Published online by Cambridge University Press: 27 June 2025
The moduli spaces of vector bundles on a compact Riemann surface carry a natural line bundle, the determinant bundle. The sections of this line bundle and its multiples constitute a non-abelian generalization of the classical theta functions. New ideas coming from mathematical physics have shed a new light on these spaces of sections—allowing notably to compute their dimension (Verlinde's formula). This survey paper is devoted to giving an overview of these ideas and of the most important recent results on the subject.
Introduction
It has been known essentially since Riemann that one can associate to any compact Riemann surface X an abelian variety, the Jacobian JX, together with a divisor Θ (well-defined up to translation) that can be defined both in a geometric way and as the zero locus of an explicit function, the Riemann theta function. The geometry of the pair (JX, Θ) is intricately (and beautifully) related to the geometry of X.
The idea that higher-rank vector bundles should provide a non-abelian analogue of the Jacobian appears already in the influential paper [We] of A. Weil (though the notion of vector bundle does not appear as such in that paper!). The construction of the moduli spaces was achieved in the 1960's, mainly by D. Mumford and the mathematicians of the Tata Institute. However it is only recently that the study of the determinant line bundles on these moduli spaces and of their spaces of sections has made clear the analogy with the Jacobian. This is largely due to the intrusion of Conformal Field Theory, where these spaces have appeared (quite surprisingly for us!) as fundamental objects.
To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.