Published online by Cambridge University Press: 14 April 2022
Polymeric matrices absorb moisture, so here we examine how this affects the performance of a composite material. For an aerospace artefact, absorption and desorption is an important issue. For example, on the tarmac the relative humidity (RH) is high, whereas in flight the RH is low. Also, the ambient temperature can vary significantly, whereas the skin of a military aircraft may reach temperatures of 120 °C in flight. Therefore, we consider the effects of RH, temperature, and thermal excursions on moisture absorption and how they influence the micromechanics. Initially we can assume that the fibres are insensitive to water, which is realistic for most common reinforcements apart from aramid fibres.
To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.