Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-dbm8p Total loading time: 0 Render date: 2025-10-01T06:45:25.436Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 September 2025

Wolfgang Wiedermann
Affiliation:
University of Missouri, Columbia
Alexander von Eye
Affiliation:
Michigan State University
Get access

Information

Type
Chapter
Information
Direction Dependence Analysis
Foundations and Statistical Methods
, pp. 339 - 364
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Agresti, A. (2015). Foundations of linear and generalized linear models. John Wiley & Sons, Inc.Google Scholar
Aguinis, H., Gottfredson, R. K., & Joo, H. (2013). Best-practice recommendations for defining, identifying, and handling outliers. Organizational Research Methods, 16(2), 270301. https://doi.org/10.1177/1094428112470848CrossRefGoogle Scholar
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Sage.Google Scholar
Akkuş, K., & Peker, M. (2022). Exploring the relationship between interpersonal emotion regulation and social anxiety symptoms: The mediating role of negative mood regulation expectancies. Cognitive Therapy and Research, 46(2), 287301. https://doi.org/10.1007/s10608-021-10262-0CrossRefGoogle ScholarPubMed
Ali, M. M. (1974). Stochastic ordering and kurtosis measure. Journal of the American Statistical Association, 69(346), 543545. https://doi.org/10.1080/01621459.1974.10482990CrossRefGoogle Scholar
Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91, 444455. https://doi.org/10.2307/2291629CrossRefGoogle Scholar
Angrist, J. D., & Pischke, J. (2009). Mostly harmless econometrics: An empiricist’s companion. Princeton University Press.CrossRefGoogle Scholar
Anscombe, F. J., & Glynn, W. J. (1983). Distribution of the kurtosis statistic b2 for normal samples. Biometrika, 70(1), 227234. https://doi.org/10.2307/2335960Google Scholar
Aroian, L. A. (1947). The probability function of the product of two normally distributed variables. The Annals of Mathematical Statistics, 18(2), 265271. https://doi.org/10.1214/aoms/1177730442CrossRefGoogle Scholar
von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49(11), 868873. https://doi.org/10.1111/j.1469-8749.2007.00868.xCrossRefGoogle ScholarPubMed
von Aster, M., Weinhold Zulauf, M., & Horn, R. (2006). Neuropsychologische Testbatterie fuer Zahlenverarbeitung und Rechnen bei Kindern (ZAREKI-R) [Neuropsychological test battery for number processing and calculation in children]. Harcourt Test Services.Google Scholar
Barchard, K. A., & Russell, J. A. (2023). Distorted correlations among censored data: Causes, effects, and correction. Behavior Research Methods, 56(3), 12071228. https://doi.org/10.3758/s13428-023-02086-5CrossRefGoogle ScholarPubMed
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 11731182. https://doi.org/10.1037/0022-3514.51.6.1173CrossRefGoogle ScholarPubMed
Bauchot, R., Platel, R., & Ridet, J.-M. (1976). Brain–body weight relationships in selachii. Copeia, 1976(2), 305. https://doi.org/10.2307/1443950CrossRefGoogle Scholar
Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40(3), 373400. https://doi.org/10.1207/s15327906mbr4003_5CrossRefGoogle ScholarPubMed
Bauer, S., Schölkopf, B., & Peters, J. (2016). The arrow of time in multivariate time series. Proceedings of the International Conference on Machine Learning, 2043–2051.Google Scholar
Bazavov, A., Bollweg, D., Ding, H.-T., Enns, P., Goswami, J., Hegde, P., Kaczmarek, O., Karsch, F., Larsen, R., Mukherjee, S., Ohno, H., Petreczky, P., Schmidt, C., Sharma, S., Steinbrecher, P., & HotQCD Collaboration. (2020). Skewness, kurtosis, and the fifth and sixth order cumulants of net baryon-number distributions from lattice QCD confront high-statistics STAR data. Physical Review D, 101(7), 074502. https://doi.org/10.1103/PhysRevD.101.074502CrossRefGoogle Scholar
Bellemare, M. F., Masaki, T., & Pepinsky, T. B. (2017). Lagged explanatory variables and the estimation of causal effect. Journal of Politics, 79, 949963. https://doi.org/10.2139/ssrn.2568724CrossRefGoogle Scholar
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity. John Wiley & Sons, Inc. https://doi.org/10.1002/0471725153CrossRefGoogle Scholar
Bentler, P. M. (1983). Some contributions to efficient statistics in structural models: Specification and estimation of moment structures. Psychometrika, 48(4), 493517. https://doi.org/10.1007/BF02293875CrossRefGoogle Scholar
Bentler, P. M., & Speckart, G. (1981). Attitudes “cause” behaviors: A structural equation analysis. Journal of Personality and Social Psychology, 40(2), 226238. https://doi.org/10.1037/0022-3514.40.2.226CrossRefGoogle Scholar
Bickman, L. (2020). Improving mental health services: A 50-year journey from randomized experiments to artificial intelligence and precision mental health. Administration and Policy in Mental Health and Mental Health Services Research, 47(5), 795843. https://doi.org/10.1007/s10488-020-01065-8CrossRefGoogle ScholarPubMed
Blalock, H. M. (1964). Causal inferences in nonexperimental research. University of North Carolina Press.Google Scholar
Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 7884. https://doi.org/10.1027/1614-2241/a000057CrossRefGoogle Scholar
Boden, J. M., & Fergusson, D. M. (2011). Alcohol and depression. Addiction, 106(5), 906914. https://doi.org/10.1111/j.1360-0443.2010.03351.xCrossRefGoogle ScholarPubMed
Bollen, K. A. (1989). Structural equations with latent variables. Wiley.CrossRefGoogle Scholar
Bollen, K. A., & Jackman, R. W. (1985). Regression diagnostics: An expository treatment of outliers and influential cases. Sociological Methods & Research, 13(4), 510542. https://doi.org/10.1177/0049124185013004004CrossRefGoogle Scholar
Bonet, B. (2001). Instrumentality tests revisited. Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA; August 2–5, 48–55.Google Scholar
Bound, J., Jaeger, D. A., & Baker, R. M. (1995). Problems with instrumental variables estimation when the correlation between the instruments and the endogeneous explanatory variable is weak. Journal of the American Statistical Association, 90(430), 443450. https://doi.org/10.2307/2291055Google Scholar
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123140. https://doi.org/10.1023/A:1018054314350CrossRefGoogle Scholar
Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47(5), 12871294. https://doi.org/10.2307/1911963CrossRefGoogle Scholar
Brito, C., & Pearl, J. (2002). Generalized instrumental variables. Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, Alberta, Canada; August 1–4, 85–93.Google Scholar
Brunner, J., & Austin, P. C. (2009). Inflation of Type I error rate in multiple regression when independent variables are measured with error. Canadian Journal of Statistics, 37(1), 3346. https://doi.org/10.1002/cjs.10004CrossRefGoogle Scholar
Brys, G., Hubert, M., & Struyf, A. (2004). A robust measure of skewness. Journal of Computational and Graphical Statistics, 13(4), 9961017. https://doi.org/10.1198/106186004X12632CrossRefGoogle Scholar
Cai, R., Xie, F., Chen, W., & Hao, Z. (2017). An efficient kurtosis-based causal discovery method for linear non-Gaussian acyclic data. IEEE/ACM 25th International Symposium on Quality of Service, Vilanova i la Geltrú, Spain, June 14–16, 1–6.CrossRefGoogle Scholar
Cai, R., Ye, J., Qiao, J., Fu, H., & Hao, Z. (2020). FOM: Fourth-order moment based causal direction identification on the heteroscedastic data. Neural Networks, 124, 193201. https://doi.org/10.1016/j.neunet.2020.01.006CrossRefGoogle ScholarPubMed
Cain, M. K., Zhang, Z., & Yuan, K.-H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49(5), 17161735. https://doi.org/10.3758/s13428-016-0814-1CrossRefGoogle ScholarPubMed
Canham, S. L., Mauro, P. M., Kaufmann, C. N., & Sixsmith, A. (2016). Association of alcohol use and loneliness frequency among middle-aged and older adult drinkers. Journal of Aging and Health, 28(2), 267284. https://doi.org/10.1177/0898264315589579CrossRefGoogle ScholarPubMed
Canty, A., & Ripley, B. (2021). boot: Bootstrap R (S-Plus) functions. R package version 1.3-28.Google Scholar
Chambers, W. V. (1991). Inferring formal causation from corresponding regressions. Journal of Mind and Behavior, 12, 4970.Google Scholar
Chen, W., Huang, Z., Cai, R., Hao, Z., & Zhang, K. (2024). Identification of causal structure with latent variables based on higher order cumulants. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18), 2035320361. https://doi.org/10.1609/aaai.v38i18.30017CrossRefGoogle Scholar
Chen, X., & Wiedermann, W. (2023). Causal structure learning using composite scores: The case of dichotomous indicators. Presentation at the Biannual Meeting of the International Objective Measurement Workshop, Chicago, IL; April 11–12.Google Scholar
Chen, X., & Wiedermann, W. (2024). Causal structure learning using composite scores: The case of polytomous indicators. Presentation at the Mizzou Ed Research Day, April 2, 2024.Google Scholar
Chen, Z., & Chan, L. (2013). Causality in linear non-Gaussian acyclic models in the presence of latent Gaussian confounders. Neural Computation, 25(6), 16051641. https://doi.org/10.1162/NECO_a_00444CrossRefGoogle Scholar
Chew, Q. H., Chia, F. L.-A., Ng, W. K., Lee, W. C. I., Tan, P. L. L., Wong, C. S., Puah, S. H., Shelat, V. G., Seah, E.-J. D., Huey, C. W. T., Phua, E. J., & Sim, K. (2020). Perceived stress, stigma, traumatic stress levels and coping responses amongst residents in training across multiple specialties during COVID-19 pandemic: A longitudinal study. International Journal of Environmental Research and Public Health, 17(18), 6572. https://doi.org/10.3390/ijerph17186572CrossRefGoogle ScholarPubMed
Choi, K. W., Stein, M. B., Nishimi, K. M., Ge, T., Coleman, J. R. I., Chen, C.-Y., Ratanatharathorn, A., Zheutlin, A. B., Dunn, E. C., 23andMe Research Team, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, Breen, G., Koenen, K. C., & Smoller, J. W. (2020). An exposure-wide and Mendelian randomization approach to identifying modifiable factors for the prevention of depression. American Journal of Psychiatry, 177(10), 944954. https://doi.org/10.1176/appi.ajp.2020.19111158CrossRefGoogle ScholarPubMed
Chu, S. (2001). Pricing the C’s of diamond stones. Journal of Statistics Education, 9(2). https://doi.org/10.1080/10691898.2001.11910659Google Scholar
Clogg, C. C., Petkova, E., & Shihadeh, E. S. (1992). Statistical methods for analyzing collapsibility in regression models. Journal of Educational Statistics, 17(1), 5174. https://doi.org/10.2307/1165079CrossRefGoogle Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.Google Scholar
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2002). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Routledge. https://doi.org/10.4324/9780203774441Google Scholar
Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. Chapman & Hall.Google Scholar
Cook, T. D. (2014). Generalizing causal knowledge in the policy sciences: External validity as a task of both multiattribute representation and multiattribute extrapolation. Journal of Policy Analysis and Management, 33(2), 527536. https://doi.org/10.1002/pam.21750CrossRefGoogle Scholar
Cook, T. D. (2018). Twenty-six assumptions that have to be met if single random assignment experiments are to warrant “gold standard” status: A commentary on Deaton and Cartwright. Social Science & Medicine, 210, 3740. https://doi.org/10.1016/j.socscimed.2018.04.031CrossRefGoogle ScholarPubMed
Cooligan, H. (2013). Research methods and statistics in psychology (5th ed.). Routledge.CrossRefGoogle Scholar
Cote, A. C., Coles, S. M., & Dal Cin, S. (2021). The interplay of parenting style and family rules about video games on subsequent fighting behavior. Aggressive Behavior, 47(2), 135147. https://doi.org/10.1002/ab.21931CrossRefGoogle ScholarPubMed
Crile, G., & Quiring, D. P. (1940). A record of the body weight and certain organ and gland weights of 3690 animals. Ohio Journal of Science, 40(5), 219259.Google Scholar
Cunningham, S. (2021). Causal inference: The mixtape. Yale University Press.Google Scholar
D’Agostino, R. B. (1971). An omnibus test of normality for moderate and large size samples. Biometrika, 58(2), 341348. https://doi.org/10.1093/biomet/58.2.341CrossRefGoogle Scholar
D’Agostino, R. B., Belanger, A., & D’Agostino, R. B. Jr (1990). A suggestion for using powerful and informative tests of normality. The American Statistician, 44(4), 316321. https://doi.org/10.1080/00031305.1990.10475751CrossRefGoogle Scholar
Dagenais, M. G., & Dagenais, D. L. (1997). Higher moment estimators for linear regression models with errors in the variables. Journal of Econometrics, 76(1–2), 193221. https://doi.org/10.1016/0304-4076(95)01789-5CrossRefGoogle Scholar
Dai, H., Spirtes, P., & Zhang, K. (2022). Independence testing-based approach to causal discovery under measurement error and linear non-Gaussian models. Proceedings of the 36th Conference on Neural Information Processing Systems, New Orleans, LA; November 28–December 9, 1–13.Google Scholar
Daniel, C., & Wood, F. S. (1980). Fitting equations to data. Wiley & Sons.Google Scholar
Darlington, R. B. (1970). Is kurtosis really “peakedness?” The American Statistician, 24(2), 1922. https://doi.org/10.2307/2681925Google Scholar
Darmois, G. (1953). Analyse générale des liaisons stochastiques: Etude particulière de l’analyse factorielle linéaire [General analysis of stochastic links]. Revue de l’Institut International de Statistique / Review of the International Statistical Institute, 21(1/2), 28. https://doi.org/10.2307/1401511CrossRefGoogle Scholar
De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). The Mahalanobis distance. Chemometrics and Intelligent Laboratory Systems, 50(1), 118. https://doi.org/10.1016/S0169-7439(99)00047-7CrossRefGoogle Scholar
Deaton, A., & Cartwright, N. (2018). Understanding and misunderstanding randomized controlled trials. Social Science & Medicine, 210, 221. https://doi.org/10.1016/j.socscimed.2017.12.005CrossRefGoogle ScholarPubMed
DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2(3), 292307. https://doi.org/10.1037/1082-989X.2.3.292CrossRefGoogle Scholar
Dehaene, S., & Cohen, L. (1998). Levels of representation in number processing. In Stemmer, B. & Whitaker, H. A. (eds.), Handbook of neurolinguistics (pp. 331431). Academic Press.CrossRefGoogle Scholar
Devlieger, I., & Rosseel, Y. (2017). Factor score path analysis: An alternative for SEM? Methodology, 13(Supplement 1), 3138. https://doi.org/10.1027/1614-2241/a000130CrossRefGoogle Scholar
Dey, S., Al-Zahrani, B., & Basloom, S. (2017). Dagum distribution: Properties and different methods of estimation. International Journal of Statistics and Probability, 6(2), 7492. https://doi.org/10.5539/ijsp.v6n2p74CrossRefGoogle Scholar
Diener, E., & Biswas-Diener, R. (2002). Will money increase subjective well-being? Social Indicators Research, 57(2), 119169. https://doi.org/10.1023/A:1014411319119CrossRefGoogle Scholar
Dodge, Y., & Rousson, V. (1999). The complications of the fourth central moment. The American Statistician, 53(3), 267. https://doi.org/10.2307/2686108CrossRefGoogle Scholar
Dodge, Y., & Rousson, V. (2000). Direction dependence in a regression line. Communications in Statistics: Theory and Methods, 29(9–10), 19571972. https://doi.org/10.1080/03610920008832589CrossRefGoogle Scholar
Dodge, Y., & Rousson, V. (2001). On asymmetric properties of the correlation coefficient in the regression setting. The American Statistician, 55(1), 5154. https://doi.org/10.1198/000313001300339932CrossRefGoogle Scholar
Dodge, Y., & Rousson, V. (2016). Statistical inference for direction of dependence in linear models. In Wiedermann, W. & von Eye, A. (eds.), Statistics and causality: Methods for applied empirical research (pp. 4562). Wiley.Google Scholar
Dodge, Y., & Yadegari, I. (2010). On direction of dependence. Metrika, 72(1), 139150. https://doi.org/10.1007/s00184-009-0273-0CrossRefGoogle Scholar
Doyumğaç, İ., Gürbüz, R., & Buluş, M. (2023). Interplay between language and mathematics comprehension/learning: A direction dependence analysis. International Journal of Education and Literacy Studies, 11(3), 271285. https://doi.org/10.7575/aiac.ijels.v.11n.3p.271CrossRefGoogle Scholar
Duncan, O. D. (1969). Some linear models for two-wave, two-variable panel analysis. Psychological Bulletin, 72(3), 177182. https://doi.org/10.1037/h0027876CrossRefGoogle Scholar
Duncan, O. D. (1975). Introduction to structural equation models. Academic Press.Google Scholar
Edelmann, D., Móri, T. F., & Székely, G. J. (2021). On relationships between the Pearson and the distance correlation coefficients. Statistics & Probability Letters, 169, 108960. https://doi.org/10.1016/j.spl.2020.108960CrossRefGoogle Scholar
Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171185. https://doi.org/10.21236/ada150798CrossRefGoogle Scholar
Elwert, F., & Winship, C. (2014). Endogenous selection bias: The problem of conditioning on a collider variable. Annual Review of Sociology, 40(1), 3153. https://doi.org/10.1146/annurev-soc-071913-043455CrossRefGoogle ScholarPubMed
Entner, D., Hoyer, P. O., & Spirtes, P. (2012). Statistical test for consistent estimation of causal effects in linear non-Gaussian models. The Journal of Machine Learning Research, 22, 364372.Google Scholar
Erickson, T. (2001). Constructing instruments for regressions with measurement error when no additional data are available: Comment. Econometrica, 69(1), 221222. https://doi.org/10.1111/1468-0262.00185CrossRefGoogle Scholar
Falk, R., & Well, A. D. (1997). Many faces of the correlation coefficient. Journal of Statistics Education, 5(3), 118.Google Scholar
Ferris, J., & Wynne, H. (2001). The Canadian Problem Gambling Index: Final report. Canadian Center on Substance Abuse.Google Scholar
Finkelstein, J. W., von Eye, A., & Preece, M. A. (1994). The relationship between aggressive behavior and puberty in normal adolescents: A longitudinal study. Journal of Adolescent Health, 15(4), 319326. https://doi.org/10.1016/1054-139X(94)90605-XCrossRefGoogle ScholarPubMed
Fischer, K., W., & van Geert, P. (2014). Dynamic development of brain and behavior. In Molenaar, P. C. M., Lerner, R. M., & Newell, A. (eds.), Handbook of developmental systems theory and methodology (pp. 287315). Guilford Press.Google Scholar
Fischer, R. A. (1925). Statistical methods for research workers. Oliver and Boyd.Google Scholar
Freedman, L. S., & Schatzkin, A. (1992). Sample size for studying intermediate endpoints within intervention trials or observational studies. American Journal of Epidemiology, 136(9), 11481159.CrossRefGoogle ScholarPubMed
Frisch, R., & Waugh, F. V. (1933). Partial time regressions as compared with individual trends. Econometrica, 1(4), 387401. https://doi.org/10.2307/1907330CrossRefGoogle Scholar
Fuller, W. A. (1987). Measurement error models. Wiley.CrossRefGoogle Scholar
Galton, F. (1886). Family likeness in stature. Proceedings of the Royal Society of London, 40(242–245), 4273. https://doi.org/10.1098/rspl.1886.0009Google Scholar
Garreau, D., Jitkrittum, W., & Kanagawa, M. (2018). Large sample analysis of the median heuristic (arXiv:1707.07269). arXiv. http://arxiv.org/abs/1707.07269Google Scholar
Geary, R. C. (1949). Determination of linear relations between systematic parts of variables with errors of observation the variances of which are unknown. Econometrica, 17(1), 3058. https://doi.org/10.2307/1912132CrossRefGoogle Scholar
Gebauer, L., LaBrie, R., & Shaffer, H. J. (2010). Optimizing DSM-IV-TR classification accuracy: A brief biosocial screen for detecting current gambling disorders among gamblers in the general household population. Canadian Journal of Psychiatry, 55(2), 8290. https://doi.org/10.1177/070674371005500204CrossRefGoogle ScholarPubMed
Geiger, P., Zhang, K., Gong, M., Janzing, D., & Schölkopf, B. (2015). Causal inference by identification of vector autoregressive processes with hidden components. Proceedings of the 32nd International Conference on Machine Learning, Lille, France; July 6–11, 37, 1917–1925.Google Scholar
Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.Google Scholar
Gentile, D. A., Lynch, P. J., Linder, J. R., & Walsh, D. A. (2004). The effects of violent video game habits on adolescent hostility, aggressive behaviors, and school performance. Journal of Adolescence, 27(1), 522. https://doi.org/10.1016/j.adolescence.2003.10.002CrossRefGoogle ScholarPubMed
Gifford-Smith, M. (2000). Teacher social competence scale (Fast Track project technical report). Duke University.CrossRefGoogle Scholar
Gillard, J. (2014). Method of moments estimation in linear regression with errors in both variables. Communications in Statistics – Theory and Methods, 43(15), 32083222. https://doi.org/10.1080/03610926.2012.698785CrossRefGoogle Scholar
Glejser, H. (1969). A new test for heteroskedasticity. Journal of the American Statistical Association, 64(325), 316323. https://doi.org/10.1080/01621459.1969.10500976CrossRefGoogle Scholar
Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424438. https://doi.org/10.2307/1912791CrossRefGoogle Scholar
Gray, R., & Wheatley, K. (1991). How to avoid bias when comparing bone marrow transplantation with chemotherapy. Bone Marrow Transplantation, 7(Supplement 3), 912.Google ScholarPubMed
Greene, W. H. (1993). Econometric analysis, 2nd ed. Macmillan.Google Scholar
Greenland, S. (2003). Quantifying biases in causal models: Classical confounding vs collider-stratification bias. Epidemiology, 14(3), 300306.CrossRefGoogle ScholarPubMed
Greenland, S., Pearl, J., & Robins, J. M. (1999). Causal diagrams for epidemiologic research. Epidemiology, 10(1), 3748. https://doi.org/10.1097/00001648-199901000-00008CrossRefGoogle ScholarPubMed
Greenland, S., & Robins, J. M. (1986). Identifiability, exchangeability, and epidemiological confounding. International Journal of Epidemiology, 15(3), 413419. https://doi.org/10.1093/ije/15.3.413CrossRefGoogle ScholarPubMed
Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. J. (2008). A kernel statistical test of independence. Advances in Neural Information Processing Systems, 20, 585592.Google Scholar
Gundersen, G. (2020). Understanding moments. Available at: https://gregorygundersen.com/blog/2020/04/11/moments/Google Scholar
Guyon, I., Statnikov, A., & Batu, B. B. (eds.). (2019). Cause effect pairs in machine learning. Springer International Publishing. https://doi.org/10.1007/978-3-030-21810-2CrossRefGoogle Scholar
Hanley, J. A. (2004). “Transmuting” women into men: Galton’s family data on human stature. The American Statistician, 58(3), 237243. https://doi.org/10.1198/000313004X1558CrossRefGoogle Scholar
Harremoës, P., & Topsøe, F. (2001). Maximum entropy fundamentals. Entropy, 3(3), 191226. https://doi.org/10.3390/e3030191CrossRefGoogle Scholar
Harris, K. M., & Udry, J. R. (2022). National longitudinal study of adolescent to adult health (Add Health), 1994–2018. Carolina Population Center, University of North Carolina-Chapel Hill, Inter-university Consortium for Political and Social Research. https://doi.org/10.3886/ICPSR21600.v25Google Scholar
Harvey, A. C., & Collier, P. (1977). Testing for functional misspecification in regression analysis. Journal of Econometrics, 6(1), 103119. https://doi.org/10.1016/0304-4076(77)90057-4CrossRefGoogle Scholar
Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. Chapman & Hall.Google Scholar
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), 153161. https://doi.org/10.2307/1912352CrossRefGoogle Scholar
Hermann, E., Eisend, M., & Bayón, T. (2020). Facebook and the cultivation of ethnic diversity perceptions and attitudes. Internet Research, 30(4), 11231141. https://doi.org/10.1108/INTR-10-2019-0423CrossRefGoogle Scholar
Hernán, M. A., & Robins, J. M. (2006). Instruments for causal inference: An epidemiologist’s dream? Epidemiology, 17(4), 360372. https://doi.org/10.1097/01.ede.0000222409.00878.37CrossRefGoogle ScholarPubMed
Hernandez-Lobato, D., Morales-Mombiela, P., Lopez-Paz, D., & Suarez, A. (2016). Non-linear causal inference using Gaussianity measures. Journal of Machine Learning Research, 17, 139.Google Scholar
Hernández-Lobato, J. M., Morales-Mombiela, P., & Suárez, A. (2011). Gaussianity measures for detecting the direction of causal time series. Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain; July 16–22.Google Scholar
Hershberger, S. (1994). The specification of equivalent models before the collection of data. In von Eye, A. & Clogg, C. C. (eds.), Latent variables analysis (pp. 68105). Sage.Google Scholar
Ho, A. D., & Yu, C. C. (2015). Descriptive statistics for modern test score distributions: Skewness, kurtosis, discreteness, and ceiling effects. Educational and Psychological Measurement, 75(3), 365388. https://doi.org/10.1177/0013164414548576CrossRefGoogle ScholarPubMed
Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1983). Understanding robust and exploratory data analysis. Wiley & Sons.Google Scholar
Horn, P. (1981). Heteroscedasticity of residuals: A non-parametric alternative to the Goldfeld-Quandt peak test. Communications in Statistics – Theory and Methods, 10(8), 795808. https://doi.org/10.1080/03610928108828074CrossRefGoogle Scholar
Hoyer, P. O., Janzing, D., Mooij, J., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. Advances in Neural Information Processing Systems, 21, 689696.Google Scholar
Hoyer, P. O., Shimizu, S., Kerminen, A. J., & Palviainen, M. (2008). Estimation of causal effects using linear non-Gaussian causal models with hidden variables. International Journal of Approximate Reasoning, 49(2), 362378. https://doi.org/10.1016/j.ijar.2008.02.006CrossRefGoogle Scholar
Huang, F. L., Wiedermann, W., & Zhang, B. (2023). Accounting for heteroskedasticity resulting from between-group differences in multilevel models. Multivariate Behavioral Research, 58(3), 637657. https://doi.org/10.1080/00273171.2022.2077290CrossRefGoogle ScholarPubMed
Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. Computational Statistics & Data Analysis, 52(12), 51865201. https://doi.org/10.1016/j.csda.2007.11.008CrossRefGoogle Scholar
Hume, D. (1777). Enquiries concerning human understanding and concerning the principles of morals. Clarendon Press.CrossRefGoogle Scholar
Hyvärinen, A. (1998). New approximations of differential entropy for independent component analysis and projection pursuit. Advances in Neural Information Processing Systems, 10, 273279.Google Scholar
Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. Wiley & Sons.CrossRefGoogle ScholarPubMed
Hyvärinen, A., & Smith, S. M. (2013). Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. Journal of Machine Learning Research, 14, 111152.Google ScholarPubMed
Hyvärinen, A., Zhang, K., Shimizu, S., & Hoyer, P. O. (2010). Estimation of a structural vector autoregression model using non-Gaussianity. Journal of Machine Learning Research, 11, 17091731.Google Scholar
IBM Corp. (2023). IBM SPSS Statistics for Windows, Version 29.0.2.0. IBM Corp.Google Scholar
Ikeuchi, T., Ide, M., Zeng, Y., Maeda, T. N., & Shimizu, S. (2023). Python package for causal discovery based on LiNGAM. Journal of Machine Learning Research, 24(14), 18.Google Scholar
Imai, K., Keele, L., & Tingley, D. (2010a). A general approach to causal mediation analysis. Psychological Methods, 15(4), 309334. https://doi.org/10.1037/a0020761CrossRefGoogle ScholarPubMed
Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105(4), 765789. https://doi.org/10.1017/S0003055411000414CrossRefGoogle Scholar
Imai, K., Keele, L., & Yamamoto, T. (2010b). Identification, inference and sensitivity analysis for causal mediation effects. Statistical Science, 25, 5171. https://doi.org/10.1214/10-sts321CrossRefGoogle Scholar
Imbens, G. W. (2014). Instrumental variables: An econometrician’s perspective. Statistical Science, 29(3), 323358. https://doi.org/10.1214/14-STS480CrossRefGoogle Scholar
Imbens, G. W., & Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.CrossRefGoogle Scholar
Inazumi, T., Washio, T., Shimizu, S., Suzuki, J., Yamamoto, A., & Kawahara, Y. (2011). Discovering causal structures in binary exclusive-or skew acyclic models. Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain; July 14–17, 373–382.Google Scholar
James, L. R., & Singh, B. K. (1978). An introduction to the logic, assumptions, and basic analytic procedures of two-stage least squares. Psychological Bulletin, 85(5), 11041122. https://doi.org/10.1037/0033-2909.85.5.1104CrossRefGoogle Scholar
Jarque, C. M., & Bera, A. K. (1987). A test for normality of observations and regression residuals. International Statistical Review, 55(2), 163172. https://doi.org/10.2307/1403192CrossRefGoogle Scholar
Jerison, H. J. (1969). Brain evolution and dinosaur brains. The American Naturalist, 103(934), 575588. https://doi.org/10.1086/282627CrossRefGoogle Scholar
Jerison, H. J. (1973). Evolution of the brain and intelligence. Academic Press.Google Scholar
Jiang, J. (2023). Learning from bad peers? Influences of peer deviant behaviour on adolescent academic performanceInternational Journal of Adolescence and Youth28(1), 394410. https://doi.org/10.1080/02673843.2023.2246539CrossRefGoogle Scholar
Joanes, D. N., & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 47(1), 183189. https://doi.org/10.1111/1467-9884.00122Google Scholar
Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36(1–2), 149176. https://doi.org/10.1093/biomet/36.1-2.149CrossRefGoogle ScholarPubMed
Johnson, P. O., & Fay, L. C. (1950). The Johnson-Neyman technique, its theory and application. Psychometrika, 15(4), 349367. https://doi.org/10.1007/BF02288864CrossRefGoogle Scholar
Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1, 5793.Google Scholar
Judd, C. M., & Kenny, D. A. (1981). Process analysis estimating mediation in treatment evaluations. Evaluation Review, 5(5), 602619. https://doi.org/10.1177/0193841x8100500502CrossRefGoogle Scholar
Judd, C. M., & Kenny, D. A. (2010). Data analysis in social psychology: Recent and recurring issues. In Fiske, S. T., Gilbert, D. T., & Lindzey, G. (eds.), Handbook of social psychology (pp. 115139). Wiley.Google Scholar
Kalainathan, D., Goudet, O., & Dutta, R. (2020). Causal discovery toolbox: Uncovering causal relationships in Python. Journal of Machine Learning Research, 21, 15.Google Scholar
Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H., & Bühlmann, P. (2012). Causal inference using graphical models with the R Package pcalg. Journal of Statistical Software, 47(11), 126.CrossRefGoogle Scholar
Kasper, D., & Ünlü, A. (2013). On the relevance of assumptions associated with classical factor analytic approaches. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00109CrossRefGoogle ScholarPubMed
Katz, D. L., Elmore, J. G., Wild, D. M. G., & Lucan, S. C. (2013). Jekel’s epidemiology, biostatistics and preventive medicine (4th ed.). Elsevier.Google Scholar
Kelcey, B. (2019). A robust alternative estimator for small to moderate sample SEM: Bias-corrected factor score path analysis. Addictive Behaviors, 94, 8398. https://doi.org/10.1016/j.addbeh.2018.10.032CrossRefGoogle ScholarPubMed
Kim, D., & Kim, J.-M. (2014). Analysis of directional dependence using asymmetric copula-based regression models. Journal of Statistical Computation and Simulation, 84(9), 19902010. https://doi.org/10.1080/00949655.2013.779696CrossRefGoogle Scholar
Kimber, A. C. (1990). Exploratory data analysis for possibly censored data from skewed distributions. Applied Statistics, 39(1), 21. https://doi.org/10.2307/2347808CrossRefGoogle Scholar
Knief, U., & Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 53(6), 25762590. https://doi.org/10.3758/s13428-021-01587-5CrossRefGoogle ScholarPubMed
Koenker, R. (1981). A note on studentizing a test for heteroscedasticity. Journal of Econometrics, 17(1), 107112. https://doi.org/10.1016/0304-4076(81)90062-2CrossRefGoogle Scholar
Koller, I., & Alexandrowicz, R. (2010). A psychometric analysis of the ZAREKI-R using Rasch models. Diagnostica, 56, 5767. https://doi.org/10.1026/0012-1924/a000003CrossRefGoogle Scholar
Koller, I., & Hatzinger, R. (2013). Nonparametric tests for the Rasch model: Explanation, development, and application of quasi-exact tests for small samples. InterStat, 11, 116.Google Scholar
Komsta, L., & Novomestky, F. (2022). Moments: Moments, cumulants, skewness, kurtosis, and related tests. R package version 0.14.1. https://CRAN.R-project.org/package=momentsGoogle Scholar
Koth, C. W., Bradshaw, C. P., & Leaf, P. J. (2009). Teacher observation of classroom adaptation – checklist: Development and factor structure. Measurement and Evaluation in Counseling and Development, 42(1), 1530. https://doi.org/10.1177/0748175609333560CrossRefGoogle Scholar
Kraemer, H. C., Kiernan, M., Essex, M., & Kupfer, D. J. (2008). How and why criteria defining moderators and mediators differ between the Baron & Kenny and MacArthur approaches. Health Psychology, 27(2S), S101S108. https://doi.org/10.1037/0278-6133.27.2(Suppl.).S101CrossRefGoogle ScholarPubMed
Krempel, R., Schleicher, D., Jarvers, I., Ecker, A., Brunner, R., & Kandsperger, S. (2022). Sleep quality and neurohormonal and psychophysiological accompanying factors in adolescents with depressive disorders: Study protocol. BJPsych Open, 8(2), e57. https://doi.org/10.1192/bjo.2022.29CrossRefGoogle ScholarPubMed
Kross, E., Verduyn, P., Demiralp, E., Park, J., Lee, D. S., Lin, N., Shablack, H., Jonides, J., & Ybarra, O. (2013). Facebook use predicts declines in subjective well-being in young adults. PLoS ONE, 8(8), e69841. https://doi.org/10.1371/journal.pone.0069841CrossRefGoogle ScholarPubMed
Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (Vol. 5). McGraw-Hill/Irwin.Google Scholar
Lee, C. F., Lee, J. C., & Lee, A. C. (2013). Statistics for business and financial economics (3rd ed.). Springer.CrossRefGoogle Scholar
Lee, N., & Kim, J.-M. (2019). Copula directional dependence for inference and statistical analysis of whole-brain connectivity from fMRI data. Brain and Behavior, 9(1), e01191. https://doi.org/10.1002/brb3.1191CrossRefGoogle Scholar
Lee, S., & Hershberger, S. (1990). A simple rule for generating equivalent models in structural equation modeling. Multivariate Behavioral Research, 25(3), 313334. https://doi.org/10.1207/s15327906mbr2503-4CrossRefGoogle Scholar
Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144(9), 11841188. https://doi.org/10.1176/ajp.144.9.1184Google ScholarPubMed
Lewbel, A. (1997). Constructing instruments for regressions with measurement error when no additional data are available, with an application to patents and R&D. Econometrica, 65(5), 12011213. https://doi.org/10.2307/2171884CrossRefGoogle Scholar
Lewis, D. (1973). Causation. Journal of Philosophy, 70, 556567. https://doi.org/10.2307/2025310CrossRefGoogle Scholar
Li, X., Bergin, C., & Olsen, A. A. (2022). Positive teacher–student relationships may lead to better teaching. Learning and Instruction, 80, 101581. https://doi.org/10.1016/j.learninstruc.2022.101581CrossRefGoogle Scholar
Li, X., Martens, M. P., & Wiedermann, W. (2023). Conditional direction of dependence modeling: Application and implementation in SPSS. Social Science Computer Review, 41(4), 12521275. https://doi.org/10.1177/08944393211073168CrossRefGoogle Scholar
Li, X., & Wiedermann, W. (2020a). Conditional direction dependence analysis: Evaluating the causal direction of effects in linear models with interaction terms. Multivariate Behavioral Research, 55(5), 786810. https://doi.org/10.1080/00273171.2019.1687276CrossRefGoogle ScholarPubMed
Li, X., & Wiedermann, W. (2020b). On the causal relation of academic achievement and intrinsic motivation: An application of direction dependence analysis using SPSS custom dialogs. In Wiedermann, W., Kim, D., Sungur, E. A., & von Eye, A. (eds.), Direction dependence in statistical modeling: Methods of analysis (pp. 351377). Wiley & Sons.CrossRefGoogle Scholar
Liu, Y., West, S. G., Levy, R., & Aiken, L. S. (2017). Tests of simple slopes in multiple regression models with an interaction: Comparison of four approaches. Multivariate Behavioral Research, 52(4), 445464. https://doi.org/10.1080/00273171.2017.1309261CrossRefGoogle ScholarPubMed
Livesey, J. H. (2007). Kurtosis provides a good omnibus test for outliers in small samples. Clinical Biochemistry, 40(13–14), 10321036. https://doi.org/10.1016/j.clinbiochem.2007.04.003CrossRefGoogle ScholarPubMed
Loeys, T., Talloen, W., Goubert, L., Moerkerke, B., & Vansteelandt, S. (2016). Assessing moderated mediation in linear models requires fewer confounding assumptions than assessing mediation. British Journal of Mathematical and Statistical Psychology, 69(3), 352374. https://doi.org/10.1111/bmsp.12077CrossRefGoogle ScholarPubMed
Long, J. A. (2019). interactions: Comprehensive, user-friendly toolkit for probing interactions. R package version 1.1.0. https://cran.rproject.org/package=interactionsGoogle Scholar
Lovell, M. C. (1963). Seasonal adjustment of economic time series and multiple regression analysis. Journal of the American Statistical Association, 58(304), 9931010. https://doi.org/10.1080/01621459.1963.10480682CrossRefGoogle Scholar
Lovell, M. C. (2008). A simple proof of the FWL theorem. Journal of Economic Education, 39(1), 8891. https://doi.org/10.3200/JECE.39.1.88-91CrossRefGoogle Scholar
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.CrossRefGoogle Scholar
Ma, X., Li, Z., & Lu, F. (2023). The influence of stressful life events on procrastination among college students: Multiple mediating roles of stress beliefs and core self-evaluations. Frontiers in Psychology, 14, 1104057. https://doi.org/10.3389/fpsyg.2023.1104057CrossRefGoogle ScholarPubMed
MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Lawrence Erlbaum Associates.Google Scholar
MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593614. https://doi.org/10.1146/annurev.psych.58.110405.085542CrossRefGoogle ScholarPubMed
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83104. https://doi.org/10.1037/1082-989X.7.1.83CrossRefGoogle ScholarPubMed
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99128. https://doi.org/10.1207/s15327906mbr3901-4CrossRefGoogle ScholarPubMed
MacKinnon, D. P., Warsi, G., & Dwyer, J. H. (1995). A simulation study of mediated effect measures. Multivariate Behavioral Research, 30(1), 4162. https://doi.org/10.1207/s15327906mbr3001_3CrossRefGoogle ScholarPubMed
Maeda, T. N., & Shimizu, S. (2020). RCD: Repetitive causal discovery of linear non-Gaussian acyclic models with latent confounders. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, Online; August 26–28, 108, 735–745.Google Scholar
Mair, P., & von Eye, A. (2007). Application scenarios for nonstandard log-linear models. Psychological Methods, 12(2), 139156. https://doi.org/10.1037/1082-989X.12.2.139CrossRefGoogle ScholarPubMed
Mandel, M. (2007). Censoring and truncation: Highlighting the differences. American Statistician, 61(4), 321324. https://doi.org/10.1198/000313007X247049CrossRefGoogle Scholar
Markus, K. A. (2002). Statistical equivalence, semantic equivalence, eliminative induction, and the Raykov-Marcoulides proof of infinite equivalence. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 503522. https://doi.org/10.1207/S15328007SEM0904_3CrossRefGoogle Scholar
Maydeu-Olivares, A., Shi, D., & Fairchild, A. J. (2020). Estimating causal effects in linear regression models with observational data: The instrumental variables regression model. Psychological Methods, 25(2), 243258. https://doi.org/10.1037/met0000226CrossRefGoogle ScholarPubMed
McCulloch, C. E. (1987). Tests for equality of variances with paired data. Communications in Statistics – Theory and Methods, 16(5), 13771391. https://doi.org/10.1080/03610928708829445CrossRefGoogle Scholar
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105(1), 156166. https://doi.org/10.1037/0033-2909.105.1.156CrossRefGoogle Scholar
Mooij, J. M., Peters, J., Janzing, D., Zscheischler, J., & Schölkopf, B. (2016). Distinguishing cause from effect using observational data: Methods and benchmarks. Journal of Machine Learning Research, 17(32), 1102.Google Scholar
Mooijaart, A. (1985). Factor analysis for non-normal variables. Psychometrika, 50(3), 323342. https://doi.org/10.1007/BF02294108CrossRefGoogle Scholar
Morgan, S. L., & Winship, C. (2015). Counterfactuals and causal inference. Cambridge University Press.Google Scholar
Morgan, W. A. (1939). Test for the significance of the difference between the two variances in a sample from a normal bivariate population. Biometrika, 31(1–2), 1319. https://doi.org/10.1093/biomet/31.1-2.13Google Scholar
Muddapur, M. (2003). On directional dependence in a regression line. Communications in Statistics – Theory and Methods, 32(10), 20532057. https://doi.org/10.1081/STA-120023266CrossRefGoogle Scholar
Munafò, M. R., & Araya, R. (2010). Cigarette smoking and depression: A question of causation. British Journal of Psychiatry, 196(6), 425426. https://doi.org/10.1192/bjp.bp.109.074880CrossRefGoogle ScholarPubMed
Munafò, M. R., Tilling, K., Taylor, A. E., Evans, D. M., & Davey Smith, G. (2018). Collider scope: When selection bias can substantially influence observed associations. International Journal of Epidemiology, 47(1), 226235. https://doi.org/10.1093/ije/dyx206CrossRefGoogle ScholarPubMed
Nagase, M., & Kano, Y. (2017). Identifiability of nonrecursive structural equation models. Statistics & Probability Letters, 122, 109117. https://doi.org/10.1016/j.spl.2016.11.010CrossRefGoogle Scholar
Nelsen, R. B. (1998). Correlation, regression lines, and moments of inertia. The American Statistician, 52(4), 343345. https://doi.org/10.2307/2685438CrossRefGoogle Scholar
Nigg, J. T., Stadler, D. D., von Eye, A., & Wiedermann, W. (2020). Determining causality in relation to early risk factors of ADHD. In Wiedermann, W., Kim, D., Sungur, E. A., & von Eye, A. (eds.), Direction dependence in statistical modeling: Methods of analysis (pp. 295324). Wiley & Sons.CrossRefGoogle Scholar
Nogueira, A. R., Pugnana, A., Ruggieri, S., Pedreschi, D., & Gama, J. (2022). Methods and tools for causal discovery and causal inference. WIREs Data Mining and Knowledge Discovery, 12(2), e1449. https://doi.org/10.1002/widm.1449CrossRefGoogle Scholar
OECD. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving, and financial literacy. OECD. www.oecd.org/pisaGoogle Scholar
Olkin, I., & Finn, J. D. (1995). Correlations redux. Psychological Bulletin, 118(1), 155164. https://doi.org/10.1037/0033-2909.118.1.155CrossRefGoogle Scholar
Oppenheimer, C. W., & Hankin, B. L. (2011). Relationship quality and depressive symptoms among adolescents: A short-term multiwave investigation of longitudinal, reciprocal associations. Journal of Clinical Child & Adolescent Psychology, 40(3), 486493. https://doi.org/10.1080/15374416.2011.563462CrossRefGoogle ScholarPubMed
Ozaki, K., & Ando, J. (2009). Direction of causation between shared and non-shared environmental factors. Behavior Genetics, 39(3), 321336. https://doi.org/10.1007/s10519-009-9257-0CrossRefGoogle ScholarPubMed
Park, R. E. (1966). Estimation with heteroscedastic error terms. Econometrica, 34(4), 888. https://doi.org/10.2307/1910108CrossRefGoogle Scholar
Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669688. https://doi.org/10.1093/biomet/82.4.669CrossRefGoogle Scholar
Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge University Press.CrossRefGoogle Scholar
Pearl, J. (2012). The causal mediation formula: A guide to the assessment of pathways and mechanisms. Prevention Science, 13(4), 426436. https://doi.org/10.1007/s11121-011-0270-1CrossRefGoogle Scholar
Pearl, J. (2014). Interpretation and identification of causal mediation. Psychological Methods, 19(4), 459481. https://doi.org/10.1037/a0036434CrossRefGoogle ScholarPubMed
Pearson, K. (1905). Das Fehlergesetz und seine Verallgemeinerungen durch Fechner und Pearson. A rejoinder. Biometrika, 4(1/2), 169212. https://doi.org/10.2307/2331536Google Scholar
Pearson, K. (1916). IX. Mathematical contributions to the theory of evolution.—XIX. Second supplement to a memoir on skew variation. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 216(538–548), 429457. https://doi.org/10.1098/rsta.1916.0009Google Scholar
Peer, S., Futschek, K., Deichmann, F., & Wiedermann, W. (2014). Variance homogeneity tests to determine the direction of effects in linear regression models. 11. Tagung der Österreichischen Gesellschaft für Psychologie (ÖGP). Vienna, Austria; April 24–26.Google Scholar
Peters, J., Janzing, D., Gretton, A., & Schölkopf, B. (2009). Detecting the direction of causal time series. Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Canada; June 14–18, 801–808.CrossRefGoogle Scholar
Peters, J., Janzing, D., & Scholkopf, B. (2011). Causal inference on discrete data using additive noise models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 24362450. https://doi.org/10.1109/TPAMI.2011.71CrossRefGoogle ScholarPubMed
Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: Foundations and learning algorithms. MIT Press.Google Scholar
Peters, J., Mooij, D., Janzing, D., & Schölkopf, B. (2014). Causal discovery with continuous additive noise models. Journal of Machine Learning Research, 15, 20092053.Google Scholar
Pfister, N., & Peters, J. (2017). dHSIC: Independence testing via Hilbert Schmidt independence criterion. R Package Version 2.0. https://CRAN.R-Project.Org/package=dHSICGoogle Scholar
Pfister, N., & Peters, J. (2019). dHSIC: Independence testing via Hilbert Schmidt independence criterion. R package version 2.1. https://CRAN.R-Project.Org/package=dHSICGoogle Scholar
Pham, D. T., & Garat, P. (1997). Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Transactions on Signal Processing, 45(7), 17121725. https://doi.org/10.1109/78.599941CrossRefGoogle Scholar
Pirlott, A. G., & MacKinnon, D. P. (2016). Design approaches to experimental mediation. Journal of Experimental Social Psychology, 66, 2938. https://doi.org/10.1016/j.jesp.2015.09.012CrossRefGoogle ScholarPubMed
Pitman, E. J. G. (1939). A note on normal correlation. Biometrika, 31(1–2), 912. https://doi.org/10.1093/biomet/31.1-2.9CrossRefGoogle Scholar
Pituch, K. A., & Stapleton, L. M. (2012). Distinguishing between cross- and cluster-level mediation processes in the cluster randomized trial. Sociological Methods & Research, 41(4), 630670. https://doi.org/10.1177/0049124112460380CrossRefGoogle Scholar
Pokropek, A. (2016). Introduction to instrumental variables and their application to large-scale assessment data. Large-Scale Assessments in Education, 4, 120. https://doi.org/10.1186/s40536-016-0018-2CrossRefGoogle Scholar
Pollaris, A., & Bontempi, G. (2020). Latent causation: An algorithm for pairs of correlated latent variables in linear non-Gaussian structural equation modeling. BNAIC/BeneLearn, 209–223.Google Scholar
Popper, K. (1979). Objective knowledge: An evolutionary approach. Clarendon Press.Google Scholar
Pornprasertmanit, S., & Little, T. D. (2012). Determining directional dependency in causal associations. International Journal of Behavioral Development, 36(4), 313322. https://doi.org/10.1177/0165025412448944CrossRefGoogle ScholarPubMed
Potthoff, R. F. (1964). On the Johnson-Neyman technique and some extensions thereof. Psychometrika, 29(3), 241256. https://doi.org/10.1007/BF02289721CrossRefGoogle Scholar
Preacher, K. J., & Hayes, A. F. (2008). Contemporary approaches to assessing mediation in communication research. In Hayes, A. F., Slater, M. D., & Snyder, L. B. (eds.), The Sage sourcebook of advanced data analysis methods for communication research (pp. 1354). Sage.CrossRefGoogle Scholar
Primack, B. A., Swanier, B., Georgiopoulos, A. M., Land, S. R., & Fine, M. J. (2009). Association between media use in adolescence and depression in young adulthood: A longitudinal study. Archives of General Psychiatry, 66(2), 181188. https://doi.org/10.1001/archgenpsychiatry.2008.532CrossRefGoogle Scholar
Python Software Foundation. (2024). Python language reference. www.python.orgGoogle Scholar
Quinlan, R. (1993). Combining instance-based and model-based learning. Proceedings on the Tenth International Conference of Machine Learning, Amherst, MA; June 27–29, 236–243.CrossRefGoogle Scholar
R Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. www.R-project.org/Google Scholar
Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401. https://doi.org/10.1177/014662167700100306CrossRefGoogle Scholar
Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares regression analysis. Journal of the Royal Statistical Society Series B: Statistical Methodology, 31(2), 350371. https://doi.org/10.1111/j.2517-6161.1969.tb00796.xCrossRefGoogle Scholar
Ramsey, J. D., Malinsky, D., & Bui, K. V. (2020). algcomparison: Comparing the performance of graphical structure learning algorithms with TETRAD. Journal of Machine Learning Research, 21, 16.Google Scholar
Raykov, T., & Marcoulides, G. A. (2001). Can there be infinitely many models equivalent to a given covariance structure model? Structural Equation Modeling: A Multidisciplinary Journal, 8(1), 142149. https://doi.org/10.1207/S15328007SEM0801_8CrossRefGoogle Scholar
Reed, W. R. (2015). On the practice of lagging variables to avoid simultaneity. Oxford Bulletin of Economics and Statistics, 77(6), 897905. https://doi.org/10.1111/obes.12088CrossRefGoogle Scholar
Reichenbach, H. (1956). The direction of time. Los Angeles University Press.CrossRefGoogle Scholar
Reiersøl, O. (1950). Identifiability of a linear relation between variables which are subject to error. Econometrica, 18(4), 375389. https://doi.org/10.2307/1907835CrossRefGoogle Scholar
Reinke, W. M., Herman, K. C., & Dong, N. (2018). The incredible years teacher classroom management program: Outcomes from a group randomized trial. Prevention Science, 19(8), 10431054. https://doi.org/10.1007/s11121-018-0932-3CrossRefGoogle ScholarPubMed
Rizzo, M. L., & Szekely, G. (2022). Energy: E-statistics: Multivariate inference via the energy of data. R package version 1.7-11. https://CRAN.R-project.org/package=energyGoogle Scholar
Rizzo, R. R. N., Cashin, A. G., Bagg, M. K., Gustin, S. M., Lee, H., & McAuley, J. H. (2022). A systematic review of the reporting quality of observational studies that use mediation analyses. Prevention Science, 23(6), 10411052. https://doi.org/10.1007/s11121-022-01349-5CrossRefGoogle ScholarPubMed
Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 5966. https://doi.org/10.2307/2685263CrossRefGoogle Scholar
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 4155. https://doi.org/10.1093/biomet/70.1.41CrossRefGoogle Scholar
Rosenström, T., Czajkowski, N. O., Solbakken, O. A., & Saarni, S. E. (2023). Direction of dependence analysis for pre-post assessments using non-Gaussian methods: A tutorialPsychotherapy Research33(8), 10581075.CrossRefGoogle ScholarPubMed
Rosenström, T., & García-Velázquez, R. (2021). Distribution-based causal inference: A review and practical guidance for epidemiologists. In Wiedermann, W., Kim, D., Sungur, E. A., & von Eye, A. (eds.), Direction dependence in statistical models: Methods of analysis (pp. 267294). Wiley & Sons.Google Scholar
Rosenström, T., Jokela, M., Puttonen, S., Hintsanen, M., Pulkki-Råback, L., Viikari, J. S., Raitakari, O. T., & Keltikangas-Järvinen, L. (2012). Pairwise measures of causal direction in the epidemiology of sleep problems and depression. PLoS ONE, 7(11), e50841. https://doi.org/10.1371/journal.pone.0050841CrossRefGoogle ScholarPubMed
Rosopa, P. J., Schaffer, M. M., & Schroeder, A. N. (2013). Managing heteroscedasticity in general linear models. Psychological Methods, 18(3), 335351. https://doi.org/10.1037/a0032553CrossRefGoogle ScholarPubMed
Rovine, M. J., & von Eye, A. (1997). A 14th way to look at a correlation coefficient: Correlation as the proportion of matches. The American Statistician, 51(1), 4246. https://doi.org/10.2307/2684692CrossRefGoogle Scholar
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688701. https://doi.org/10.1037/h0037350CrossRefGoogle Scholar
Ruppert, D. (1987). What is kurtosis? An influence function approach. The American Statistician, 41(1), 1. https://doi.org/10.2307/2684309Google Scholar
Sandvik, L., & Olsson, B. (1982). A nearly distribution-free test for comparing dispersion in paired samples. Biometrika, 69(2), 484485. https://doi.org/10.1093/biomet/69.2.484CrossRefGoogle Scholar
Scheines, R., Spirtes, P., Glymour, C., Meek, C., & Richardson, T. (1998). The TETRAD project: Constraint based aids to causal model specification. Multivariate Behavioral Research, 33(1), 65117. https://doi.org/10.1207/s15327906mbr3301_3CrossRefGoogle ScholarPubMed
Schölkopf, B., & Smola, A. J. (2018). Learning with kernels: Support vector machines, regularization, optimization, and beyond. The MIT Press. https://doi.org/10.7551/mitpress/4175.001.0001Google Scholar
Schultheiss, C., Bühlmann, P., & Yuan, M. (2024). Higher-order least squares: Assessing partial goodness of fit of linear causal models. Journal of the American Statistical Association, 119(546), 10191031. https://doi.org/10.1080/01621459.2022.2157728CrossRefGoogle ScholarPubMed
Sebastian, J., Allensworth, E., Wiedermann, W., Hochbein, C., & Cunningham, M. (2019). Principal leadership and school performance: An examination of instructional leadership and organizational management. Leadership and Policy in Schools, 18(4), 591613. https://doi.org/10.1080/15700763.2018.1513151CrossRefGoogle Scholar
Sen, A., & Sen, B. (2014). Testing independence and goodness-of-fit in linear models. Biometrika, 101(4), 927942. https://doi.org/10.1093/biomet/asu026CrossRefGoogle Scholar
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591611. https://doi.org/10.1093/biomet/52.3-4.591CrossRefGoogle Scholar
Shear, B. R., & Zumbo, B. D. (2013). False positives in multiple regression: Unanticipated consequences of measurement error in the predictor variables. Educational and Psychological Measurement, 73(5), 733756. https://doi.org/10.1177/0013164413487738CrossRefGoogle Scholar
Shi, D., Fairchild, A. J., & Wiedermann, W. (2023). One step at a time: A statistical approach for distinguishing mediators, confounders, and colliders using direction dependence analysis. Psychological Methods. https://doi.org/10.1037/met0000619CrossRefGoogle Scholar
Shimizu, S. (2012). Joint estimation of linear non-Gaussian acyclic models. Neurocomputing, 81, 104107. https://doi.org/10.1016/j.neucom.2011.11.005CrossRefGoogle Scholar
Shimizu, S. (2019). Non-Gaussian methods for causal structure learning. Prevention Science, 20(3), 431441. https://doi.org/10.1007/s11121-018-0901-xCrossRefGoogle ScholarPubMed
Shimizu, S. (2022). Statistical causal discovery: LiNGAM approach. Springer Japan. https://doi.org/10.1007/978-4-431-55784-5CrossRefGoogle Scholar
Shimizu, S., Hoyer, P. O., & Hyvärinen, A. (2009). Estimation of linear non-Gaussian acyclic models for latent factors. Neurocomputing, 72(7–9), 20242027. https://doi.org/10.1016/j.neucom.2008.11.018CrossRefGoogle Scholar
Shimizu, S., Hoyer, P. O., Hyvärinen, A., & Kerminen, A. (2006). A linear non-Gaussian acyclic model for causal discovery. The Journal of Machine Learning Research, 7, 20032030.Google Scholar
Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P. O., & Bollen, K. (2011). DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model. Journal of Machine Learning Research, 12, 12251248.Google Scholar
Shimizu, S., & Kano, Y. (2008). Use of non-normality in structural equation modeling: Application to direction of causation. Journal of Statistical Planning and Inference, 138(11), 34833491. https://doi.org/10.1016/j.jspi.2006.01.017CrossRefGoogle Scholar
Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7(4), 422445. https://doi.org/10.1037//1082-989x.7.4.422CrossRefGoogle ScholarPubMed
Silva, R., Scheines, R., Glymour, C., & Spirtes, P. (2006). Learning the structure of linear latent variable models. Journal of Machine Learning Research, 7(8), 191246.Google Scholar
Silva, R., & Shimizu, S. (2017). Learning instrumental variables with structural and non-Gaussianity assumptionsJournal of Machine Learning Research, 18(120), 149.Google Scholar
Simons, D. J. (2014). The value of direct replication. Perspectives on Psychological Science, 9(1), 7680. https://doi.org/10.1177/1745691613514755CrossRefGoogle ScholarPubMed
Skitovich, W. P. (1953). On a property of the normal distribution. Doklady Akademii Nauk SSSR [Reports of the Academy of Sciences USSR], 89, 217219.Google Scholar
Slaten, C. D., Wiedermann, W., Williams, M. S., & Sebastian, B. (2024). Evaluating the causal structure of the relationship between belonging and academic self-efficacy in community college: An application of direction dependence analysis. Innovative Higher Education. https://doi.org/10.1007/s10755-024-09707-7CrossRefGoogle Scholar
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290312. https://doi.org/10.2307/270723CrossRefGoogle Scholar
Spiegelman, C. (1979). On estimating the slope of a straight line when both variables are subject to error. The Annals of Statistics, 7(1), 201206. https://doi.org/10.1214/aos/1176344565CrossRefGoogle Scholar
Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search (2nd ed.). MIT Press.Google Scholar
Stadler, D. D., Musser, E. D., Holton, K. F., Shannon, J., & Nigg, J. T. (2016). Recalled initiation and duration of maternal breastfeeding among children with and without ADHD in a well characterized case–control sample. Journal of Abnormal Child Psychology, 44(2), 347355. https://doi.org/10.1007/s10802-015-9987-9CrossRefGoogle Scholar
Stelzl, I. (1986). Changing the causal hypothesis without changing the fit: Some rules for generating equivalent path models. Multivariate Behavioral Research, 21, 309331. https://doi.org/10.1207/s15327906mbr2103-3CrossRefGoogle ScholarPubMed
Stevens, J. P. (1984). Outliers and influential data points in regression analysis. Psychological Bulletin, 95(2), 334344. https://doi.org/10.1037/0033-2909.95.2.334CrossRefGoogle Scholar
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677680. https://doi.org/10.1126/science.103.2684.677CrossRefGoogle ScholarPubMed
Stigler, S. M. (2010). The changing history of robustness. The American Statistician, 64(4), 277281. https://doi.org/10.1198/tast.2010.10159CrossRefGoogle Scholar
Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., & Williams, R. M. J. (1949). The American soldier, Vol.1: Adjustment during army life. Princeton University Press.Google Scholar
Stuart, A., & Ord, J. K. (1994). Kendall’s advanced theory of statistics: Volume I: Distributional theory (6th ed., Vol. 1). John Wiley & Sons, Inc.Google Scholar
Subramanian, S. V., Kim, R., & Christakis, N. A. (2018). The “average” treatment effect: A construct ripe for retirement. A commentary on Deaton and Cartwright. Social Science & Medicine, 210, 7782. https://doi.org/10.1016/j.socscimed.2018.04.027CrossRefGoogle Scholar
Sungur, E. A. (2005). A note on directional dependence in regression setting. Communications in Statistics – Theory and Methods, 34(9–10), 19571965. https://doi.org/10.1080/03610920500201228CrossRefGoogle Scholar
Székely, G. J., & Rizzo, M. L. (2014). Partial distance correlation with methods for dissimilarities. The Annals of Statistics, 42(6), 23822412. https://doi.org/10.1214/14-AOS1255CrossRefGoogle Scholar
Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. Annals of Statistics, 35(6), 27692794. https://doi.org/10.1214/009053607000000505CrossRefGoogle Scholar
Tamimy, Z., van Bergen, E., van der Zee, M., & Dolan, C. V. (2022). Multi co-moment structural equation models: Discovering direction of causality in the presence of confounding. https://osf.io/preprints/socarxiv/ynam2CrossRefGoogle Scholar
Teuscher, F., & Guiard, V. (1995). Sharp inequalities between skewness and kurtosis for unimodal distributions. Statistics & Probability Letters, 22(3), 257260. https://doi.org/10.1016/016771529400074ICrossRefGoogle Scholar
Thistlethwaite, D. L., & Campbell, D. T. (1960). Regression-discontinuity analysis: An alternative to the ex post facto experiment. Journal of Educational Psychology, 51(6), 309317. https://doi.org/10.1037/h0044319CrossRefGoogle Scholar
Thoemmes, F. (2015a). Empirical evaluation of directional-dependence tests. International Journal of Behavioral Development, 39(6), 560569. https://doi.org/10.3403/02181143CrossRefGoogle Scholar
Thoemmes, F. (2015b). Reversing arrows in mediation models does not distinguish plausible models. Basic and Applied Social Psychology, 37(4), 226234. https://doi.org/10.1080/01973533.2015.1049351CrossRefGoogle Scholar
Thoemmes, F. (2020). The assumptions of direction dependence analysis. Multivariate Behavioral Research, 55(4), 516522. https://doi.org/10.1080/00273171.2019.1608800CrossRefGoogle ScholarPubMed
Tsuang, M. T., Francis, T., Minor, K., Thomas, A., & Stone, W. S. (2012). Genetics of smoking and depression. Human Genetics, 131(6), 905915. https://doi.org/10.1007/s00439-012-1170-6CrossRefGoogle ScholarPubMed
Uemura, K., & Shimizu, S. (2020). Estimation of post-nonlinear causal models using autoencoding structure. ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Online, May 4–8, 3312–3316. https://doi.org/10.1109/ICASSP40776.2020.9053468CrossRefGoogle Scholar
VanderWeele, T. J. (2016). Mediation analysis: A practitioner’s guide. Annual Review of Public Health, 37(1), 1732. https://doi.org/10.1146/annurev-publhealth-032315-021402CrossRefGoogle ScholarPubMed
Verma, T., & Pearl, J. (1990). Equivalence and synthesis of causal models. Proceedings of the 6th Conference of Uncertainty in Artificial Intelligence, Cambridge, MA; July 27–29, 220–227.Google Scholar
Vo, T.-T., Superchi, C., Boutron, I., & Vansteelandt, S. (2020). The conduct and reporting of mediation analysis in recently published randomized controlled trials: Results from a methodological systematic review. Journal of Clinical Epidemiology, 117, 7888. https://doi.org/10.1016/j.jclinepi.2019.10.001CrossRefGoogle ScholarPubMed
von Eye, A., & DeShon, R. P. (2008). Characteristics of measures of directional dependence-Monte Carlo studies. InterStat, http://Interstat.Statjournals.Net/YEAR/2008/Articles/0802002.PdfGoogle Scholar
von Eye, A., & DeShon, R. P. (2012). Directional dependence in developmental research. International Journal of Behavioral Development, 36(4), 303312. https://doi.org/10.1177/0165025412439968CrossRefGoogle Scholar
von Eye, A., & Schuster, C. (1998). Regression analysis for social sciences. Academic Press.Google Scholar
von Eye, A., & Wiedermann, W. (2014). On direction of dependence in latent variable contexts. Educational and Psychological Measurement, 74(1), 530. https://doi.org/10.1177/0013164413505863CrossRefGoogle Scholar
von Eye, A., & Wiedermann, W. (2015). Manifest variable Granger causality models for developmental research: A taxonomy. Applied Developmental Science, 19(4), 183195. https://doi.org/10.1080/10888691.2014.1001512CrossRefGoogle Scholar
von Eye, A., & Wiedermann, W. (2016). Direction of effects in categorical variables: A structural perspective. In Wiedermann, W. & von Eye, A. (eds.), Statistics and causality: Methods for applied empirical research (1st ed., pp. 107130). Wiley. https://doi.org/10.1002/9781118947074.ch5CrossRefGoogle Scholar
von Eye, A., & Wiedermann, W. (2018). Locating event-based causal effects: A configural perspective. Integrative Psychological and Behavioral Science, 52(2), 307330. https://doi.org/10.1007/s12124-018-9423-0CrossRefGoogle ScholarPubMed
von Eye, A., & Wiedermann, W. (2023). The general linear model: A primer. Cambridge University Press.CrossRefGoogle Scholar
von Eye, A., Wiedermann, W., & Koller, I. (2015). Granger causality: Linear regression and logit models. In Stemmler, M., von Eye, A., & Wiedermann, W. (eds.), Dependent data in social sciences research (Vol. 145, pp. 127148). Springer International Publishing. https://doi.org/10.1007/978-3-319-20585-4_6CrossRefGoogle Scholar
Wachsmuth, A., Wilkinson, L., & Dallal, G. E. (2003). Galton’s bend: A previously undiscovered nonlinearity in Galton’s family stature regression data. The American Statistician, 57(3), 190192. https://doi.org/10.1198/0003130031874CrossRefGoogle Scholar
Walker, M. L., Dovoedo, Y. H., Chakraborti, S., & Hilton, C. W. (2018). An improved boxplot for univariate data. American Statistician, 72(4), 348353. https://doi.org/10.1080/00031305.2018.1448891CrossRefGoogle Scholar
Wang, L., Huang, S., Wang, S., Liao, J., Li, T., & Liu, L. (2024). A survey of causal discovery based on functional causal model. Engineering Applications of Artificial Intelligence, 133, 108258. https://doi.org/10.1016/j.engappai.2024.108258CrossRefGoogle Scholar
Webster-Stratton, C., Reid, M. J., & Hammond, M. (2004). Treating children with early-onset conduct problems: Intervention outcomes for parent, child, and teacher training. Journal of Clinical Child & Adolescent Psychology, 33(1), 105124. https://doi.org/10.1207/S15374424JCCP3301_11CrossRefGoogle ScholarPubMed
Wei, W., Feng, L., & Liu, C. (2018). Mixed causal structure discovery with application to prescriptive pricing. Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden; July 13–19, 5126–5134.Google Scholar
Weinstock, J., Whelan, J. P., & Meyers, A. W. (2004). Behavioral assessment of gambling: An application of the timeline followback method. Psychological Assessment, 16(1), 7280. https://doi.org/10.1037/1040-3590.16.1.72CrossRefGoogle ScholarPubMed
Westfall, P. H. (2014). Kurtosis as peakedness, 1905–2014. R.I.P. The American Statistician, 68(3), 191195. https://doi.org/10.1080/00031305.2014.917055CrossRefGoogle Scholar
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817838. https://doi.org/10.2307/1912934CrossRefGoogle Scholar
Whiteside, S. P., & Lynam, D. R. (2001). The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30(4), 669689. https://doi.org/10.1016/S0191-8869(00)00064-7CrossRefGoogle Scholar
van Wie, M., Li, X., & Wiedermann, W. (2019). Identification of confounded subgroups using linear model based recursive partitioning. Psychological Test and Assessment Modeling, 61(4), 365387.Google Scholar
Wiedermann, W. (2015). Decisions concerning the direction of effects in linear regression models using fourth central moments. In Stemmler, M., von Eye, A., & Wiedermann, W. (eds.), Dependent data in social sciences research: Forms, issues, and methods of analysis (Vol. 145, pp. 149169). Springer. https://doi.org/10.1007/978-3-319-20585-4_7CrossRefGoogle Scholar
Wiedermann, W. (2018). A note on fourth moment-based direction dependence measures when regression errors are non normal. Communications in Statistics – Theory and Methods, 47(21), 52555264. https://doi.org/10.1080/03610926.2017.1388403CrossRefGoogle Scholar
Wiedermann, W. (2021). Asymmetry properties of the partial correlation coefficient: Foundations for covariate adjustment in distribution-based direction dependence analysis. In Wiedermann, W., Kim, D., Sungur, E. A., & von Eye, A. (eds.), Direction dependence in statistical modeling: Methods of analysis. (pp. 81110). Wiley & Sons.Google Scholar
Wiedermann, W. (2022). Third moment-based causal inference. Behaviormetrika, 49(2), 303328. https://doi.org/10.1007/s41237-021-00154-8CrossRefGoogle Scholar
Wiedermann, W., Artner, R., & von Eye, A. (2017). Heteroscedasticity as a basis of direction dependence in reversible linear regression models. Multivariate Behavioral Research, 52(2), 222241. https://doi.org/10.1080/00273171.2016.1275498CrossRefGoogle ScholarPubMed
Wiedermann, W., & Hagmann, M. (2016). Asymmetric properties of the Pearson correlation coefficient: Correlation as the negative association between linear regression residuals. Communications in Statistics: Theory and Methods, 45(21), 62636283. https://doi.org/10.1080/03610926.2014.960582CrossRefGoogle Scholar
Wiedermann, W., Hagmann, M., Kossmeier, M., & von Eye, A. (2013). Resampling techniques to determine direction of effects in linear regression models. InterStat. http://Interstat.Statjournals.Net/YEAR/2013/Articles/1305002.PdfGoogle Scholar
Wiedermann, W., Hagmann, M., & von Eye, A. (2015). Significance tests to determine the direction of effects in linear regression models. British Journal of Mathematical and Statistical Psychology, 68(1), 116141. https://doi.org/10.1111/bmsp.12037CrossRefGoogle ScholarPubMed
Wiedermann, W., Kim, D., Sungur, E. A., & von Eye, A. (2021). Direction dependence in statistical models: Methods of analysis. Wiley & Sons.Google Scholar
Wiedermann, W., & Li, X. (2018). Direction dependence analysis: A framework to test the direction of effects in linear models with an implementation in SPSS. Behavior Research Methods, 50(4), 15811601. https://doi.org/10.3758/s13428-018-1031-xCrossRefGoogle ScholarPubMed
Wiedermann, W., & Li, X. (2020). Confounder detection in linear mediation models: Performance of kernel-based tests of independence. Behavior Research Methods, 52, 342359. https://doi.org/10.3758/s13428-019-01230-4CrossRefGoogle ScholarPubMed
Wiedermann, W., Li, X., & von Eye, A. (2019). Testing the causal direction of mediation effects in randomized intervention studies. Prevention Science, 20(3), 419430. https://doi.org/10.1007/s11121-018-0900-yCrossRefGoogle ScholarPubMed
Wiedermann, W., Merkle, E. C., & von Eye, A. (2018). Direction of dependence in measurement error models. British Journal of Mathematical and Statistical Psychology, 71(1), 117145. https://doi.org/10.1111/bmsp.12111CrossRefGoogle ScholarPubMed
Wiedermann, W., Reinke, W., & Herman, K. (2020). Prosocial skills causally mediate the relation between effective classroom management and academic competence: An application of direction dependence analysis. Developmental Psychology, 56(9), 17231735.CrossRefGoogle ScholarPubMed
Wiedermann, W., & Sebastian, J. (2020a). Direction dependence analysis in the presence of confounders: Applications to linear mediation models. Multivariate Behavioral Research, 55, 495515. https://doi.org/10.1080/00273171.2018.1528542CrossRefGoogle ScholarPubMed
Wiedermann, W., & Sebastian, J. (2020b). Sensitivity analysis and extensions of testing the causal direction of dependence: A rejoinder to Thoemmes. Multivariate Behavioral Research, 55, 523530. https://doi.org/10.1080/00273171.2019.1659127CrossRefGoogle ScholarPubMed
Wiedermann, W., & von Eye, A. (2015a). Direction of effects in mediation analysis. Psychological Methods, 20(2), 221244. https://doi.org/10.1037/met0000027CrossRefGoogle ScholarPubMed
Wiedermann, W., & von Eye, A. (2015b). Direction of effects in multiple linear regression models. Multivariate Behavioral Research, 50(1), 2340. https://doi.org/10.1080/00273171.2014.958429CrossRefGoogle ScholarPubMed
Wiedermann, W., & von Eye, A. (2015c). Direction-dependence analysis: A confirmatory approach for testing directional theories. International Journal of Behavioral Development, 39(6), 570580. https://doi.org/10.1177/0165025415582056CrossRefGoogle Scholar
Wiedermann, W., & von Eye, A. (2016a). Directional dependence in the analysis of single subjects. Journal for Person-Oriented Research, 2(1–2), 2033. https://doi.org/10.17505/jpor.2016.04CrossRefGoogle Scholar
Wiedermann, W., & von Eye, A. (2016b). Directionality of effects in causal mediation analysis. In Wiedermann, W. & von Eye, A. (eds.), Statistics and Causality: Methods for applied empirical research (pp. 63106). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118947074.ch4CrossRefGoogle Scholar
Wiedermann, W., & von Eye, A. (2020). Log-linear models to evaluate direction of effect in binary variables. Statistical Papers, 61(1), 317346. https://doi.org/10.1007/s00362-017-0936-2CrossRefGoogle Scholar
Wiedermann, W., & Zhang, B. (2024). Direction of dependence in non-linear models via linearization. In Stemmler, M., Wiedermann, W., & Huang, F. L. (eds.), Dependent data in social sciences research: Forms, issues, and methods of analysis (2nd ed.) (pp. 207233). Springer.CrossRefGoogle Scholar
Wiedermann, W., Zhang, B., Reinke, W., Herman, K. C., & von Eye, A. (2022). Distributional causal effects: Beyond an “Averagarian” view of intervention effects. Psychological Methods. https://doi.org/10.1037/met0000533CrossRefGoogle Scholar
Wiedermann, W., Zhang, B., & Shi, D. (2024). Detecting heterogeneity in the causal direction of dependence: A model-based recursive partitioning approach. Behavior Research Methods, 56, 27112730. https://doi.org/10.3758/s13428-023-02253-8CrossRefGoogle ScholarPubMed
Wilson, D. J. (2019). The harmonic mean p-value for combining dependent tests. Proceedings of the National Academy of Sciences, 116(4), 11951200. https://doi.org/10.1073/pnas.1814092116CrossRefGoogle ScholarPubMed
Wong, C.-S., & Law, K. S. (1999). Testing reciprocal relations by nonrecursive structural equation models using cross-sectional data. Organizational Research Methods, 2(1), 6987. https://doi.org/10.1177/109442819921005CrossRefGoogle Scholar
Wood, P. K. (2020). Assumption checking for directional causality analyses. In Wiedermann, W., Kim, D., Sungar, E. A., & von Eye, A. (eds.), Direction dependence in statistical modeling: Methods of analysis (pp. 131165). Wiley & Sons.CrossRefGoogle Scholar
Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data (2nd ed.). MIT Press.Google Scholar
Wright, D. B., & Herrington, J. A. (2011). Problematic standard errors and confidence intervals for skewness and kurtosis. Behavior Research Methods, 43(1), 817. https://doi.org/10.3758/s13428-010-0044-xCrossRefGoogle ScholarPubMed
Wright, P. (1928). The tariff on animal and vegetable oils. Macmillan.Google Scholar
Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7), 557585.Google Scholar
Wright, S. (1934). The method of path coefficients. The Annals of Mathematical Statistics, 5(3), 161215. https://doi.org/10.1214/aoms/1177732676CrossRefGoogle Scholar
Xie, F., He, Y., Geng, Z., Chen, Z., Hou, R., & Zhang, K. (2022). Testability of instrumental variables in linear non-Gaussian acyclic causal models. Entropy, 24(512), 119. https://doi.org/10.3390/e24040512CrossRefGoogle ScholarPubMed
Zanga, A., Ozkirimli, E., & Stella, F. (2022). A survey on causal discovery: Theory and practice. International Journal of Approximate Reasoning, 151, 101129. https://doi.org/10.1016/j.ijar.2022.09.004CrossRefGoogle Scholar
Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2(3), 710.Google Scholar
Zeng, Y., Shimizu, S., Matsui, H., & Sun, F. (2022). Causal discovery for linear mixed data. Proceedings of the First Conference on Causal Learning and Reasoning (CLeaR2022), 177, 9941009.Google Scholar
Zhang, B., & Wiedermann, W. (2024). Covariate selection in causal learning under non-Gaussianity. Behavior Research Methods, 56, 40194037. https://doi.org/10.3758/s13428–023-02217-yCrossRefGoogle ScholarPubMed
Zhang, K., Gong, M., Ramsey, J., Batmanghelich, K., Spirtes, P., & Glymour, C. (2018). Causal discovery with linear non-Gaussian models under measurement error: Structural identifiability results. Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI’18), Monterey, CA; August 6–10.Google Scholar
Zhang, K., & Hyvärinen, A. (2008). Distinguishing causes from effects using nonlinear acyclic causal models. Presented at NIPS 2008 Workshop on Causality, Whistler, Canada; December 12. www.cs.helsinki.fi/u/ahyvarin/papers/Zhang09NIPSworkshop.pdfGoogle Scholar
Zhang, K., & Hyvärinen, A. (2009). On the identifiability of the post-nonlinear causal model. Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI2009), Montreal, Canada; June 18–21, 647–655.Google Scholar
Zhang, K., & Hyvärinen, A. (2016). Nonlinear functional causal models for distinguishing cause from effect. In Wiedermann, W. & von Eye, A. (eds.), Wiley series in probability and statistics (pp. 185201). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118947074.ch8Google Scholar
Zhang, R., Sun, X., Huang, Z., Pan, Y., Westbrook, A., Li, S., Bazzano, L., Chen, W., He, J., Kelly, T., & Li, C. (2022). Examination of serum metabolome altered by cigarette smoking identifies novel metabolites mediating smoking–BMI association. Obesity, 30(4), 943952. https://doi.org/10.1002/oby.23386CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Wolfgang Wiedermann, University of Missouri, Columbia, Alexander von Eye, Michigan State University
  • Book: Direction Dependence Analysis
  • Online publication: 16 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009381437.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Wolfgang Wiedermann, University of Missouri, Columbia, Alexander von Eye, Michigan State University
  • Book: Direction Dependence Analysis
  • Online publication: 16 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009381437.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Wolfgang Wiedermann, University of Missouri, Columbia, Alexander von Eye, Michigan State University
  • Book: Direction Dependence Analysis
  • Online publication: 16 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009381437.013
Available formats
×