Published online by Cambridge University Press: 27 June 2025
The losing positions of certain combinatorial games constitute linear error-detecting and -correcting codes. We show that a large class of games, which can be cast in the form of annihilation games, provides a potentially polynomial method for computing codes (anncodes). We also give a short proof of the basic properties of the previously known lexicodes, which were defined by means of an exponential algorithm, and are related to game theory. The set of lexicodes is seen to constitute a subset of the set of anncodes. In the final section we indicate, by means of an example, how the method of producing lexicodes can be applied optimally to find anncodes. Some extensions are indicated.
1. Introduction
Connections between combinatorial games (simply games in the sequel) and linear error-correcting codes (codes in the sequel) have been established in [Conway and Sloane 1986; Conway 1990; Brualdi and Pless 1993], where lexicodes, and some of their connections to games, are explored. Our aim is to extend the connection between games and codes to a large class of games, and to formulate a potentially polynomial method for generating codes from games. We also establish the basic properties of lexicodes by a simple, transparent method.
Let Γ, any finite digraph, be the groundgraph on which we play the following general two-player game. Initially, distribute a positive finite number of tokens on the vertices of Γ. Multiple occupation is permitted. A move consists of selecting an occupied vertex and moving a single token from it to a neighboring vertex, occupied or not, along a directed edge.
To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.