her opponent has and the case where the player does not.

1. Introduction

There are two game theories. The first is now sometimes referred to as matrix game theory and is the subject of the famous von Neumann and Morgenstern treatise [1944]. In matrix games, two players make simultaneous moves and a payment is made from one player to the other depending on the chosen moves. Optimal strategies often involve randomness and concealment of information. The other game theory is the combinatorial theory of Winning Ways [Berlekamp et al. 1982], with origins back in the work of Sprague [1936] and Grundy [1939] and largely expanded upon by Conway [1976]. In combinatorial games, two players move alternately. We may assume that each move consists of sliding a token from one vertex to another along an arc in a directed graph. A player who cannot move loses. There is no hidden information and there exist deterministic optimal strategies.

In the late 1980's, David Richman suggested a class of games that share some aspects of both sorts of game theory. Here is the set-up: The game is played by two players (Mr. Blue and Ms. Red), each of whom has some money. There is an underlying combinatorial game in which a token rests on a vertex of some finite directed graph.

Information

Type
Chapter
Information
Games of No Chance
Combinatorial Games at MSRI, 1994
, pp. 439 - 450
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×