Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-10-04T23:13:32.742Z Has data issue: false hasContentIssue false

Chapter 6 - Sleep and Respiration

Published online by Cambridge University Press:  26 May 2025

Martin Groß
Affiliation:
MEDIAN Clinic Bad Tennstedt
Eelco F. M. Wijdicks
Affiliation:
Mayo Clinic
Maxwell S. Damian
Affiliation:
Basildon University Hospitals
Oliver Summ
Affiliation:
Evangelisches Krankenhaus Oldenburg
Get access

Summary

Sleep is behaviorally defined as a reversible state of reduced motor activity and reaction to sensory stimuli. Although sleep is essential for human survival, its function is still not yet completely understood. Sleep is associated with significant changes in respiratory drive, respiratory muscle tone, respiratory mechanics and ventilation. Therefore, profound knowledge of the interactions between sleep and respiration is indispensable for clinicians and scientists in the field of neurorespiratory medicine. Sleep-related breathing disorders are diagnosed by polysomnography or polygraphy. Alveolar hypoventilation and consecutive hypercapnia become evident in sleep rather than wake state in all clinical conditions. The extent of hypercapnia is stage dependent in many diseases. When hypercapnia is suspected, transcutaneous capnometry and blood gas analysis are suitable diagnostic methods. As sleep deprivation reduces the central respiratory drive, weaning from the respirator always should take place first at daytime. Additionally, any factor causing sleep deprivation should be avoided in patients with increased risk of ventilatory insufficiency and during weaning.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Mills, JN, Minors, DS, Waterhouse, JM. The circadian rhythms of human subjects without timepieces or indication of the alternation of day and night. J Physiol. 1974;240(3):567–94. doi: 10.1113/jphysiol.1974.sp010623.CrossRefGoogle ScholarPubMed
Coskun, A, Zarepour, A, Zarrabi, A. Physiological rhythms and biological variation of biomolecules: the road to personalized laboratory medicine. Int J Mol Sci. 2023;24(7):6275. doi: 10.3390/ijms24076275.CrossRefGoogle ScholarPubMed
Horne, JA, Whitehead, M. Ultradian and other rhythms in human respiration rate. Experientia. 1976;32(9):1165–7. doi: 10.1007/BF01927604.CrossRefGoogle ScholarPubMed
Mortola, JP. Breathing around the clock: an overview of the circadian pattern of respiration. Eur J Appl Physiol. 2004;91(2–3):119–29. doi: 10.1007/s00421-003-0978-0.CrossRefGoogle ScholarPubMed
Dvornyk, V, Vinogradova, O, Nevo, E. Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci U S A. 2003;100(5):2495–500. doi: 10.1073/pnas.0130099100.CrossRefGoogle ScholarPubMed
Rosbash, M. The implications of multiple circadian clock origins. PLoS Biol. 2009;7(3):e62. doi: 10.1371/journal.pbio.1000062.CrossRefGoogle ScholarPubMed
Tu, BP, McKnight, SL. Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol. 2006;7(9):696701. doi: 10.1038/nrm1980.CrossRefGoogle Scholar
Anafi, RC, Kayer, MS, Raizen, DM. Exploring phylogeny to find the function of sleep. Nat Rev Neurosci. 2019;20(2):109–16.CrossRefGoogle ScholarPubMed
Reddy, S, Reddy, V, Sharma, S. Physiology, circadian rhythm. In: StatPearls. StatPearls Publishing; 2023. Accessed February 20, 2024. www.ncbi.nlm.nih.gov/books/NBK519507/.Google Scholar
Gerkema, MP, Daan, S, Wilbrink, M, et al. Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): the roles of light and the circadian system. J Biol Rhythms. 1993;8(2):151–71. doi: 10.1177/074873049300800205CrossRefGoogle ScholarPubMed
van der Veen, DR, Saaltink, DJ, Gerkema, MP. Behavioral responses to combinations of timed light, food availability, and ultradian rhythms in the common vole (Microtus arvalis). Chronobiol Int. 2011;28(7):563–71. doi: 10.3109/07420528.2011.591953.CrossRefGoogle ScholarPubMed
Allada, R, Siegel, JM. Unearthing the phylogenetic roots of sleep. Curr Biol. 2008;18(15):R670–9.CrossRefGoogle ScholarPubMed
Zielinski, MR, McKenna, JT, McCarley, RW. Functions and mechanisms of sleep. AIMS Neurosci. 2016;3(1):67104. doi: 10.3934/Neuroscience.2016.1.67.CrossRefGoogle ScholarPubMed
Freiberg, AS. Why we sleep: a hypothesis for an ultimate or evolutionary origin for sleep and other physiological rhythms. J Circadian Rhythms. 2020;18:2. doi: 10.5334/jcr.189.CrossRefGoogle ScholarPubMed
Jaggard, JB, Wang, GX, Mourrain, P. Non-REM and REM/paradoxical sleep dynamics across phylogeny. Curr Opin Neurobiol. 2021;71:4451. doi: 10.1016/j.conb.2021.08.004.CrossRefGoogle ScholarPubMed
Frank, MG, Heller, HC. The function(s) of sleep. Handb Exp Pharmacol. 2019;253:334.CrossRefGoogle ScholarPubMed
Panchin, Y, Kovalzon, VM. Total wake: natural, pathological, and experimental limits to sleep reduction. Front Neurosci. 2021;15:643496.CrossRefGoogle ScholarPubMed
Bourdillon, N, Jeanneret, F, Nilchian, M, et al. Sleep deprivation deteriorates heart rate variability and photoplethysmography. Front Neurosci. 2021;15:642548. doi: 10.3389/fnins.2021.642548.CrossRefGoogle ScholarPubMed
Lyamin, OL, Siegel, JM. Sleep in aquatic mammals. Handb Behav Neurosci. 2019;30: 375–93.CrossRefGoogle ScholarPubMed
Dell, LA, Karlsson, KA, Patzke, N, et al. Organization of the sleep-related neural systems in the brain of the minke whale (Balaenoptera acutorostrata). J Comp Neurol. 2016;524(10):2018–35. doi: 10.1002/cne.23931.Google ScholarPubMed
American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events. American Academy of Sleep Medicine; 2020.Google Scholar
Van Cauter, E, Plat, L, Leproult, R, Copinschi, G. Alterations of circadian rhythmicity and sleep in aging: endocrine consequences. Horm Res. 1998;49(3–4):147–52. doi: 10.1159/000023162.Google ScholarPubMed
Borbély, AA. A two-process model of sleep regulation. Hum Neurobiol. 1982;1(3):195204. PMID: 7185792.Google ScholarPubMed
Borbély, AA, Daan, S, Wirz-Justice, A, Deboer, T. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016;25(2):131–43. doi: 10.1111/jsr.12371.CrossRefGoogle ScholarPubMed
Saper, CB, Fuller, PM, Pedersen, NP, et al. Sleep state switching. Neuron. 2010;68(6):1023–42. doi: 10.1016/j.neuron.2010.11.032.CrossRefGoogle ScholarPubMed
Eban-Rothschild, A, Appelbaum, L, de Lecea, L. Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacology. 2018;43(5):937–52. doi: 10.1038/npp.2017.294.CrossRefGoogle ScholarPubMed
Le Bon, O. Relationships between REM and NREM in the NREM–REM sleep cycle: a review on competing concepts. Sleep Med. 2020;70:616. doi: 10.1016/j.sleep.2020.02.004.CrossRefGoogle ScholarPubMed
Pfaff, D, Ribeiro, A, Matthews, J, Kow, LM. Concepts and mechanisms of generalized central nervous system arousal. Ann N Y Acad Sci. 2008;1129:1125. doi: 10.1196/annals.1417.019.CrossRefGoogle ScholarPubMed
Halász, P, Terzano, M, Parrino, L, Bódizs, R. The nature of arousal in sleep. J Sleep Res. 2004;13(1):123. doi: 10.1111/j.1365-2869.2004.00388.x.CrossRefGoogle ScholarPubMed
Berry, RB, Gleeson, K. Respiratory arousal from sleep: mechanisms and significance. Sleep. 1997;20(8):654–75. doi: 10.1093/sleep/20.8.654.CrossRefGoogle ScholarPubMed
Berthon-Jones, M, Sullivan, CE. Ventilatory and arousal responses to hypoxia in sleeping humans. Am Rev Respir Dis. 1982;125(6):632–9. doi: 10.1164/arrd.1982.125.6.632.Google ScholarPubMed
Smith, HR, Leibold, NK, Rappoport, DA, et al. Dorsal raphe serotonin neurons mediate CO2-induced arousal from sleep. J Neurosci. 2018;38(8):1915–25. doi: 10.1523/JNEUROSCI.2182-17.2018.CrossRefGoogle Scholar
Gleeson, K, Zwillich, CW, White, DP. The influence of increasing ventilatory effort on arousal from sleep. Am Rev Respir Dis. 1990;142(2):295300. doi: 10.1164/ajrccm/142.2.295.CrossRefGoogle ScholarPubMed
Wains, SA, El-Chami, M, Lin, HS, Mateika, JH. Impact of arousal threshold and respiratory effort on the duration of breathing events across sleep stage and time of night. Respir Physiol Neurobiol. 2017;237:3541. doi: 10.1016/j.resp.2016.12.009.CrossRefGoogle ScholarPubMed
Jan, MA, Marshall, I, Douglas, NJ. Effect of posture on upper airway dimensions in normal human. Am J Respir Crit Care Med. 1994;149(1):145–8. doi: 10.1164/ajrccm.149.1.8111573. PMID: 8111573.CrossRefGoogle ScholarPubMed
Behrakis, PK, Baydur, A, Jaeger, MJ, Milic-Emili, J. Lung mechanics in sitting and horizontal body positions. Chest. 1983;83(4):643–6. doi: 10.1378/chest.83.4.643.CrossRefGoogle ScholarPubMed
Sonpeayung, R, Tantisuwat, A, Klinsophon, T, Thaveeratitham, P. Which body position is the best for chest wall motion in healthy adults? A meta-analysis. Respir Care. 2018;63(11):1439–51. doi: 10.4187/respcare.06344.CrossRefGoogle Scholar
Katz, S, Arish, N, Rokach, A, et al. The effect of body position on pulmonary function: a systematic review. BMC Pulm Med. 2018;18(1):159. doi: 10.1186/s12890-018-0723-4.CrossRefGoogle ScholarPubMed
Jordan, AS, White, DP. Pharyngeal motor contol and the pathogenesis of obstructive sleep apnea. Respir Physiol Neurobiol. 2008;160(1):17.CrossRefGoogle Scholar
Carberry, JC, Jordan, AS, White, DP, et al. Upper airway collapsibility (Pcrit) and pharyngeal dilator muscle activity are sleep stage dependent. Sleep. 2016;39(3):511–21. doi: 10.5665/sleep.5516.CrossRefGoogle ScholarPubMed
Hudgel, DW, Martin, RJ, Johnson, B, Hill, P. Mechanics of the respiratory system and breathing pattern during sleep in normal humans. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(1):133–7. doi: 10.1152/jappl.1984.56.1.133.Google ScholarPubMed
Krieger, J, Maglasiu, N, Sforza, E, Kurtz, D. Breathing during sleep in normal middle-aged subjects. Sleep. 1990;13(2):143–54.Google ScholarPubMed
Gothe, B, Altose, MD, Goldman, MD, Cherniack, NS. Effect of quiet sleep on resting and CO2-stimulated breathing in humans. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(4):724–30. doi: 10.1152/jappl.1981.50.4.724. PMID: 6790487.Google ScholarPubMed
Tabachnik, E, Muller, NL, Bryan, AC, Levison, H. Changes in ventilation and chest wall mechanics during sleep in normal adolescents. J Appl Physiol Respir Environ Exerc Physiol. 1981;51(3):557–64. doi: 10.1152/jappl.1981.51.3.557.Google ScholarPubMed
Douglas, NJ, White, DP, Weil, JV, et al. Hypercapnic ventilatory response in sleeping adults. Am Rev Respir Dis. 1982;126(5):758–62. doi: 10.1164/arrd.1982.126.5.758.Google ScholarPubMed
Douglas, NJ, White, DP, Weil, JV, et al. Hypoxic ventilatory response decreases during sleep in normal men. Am Rev Respir Dis. 1982;125 (3):286–9. doi: 10.1164/arrd.1982.125.3.286.Google ScholarPubMed
Naifeh, KH, Kamiya, J. The nature of respiratory changes associated with sleep onset. 1981;Sleep. 4(1):4959. doi: 10.1093/sleep/4.1.49.CrossRefGoogle ScholarPubMed
Brillante, R, Laks, L, Cossa, G, et al. An overnight increase in CO2 predicts mortality in sleep disordered breathing. Respirology. 2012;17(6):933–9. doi: 10.1111/j.1440-1843.2012.02209.x.CrossRefGoogle ScholarPubMed
Schiffman, PL, Trontell, MC, Mazar, MF, Edelman, NH. Sleep deprivation decreases ventilatory response to CO2 but not load compensation. Chest. 1983;84(6):695–8. doi: 10.1378/chest.84.6.695.CrossRefGoogle Scholar
White, DP, Douglas, NJ, Pickett, CK, et al. Sleep deprivation and the control of ventilation. Am Rev Respir Dis. 1983;128(6):984–6. doi: 10.1164/arrd.1983.128.6.984.Google ScholarPubMed
Guyenet, PG, Stornetta, RL, Souza, GMPR, et al. The retrotrapezoid nucleus: central chemoreceptor and regulator of breathing automaticity. Trends Neurosci. 2019;42(11):807–24. doi: 10.1016/j.tins.2019.09.002.CrossRefGoogle ScholarPubMed
Di Lascio, S, Benfante, R, Cardani, S, Fornasari, D. Research advances on therapeutic approaches to congenital central hypoventilation syndrome (CCHS). Front Neurosci. 2021;14:615666. doi: 10.3389/fnins.2020.615666.CrossRefGoogle ScholarPubMed
Cielo, C, Marcus, CL. Central hypoventilation syndromes. Sleep Med Clin. 2014;9(1):105–18. doi: 10.1016/j.jsmc.2013.10.005.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×