Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-mz6gc Total loading time: 0 Render date: 2025-10-03T10:56:32.489Z Has data issue: false hasContentIssue false

Chapter 4 - Respiratory Regulation

Published online by Cambridge University Press:  26 May 2025

Martin Groß
Affiliation:
MEDIAN Clinic Bad Tennstedt
Eelco F. M. Wijdicks
Affiliation:
Mayo Clinic
Maxwell S. Damian
Affiliation:
Basildon University Hospitals
Oliver Summ
Affiliation:
Evangelisches Krankenhaus Oldenburg
Get access

Summary

Respiratory regulation comprises respiratory rhythmogenesis, formation of the respiratory motor pattern, control of blood oxygen and carbon dioxide, increase of minute ventilation during physical activity, adaptation of respiration to the sleep-wake cycle, coordination of breathing with swallowing, cough, sneezing, choking and voluntary activity such as speech or singing. Other factors such as growth and maturation, emotion, pregnancy, injury, disease, body temperature, pain and aging lead to changes in respiration. The presence of a respiratory rhythm generator in the brainstem is now known to be a common feature of all vertebrates. Knowledge about respiratory regulation is mainly derived from animal models, but respiratory regulation in humans is subject to an increasing number of physiological, electrophysiological, neuroradiographic, histopathological and genetic studies. This chapter provides an overview of respiratory regulation, focused on neuroanatomical, neurophysiological and clinical apsects.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Fitzgerald, RS, Cherniack, NS. Historical perspectives on the control of breathing. Compr Physiol. 2012;2(2):915–32. doi: 10.1002/cphy.c100007.CrossRefGoogle ScholarPubMed
Taylor, EW, Leite, CA, McKenzie, DJ, Wang, T. Control of respiration in fish, amphibians and reptiles. Braz J Med Biol Res. 2010;43(5):409–24. doi: 10.1590/s0100-879x2010007500025.Google ScholarPubMed
Fisher, CM. The neurological examination of the comatose patient. Acta Neurol Scand. 1969;45(S36):556. doi: 10.1111/j.1600-0404.Google ScholarPubMed
Johannsen, EB, Baughn, LB, Sharma, N, et al. The genetics of sudden infant death syndrome: towards a gene reference resource. Genes (Basel). 2021;12(2):216. doi: 10.3390/genes12020216.CrossRefGoogle ScholarPubMed
Summ, O, Hassanpour, N, Mathys, C, Groß, M. Disordered breathing in severe cerebral illness: towards a conceptual framework. Respir Physiol Neurobiol. 2022;300:103869. doi: 10.1016/j.resp.2022.103869.CrossRefGoogle ScholarPubMed
Smith, JC, Abdala, AP, Rybak, IA, Paton, JF. Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci. 2009;364(1529):2577–87. doi: 10.1098/rstb.2009.0081.CrossRefGoogle ScholarPubMed
Anderson, TM, Ramirez, JM. Respiratory rhythm generation: triple oscillator hypothesis. F1000Res. 2017;6:139. doi: 10.12688/f1000research.10193.1.CrossRefGoogle ScholarPubMed
Dhingra, RR, Furuya, WI, Dick, TE, Dutschmann, M. Response to: the post-inspiratory complex (PiCo), what is the evidence? J Physiol. 2021;599(1):361–2. doi: 10.1113/JP280958.CrossRefGoogle Scholar
Belyk, M, Brown, R, Beal, DS, et al. Human larynx motor cortices coordinate respiration for vocal-motor control. Neuroimage. 2021;239:118326. doi: 10.1016/j.neuroimage.2021.118326.CrossRefGoogle ScholarPubMed
Ajayi, IE, Mills, PC. Effects of the hippocampus on the motor expression of augmented breaths. PLoS ONE. 2017;12(8): e0183619. doi: 10.1371/journal.pone.0183619.CrossRefGoogle ScholarPubMed
Nobis, WP, Schuele, S, Templer, JW, et al. Amygdala-stimulation-induced apnea is attention and nasal-breathing dependent. Ann Neurol. 2018;83(3):460–71. doi: 10.1002/ana.25178.CrossRefGoogle ScholarPubMed
Fukushi, I, Yokota, S, Okada, Y. The role of the hypothalamus in modulation of respiration. Respir Physiol Neurobiol. 2019;265:172–9. doi: 10.1016/j.resp.2018.07.003.CrossRefGoogle ScholarPubMed
Subramanian, HH, Holstege, G. The midbrain periaqueductal gray changes the eupneic respiratory rhythm into a breathing pattern necessary for survival of the individual and of the species. Prog Brain Res. 2014;212:351–84. doi: 10.1016/B978-0-444-63488-7.00017-3.CrossRefGoogle ScholarPubMed
Xu, F, Frazier, DT. Role of the cerebellar deep nuclei in respiratory modulation. Cerebellum. 2002;1(1):3540. doi: 10.1080/147342202753203078.CrossRefGoogle ScholarPubMed
Silva, HDN, Oliveira, LN, Souza, FC, et al. GABAergic neurons of the medullary raphe regulate active expiration during hypercapnia. J Neurophysiol. 2020;123(5):1933–43. doi: 10.1152/jn.00698.2019.CrossRefGoogle ScholarPubMed
Krohn, F, Novello, M, van der Giessen, RS, et al. The integrated brain network that controls respiration. Elife. 2023;12:e83654. doi: 10.7554/eLife.83654.CrossRefGoogle ScholarPubMed
Moreira, TS, Sobrinho, CR, Falquetto, B, et al. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol. 2021;125(3):699719. doi: 10.1152/jn.00497.2020.CrossRefGoogle ScholarPubMed
Olivares, MJ, Flores, A, von Bernhardi, R, Eugenín, J. Astrocytic contribution to glutamate-related central respiratory chemoreception in vertebrates. Respir Physiol Neurobiol. 2021;294:103744. doi: 10.1016/j.resp.2021.103744.CrossRefGoogle ScholarPubMed
Dhingra, RR, Dick, TE, Furuya, WI, et al. Volumetric mapping of the functional neuroanatomy of the respiratory network in the perfused brainstem preparation of rats. J Physiol. 2020;598(11):2061–79. doi: 10.1113/JP279605.CrossRefGoogle ScholarPubMed
Barnett, WH, Jenkin, SEM, Milsom, WK, et al. The Kölliker–Fuse nucleus orchestrates the timing of expiratory abdominal nerve bursting. J Neurophysiol. 2018;119(2):401–12. doi: 10.1152/jn.00499.2017.CrossRefGoogle ScholarPubMed
Ghali, MGZ. Respiratory rhythm generation and pattern formation: oscillators and network mechanisms. J Integr Neurosci. 2019;18(4):481517. doi: 10.31083/j.jin.2019.04.188.CrossRefGoogle ScholarPubMed
Dutschmann, M, Herbert, H. The Kölliker–Fuse nucleus gates the postinspiratory phase of the respiratory cycle to control inspiratory off-switch and upper airway resistance in rat. Eur J Neurosci. 2006;24(4):1071–84. doi: 10.1111/j.1460-9568.2006.04981.x.CrossRefGoogle ScholarPubMed
Jenkin, SE, Milsom, WK, Zoccal, DB. The Kölliker–Fuse nucleus acts as a timekeeper for late-expiratory abdominal activity. Neuroscience. 2017;348:6372. doi: 10.1016/j.neuroscience.2017.01.050.CrossRefGoogle ScholarPubMed
Dutschmann, M, Bautista, TG, Trevizan-Baú, P, et al. The pontine Kölliker–Fuse nucleus gates facial, hypoglossal, and vagal upper airway related motor activity. Respir Physiol Neurobiol. 2021;284:103563. doi: 10.1016/j.resp.2020.103563.CrossRefGoogle ScholarPubMed
Dhingra, RR, Furuya, WI, Bautista, TG, et al. Increasing local excitability of brainstem respiratory nuclei reveals a distributed network underlying respiratory motor pattern formation. Front Physiol. 2019;10:887. doi: 10.3389/fphys.2019.00887.CrossRefGoogle ScholarPubMed
Smith, JC, Ellenberger, HH, Ballanyi, K, et al. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 1991;254(5032):726–9. doi: 10.1126/science.1683005.CrossRefGoogle ScholarPubMed
Yang, CF, Feldman, JL. Efferent projections of excitatory and inhibitory preBötzinger complex neurons. J Comp Neurol. 2018;526(8):1389–402. doi: 10.1002/cne.24415.CrossRefGoogle ScholarPubMed
Koshiya, N, Oku, Y, Yokota, S, et al. Anatomical and functional pathways of rhythmogenic inspiratory premotor information flow originating in the pre-Bötzinger complex in the rat medulla. Neuroscience. 2014;268:194211. doi: 10.1016/j.neuroscience.2014.03.002.CrossRefGoogle ScholarPubMed
Ikeda, K, Kawakami, K, Onimaru, H, et al. The respiratory control mechanisms in the brainstem and spinal cord: integrative views of the neuroanatomy and neurophysiology. J Physiol Sci. 2017;67(1):4562. doi: 10.1007/s12576-016-0475-y.CrossRefGoogle ScholarPubMed
Baertsch, NA, Severs, LJ, Anderson, TM, Ramirez, JM. A spatially dynamic network underlies the generation of inspiratory behaviors. Proc Natl Acad Sci U S A. 2019;116(15):7493–502. doi: 10.1073/pnas.1900523116.CrossRefGoogle ScholarPubMed
Nattie, E, Li, A. Central chemoreceptors: locations and functions. Compr Physiol. 2012;2(1):221–54. doi: 10.1002/cphy.c100083.CrossRefGoogle ScholarPubMed
Guyenet, PG, Stornetta, RL, Souza, GMPR, et al. The retrotrapezoid nucleus: central chemoreceptor and regulator of breathing automaticity. Trends Neurosci. 2019;42(11):807–24. doi: 10.1016/j.tins.2019.09.002.CrossRefGoogle ScholarPubMed
Guyenet, PG, Bayliss, DA. Central respiratory chemoreception. Handb Clin Neurol. 2022;188:3772. doi: 10.1016/B978-0-323-91534-2.00007-2.CrossRefGoogle ScholarPubMed
Wu, Y, Proch, KL, Teran, FA, et al. Chemosensitivity of Phox2b-expressing retrotrapezoid neurons is mediated in part by input from 5-HT neurons. J Physiol. 2019;597(10):2741–66. doi: 10.1113/JP277052.CrossRefGoogle ScholarPubMed
Levy, J, Droz-Bartholet, F, Achour, M, et al. Parafacial neurons in the human brainstem express specific markers for neurons of the retrotrapezoid nucleus. J Comp Neurol. 2021;529(13):3313–20. doi: 10.1002/cne.25191.CrossRefGoogle ScholarPubMed
Huckstepp, RTR. Your input is a breath of fresh air! A chemosensory microcircuit of medullary raphe and RTN neurons. J Physiol. 2019 May;597(10):2609–10. doi: 10.1113/JP277972. Epub 2019 Apr 16. PMID: 30938458; PMCID: PMC6826214.CrossRefGoogle Scholar
Cleary, CM, Milla, BM, Kuo, FS, et al. Somatostatin-expressing parafacial neurons are CO2/H+ sensitive and regulate baseline breathing. Elife. 2021;10: e60317. doi: 10.7554/eLife.60317.CrossRefGoogle Scholar
Morrell, MJ, Heywood, P, Moosavi, P, et al. Unilateral focal lesions in the rostrolateral medulla influence chemosensitivity and breathing measured during wakefulness, sleep, and exercise. J Neurol Neurosurg Psychiatry. 1999;67(5):637–45. doi: 10.1136/jnnp.67.5.637.CrossRefGoogle ScholarPubMed
Liu, N, Fu, C, Yu, H, et al. Respiratory control by Phox2b-expressing neurons in a locus coeruleus-preBötzinger complex circuit. Neurosci Bull. 2021;37(1):3144. doi: 10.1007/s12264-020-00519-1.CrossRefGoogle Scholar
Maloney, MA, Kun, SS, Keens, TG, Perez, IA. Congenital central hypoventilation syndrome: diagnosis and management. Expert Rev Respir Med. 2018;12(4):283–92. doi: 10.1080/17476348.2018.1445970.CrossRefGoogle ScholarPubMed
Lavezzi, AM, Weese-Mayer, DE, Yu, MY, et al. Developmental alterations of the respiratory human retrotrapezoid nucleus in sudden unexplained fetal and infant death. Auton Neurosci. 2012;170(1–2):12–9. doi: 10.1016/j.autneu.2012.06.005.CrossRefGoogle ScholarPubMed
López-Barneo, J, Ortega-Sáenz, P, González-Rodríguez, P, et al. Oxygen-sensing by arterial chemoreceptors: mechanisms and medical translation. Mol Aspects Med. 2016;47–8:90108. doi: 10.1016/j.mam.2015.12.002.CrossRefGoogle Scholar
Zera, T, Moraes, DJA, da Silva, MP, et al. The logic of carotid body connectivity to the brain. Physiology (Bethesda). 2019;34(4):264–82. doi: 10.1152/physiol.00057.2018.Google ScholarPubMed
Weil, JV, Byrne-Quinn, E, Sodal, IE, et al. Hypoxic ventilatory drive in normal man. J Clin Invest. 1970;49(6):1061–72. doi: 10.1172/JCI106322.CrossRefGoogle ScholarPubMed
Javaheri, S, Kazemi, H. Metabolic alkalosis and hypoventilation in humans. Am Rev Respir Dis. 1987;136(4):1011–16. doi: 10.1164/ajrccm/136.4.1011.CrossRefGoogle ScholarPubMed
AbuAlrob, MA, Tadi, P. Neuroanatomy, nucleus solitarius. In: StatPearls. StatPearls Publishing; 2022. Accessed February 20, 2024. www.ncbi.nlm.nih.gov/books/NBK549831/.Google Scholar
Zyuzin, J, Jendzjowsky, N. Neuroanatomical and neurophysiological evidence of pulmonary nociceptor and carotid chemoreceptor convergence in the nucleus tractus solitarius and nucleus ambiguus. J Neurophysiol. 2022;127(6):1511–18. doi: 10.1152/jn.00125.2022.CrossRefGoogle ScholarPubMed
Alheid, GF, Jiao, W, McCrimmon, DR. Caudal nuclei of the rat nucleus of the solitary tract differentially innervate respiratory compartments within the ventrolateral medulla. Neuroscience. 2011;190:207–27. doi: 10.1016/j.neuroscience.2011.06.005.CrossRefGoogle ScholarPubMed
Zoccal, DB, Furuya, WI, Bassi, M, et al. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities. Front Physiol. 2014;5:238. doi: 10.3389/fphys.2014.00238.CrossRefGoogle ScholarPubMed
Bonis, JM, Neumueller, SE, Marshall, BD, et al. The effects of lesions in the dorsolateral pons on the coordination of swallowing and breathing in awake goats. Respir Physiol Neurobiol. 2011;175(2):272–82. doi: 10.1016/j.resp.2010.12.002.CrossRefGoogle ScholarPubMed
Bonis, JM, Neumueller, SE, Krause, KL, et al. Contributions of the Kölliker–Fuse nucleus to coordination of breathing and swallowing. Respir Physiol Neurobiol. 2013;189(1):1021. doi: 10.1016/j.resp.2013.06.003.CrossRefGoogle ScholarPubMed
Bautista, TG, Dutschmann, M. Ponto-medullary nuclei involved in the generation of sequential pharyngeal swallowing and concomitant protective laryngeal adduction in situ. J Physiol. 2014;592(12):2605–23. doi: 10.1113/jphysiol.2014.272468.CrossRefGoogle ScholarPubMed
Holstege, G. The periaqueductal gray controls brainstem emotional motor systems including respiration. Prog Brain Res. 2014;209:379405. doi: 10.1016/B978-0-444-63274-6.00020-5.CrossRefGoogle ScholarPubMed
Subramanian, HH, Holstege, G. The nucleus retroambiguus control of respiration. J Neurosci. 2009;29(12):3824–32. doi: 10.1523/JNEUROSCI.0607-09.2009.CrossRefGoogle ScholarPubMed
Subramanian, HH, Huang, ZG, Silburn, PA, et al. The physiological motor patterns produced by neurons in the nucleus retroambiguus in the rat and their modulation by vagal, peripheral chemosensory, and nociceptive stimulation. J Comp Neurol. 2018;526(2):229–42. doi: 10.1002/cne.24318.CrossRefGoogle ScholarPubMed
Holstege, G, Subramanian, HH. Two different motor systems are needed to generate human speech. J Comp Neurol. 2016;524(8):1558–77. doi: 10.1002/cne.23898.CrossRefGoogle ScholarPubMed
Krohn, F, Novello, M, van der Giessen, RS, De Zeeuw, CI, Pel, JJM, Bosman, LWJ. The integrated brain network that controls respiration. Elife. 2023 Mar 8;12:e83654. doi: 10.7554/eLife.83654. PMID: 36884287; PMCID: PMC9995121.CrossRefGoogle Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×