Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-nx7b4 Total loading time: 0 Render date: 2025-10-04T21:51:57.797Z Has data issue: false hasContentIssue false

Chapter 8 - Neurorespiratory Diagnostics

Published online by Cambridge University Press:  26 May 2025

Martin Groß
Affiliation:
MEDIAN Clinic Bad Tennstedt
Eelco F. M. Wijdicks
Affiliation:
Mayo Clinic
Maxwell S. Damian
Affiliation:
Basildon University Hospitals
Oliver Summ
Affiliation:
Evangelisches Krankenhaus Oldenburg
Get access

Summary

Respiratory dysfunction can occur at one or more of the following levels: central neurons including the upper motor neuron, brainstem regions of respiratory control. lower motor neurons, peripheral motor nerves, the neuromuscular junction and the respiratory muscles. Any acute or chronic lesion or condition that affects regions of respiratory control can affect the respiratory system by altering breathing pattern and respiratory drive, leading to central breathing irregularities. Dysfunction of lower motor neurons, the peripheral motor nerves, the neuromuscular junction and the muscle typically results in an impairment of the lower motor neurons, the peripheral motor nerves, the neuromuscular junction or the muscle typically results in an impairment of the respiratory pump which commonly leads to chronic hypercapnia, also called respiratory failure type 2. Moreover, weakness of bulbar muscles can cause an airway obstruction resulting in apneic periods with hypercapnia and hypoxemia. Of note, central and peripheral alterations simultaneously affect ventilation in some disorders, which highlights the need for a specific and sometimes individual diagnostic approach. Considering the impact of respiratory insufficiency on morbidity and mortality, the respiratory function must be assessed and monitored regularly.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Boentert, M, Wenninger, S, Sansone, VA. Respiratory involvement in neuromuscular disorders. Curr Opin Neurol. 2017;30(5):529–37.CrossRefGoogle ScholarPubMed
Wenninger, S, Jones, HN. Hypoventilation syndrome in neuromuscular disorders. Curr Opin Neurol. 2021;34(5):686–96.CrossRefGoogle ScholarPubMed
Polkey, MI, Lyall, RA, Moxham, J, Leigh, PN. Respiratory aspects of neurological disease. J Neurol Neurosurg Psychiatry. 1999;66(1):515.CrossRefGoogle ScholarPubMed
Perrin, C, Unterborn, JN, Ambrosio, CD, Hill, NS. Pulmonary complications of chronic neuromuscular diseases and their management. Muscle Nerve. 2004;29(1):527.CrossRefGoogle ScholarPubMed
Laveneziana, P, Albuquerque, A, Aliverti, A, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019:53(6):1801214.CrossRefGoogle ScholarPubMed
Hankinson, JL, Odencrantz, JR, Fedan, KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159(1):179–87.CrossRefGoogle ScholarPubMed
Tiffeneau, R, Pinelli, . Circulating air and captive air in the exploration of the pulmonary ventilator function. Paris Med. 1947;37(52):624–8.Google ScholarPubMed
Ware, JH, Dockery, DW, Louis, TA, Xu, XP, Ferris, BG Jr, Speizer, FE. Longitudinal and cross-sectional estimates of pulmonary function decline in never-smoking adults. Am J Epidemiol. 1990;132(4):685700.CrossRefGoogle ScholarPubMed
Allen, SM, Hunt, B, Green, M. Fall in vital capacity with posture. Br J Dis Chest. 1985;79(3):267–71.CrossRefGoogle ScholarPubMed
Fromageot, C, Lofaso, F, Annane, D, et al. Supine fall in lung volumes in the assessment of diaphragmatic weakness in neuromuscular disorders. Arch Phys Med Rehabil. 2001;82(1):123–8.CrossRefGoogle ScholarPubMed
Shoesmith, CL, Findlater, K, Rowe, A, Strong, MJ. Prognosis of amyotrophic lateral sclerosis with respiratory onset. J Neurol Neurosurg Psychiatry. 2007;78(6):629–31.CrossRefGoogle ScholarPubMed
Phillips, MF, Quinlivan, RC, Edwards, RH, Calverley, PM. Changes in spirometry over time as a prognostic marker in patients with Duchenne muscular dystrophy. Am J Respir Crit Care Med. 2001;164(12):2191–4.CrossRefGoogle ScholarPubMed
Kaminska, M, Noel, F, Petrof, BJ. Optimal method for assessment of respiratory muscle strength in neuromuscular disorders using sniff nasal inspiratory pressure (SNIP). PloS ONE. 2017;12(5):e0177723.CrossRefGoogle ScholarPubMed
Young, P, Boentert, M. Early recognition of Pompe disease by respiratory muscle signs and symptoms. J Neuromuscul Dis. 2015;2(s1):S3.CrossRefGoogle ScholarPubMed
Boentert, M, Drager, B, Glatz, C, Young, P. Sleep-disordered breathing and effects of noninvasive ventilation in patients with late-onset Pompe disease. J Clin Sleep Med. 2016;12(12):1623–32.CrossRefGoogle ScholarPubMed
Spiesshoefer, J, Runte, M, Heidbreder, A, et al. Sleep-disordered breathing and effects of non-invasive ventilation on objective sleep and nocturnal respiration in patients with myotonic dystrophy type I. Neuromuscul Disord. 2019;29(4):302–9.CrossRefGoogle ScholarPubMed
Georges, M, Nguyen‐Baranoff, D, Griffon, L, et al. Usefulness of transcutaneous PCO2 to assess nocturnal hypoventilation in restrictive lung disorders. Respirology. 2016;21(7):1300–6.CrossRefGoogle ScholarPubMed
Trucco, F, Pedemonte, M, Fiorillo, C, et al. Detection of early nocturnal hypoventilation in neuromuscular disorders. J Int Med Res. 2018;46(3):1153–61.CrossRefGoogle ScholarPubMed
Wenninger, S, Stahl, K, Wirner, C, et al. Utility of maximum inspiratory and expiratory pressures as a screening method for respiratory insufficiency in slowly progressive neuromuscular disorders. Neuromuscul Disord. 2020;30(8):640–8.CrossRefGoogle ScholarPubMed
Whitelaw, WA, Derenne, J-P, Milic-Emili, J. Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol. 1975;23(2):181–99.CrossRefGoogle ScholarPubMed
Cherniack, NS, Lederer, DH, Altose, MD, Kelsen, SG. Occlusion pressure as a technique in evaluating respiratory control. Chest. 1976;70(1 suppl):137–41.CrossRefGoogle ScholarPubMed
Alberti, A, Gallo, F, Fongaro, A, Valenti, S, Rossi, A. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med. 1995;21(7):547–53.CrossRefGoogle ScholarPubMed
Kabitz, HJ, Walterspacher, S, Mellies, U, Criee, CP, Windisch, W. [Recommendations for respiratory muscle testing]. Pneumologie. 2014;68(5):307–14.Google ScholarPubMed
Jackson, CE, Rosenfeld, J, Moore, DH, et al. A preliminary evaluation of a prospective study of pulmonary function studies and symptoms of hypoventilation in ALS/MND patients. J Neurol Sci. 2001;191(1–2):75–8.CrossRefGoogle ScholarPubMed
Evans, JA, Whitelaw, WA. The assessment of maximal respiratory mouth pressures in adults. Respir Care. 2009;54(10):1348–59.Google ScholarPubMed
Lyall, RA, Donaldson, N, Polkey, MI, Leigh, PN, Moxham, J. Respiratory muscle strength and ventilatory failure in amyotrophic lateral sclerosis. Brain. 2001;124(Pt 10):2000–13.CrossRefGoogle ScholarPubMed
Schoser, B, Fong, E, Geberhiwot, T, et al. Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: a comprehensive review of the literature. Orphanet J Rare Dis. 2017;12(1):52.CrossRefGoogle ScholarPubMed
Cho, HE, Lee, JW, Kang, SW, Choi, WA, Oh, H, Lee, KC. Comparison of pulmonary functions at onset of ventilatory insufficiency in patients with amyotrophic lateral sclerosis, Duchenne muscular dystrophy, and myotonic muscular dystrophy. Ann Rehabil Med. 2016;40(1):7480.CrossRefGoogle ScholarPubMed
Bolliger, CT, Mathur, PN, Beamis, JF, et al. ERS/ATS statement on interventional pulmonology. European Respiratory Society/American Thoracic Society. Eur Respir J. 2002;19(2):356–73.Google ScholarPubMed
De Troyer, A, Borenstein, S, Cordier, R. Analysis of lung volume restriction in patients with respiratory muscle weakness. Thorax. 1980;35(8):603–10.CrossRefGoogle ScholarPubMed
Courtney, V, Broaddus, M, Robert, J, et al. Murray and Nadel’s Textbook of Respiratory Medicine. 6th ed. WB Saunders; 2016.Google Scholar
Baumann, F, Henderson, RD, Morrison, SC, et al. Use of respiratory function tests to predict survival in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010;11(1–2):194202.CrossRefGoogle ScholarPubMed
Park, KH, Kim, RB, Yang, J, et al. Reference range of respiratory muscle strength and its clinical application in amyotrophic lateral sclerosis: a single-center study. J Clin Neurol. 2016;12(3):361–7.CrossRefGoogle ScholarPubMed
Oczenski, W. Atmen-Atemhilfen: Atemphysiologie und Beatmungstechnik. 53 Tabellen. Thieme Verlag; 2008.CrossRefGoogle Scholar
Chetta, A, Rehman, AK, Moxham, J, Carr, DH, Polkey, MI. Chest radiography cannot predict diaphragm function. Respir Med. 2005;99(1):3944.CrossRefGoogle ScholarPubMed
Harlaar, L, Ciet, P, van Tulder, G, et al. Diaphragmatic dysfunction in neuromuscular disease, an MRI study. Neuromuscular Disord. 2022;32(1):1524.CrossRefGoogle ScholarPubMed
Reyes-Leiva, D, Alonso-Pérez, J, Mayos, M, et al. Correlation between respiratory accessory muscles and diaphragm pillars MRI and pulmonary function test in late-onset Pompe disease patients. Front Neurol. 2021;12:621257.CrossRefGoogle ScholarPubMed
Pinto, S, Alves, P, Pimentel, B, Swash, M, de Carvalho, M. Ultrasound for assessment of diaphragm in ALS. Clin Neurophysiol. 2016;127(1):892–7.CrossRefGoogle ScholarPubMed
Nason, LK, Walker, CM, McNeeley, MF, Burivong, W, Fligner, CL, Godwin, JD. Imaging of the diaphragm: anatomy and function. Radiographics. 2012;32(2):E5170.CrossRefGoogle Scholar
Fayssoil, A, Behin, A, Ogna, A, et al. Diaphragm: pathophysiology and ultrasound imaging in neuromuscular disorders. J Neuromuscul Dis. 2018;5(1):110.CrossRefGoogle ScholarPubMed
Francis, CA, Hoffer, JA, Reynolds, S. Ultrasonographic evaluation of diaphragm thickness during mechanical ventilation in intensive care patients. Am J Crit Care. 2016;25(1):e1e8.CrossRefGoogle ScholarPubMed
Noda, Y, Sekiguchi, K, Kohara, N, Kanda, F, Toda, T. Ultrasonographic diaphragm thickness correlates with compound muscle action potential amplitude and forced vital capacity. Muscle Nerve. 2016;53(4):522–7.CrossRefGoogle ScholarPubMed
Jones, HN, Kuchibhatla, M, Crisp, KD, et al. Respiratory muscle training in late-onset Pompe disease: results of a sham-controlled clinical trial. Neuromuscul Disord. 2020;30(11):904–14.CrossRefGoogle ScholarPubMed
Mills, GH, Kyroussis, D, Hamnegard, CH, Polkey, MI, Green, M, Moxham, J. Bilateral magnetic stimulation of the phrenic nerves from an anterolateral approach. Am J Respir Crit Care Med. 1996;154(4 Pt 1):1099–105.CrossRefGoogle ScholarPubMed
Watson, AC, Hughes, PD, Louise Harris, M, et al. Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med. 2001;29(7):1325–31.CrossRefGoogle ScholarPubMed
Luo, YM, Moxham, J, Polkey, MI. Diaphragm electromyography using an oesophageal catheter: current concepts. Clin Sci (Lond). 2008;115(8):233–44.CrossRefGoogle ScholarPubMed
Reynaud, V, Prigent, H, Mulliez, A, Durand, MC, Lofaso, F. Phrenic nerve conduction study to diagnose unilateral diaphragmatic paralysis. Muscle Nerve. 2021;63(3):327–35.CrossRefGoogle ScholarPubMed
Glerant, J, Mustfa, N, Man, W, et al. Diaphragm electromyograms recorded from multiple surface electrodes following magnetic stimulation. Eur Respir J. 2006;27(2):334–42.CrossRefGoogle ScholarPubMed
Welch, JF, Argento, PJ, Mitchell, GS, Fox, EJ. Reliability of diaphragmatic motor-evoked potentials induced by transcranial magnetic stimulation. J Appl Physiol. 2020;129(6):1393–404.CrossRefGoogle ScholarPubMed
Santos, DB, Desmarais, G, Falaize, L, et al. Twitch mouth pressure for detecting respiratory muscle weakness in suspicion of neuromuscular disorder. Neuromuscular Disord. 2017;27(6):518–25.CrossRefGoogle ScholarPubMed
Miranda, B, Gromicho, M, Pereira, M, Pinto, S, Swash, M, de Carvalho, M. Diaphragmatic CMAP amplitude from phrenic nerve stimulation predicts functional decline in ALS. J Neurol. 2020;267(7):2123–9.CrossRefGoogle ScholarPubMed
Saadeh, PB, Crisafulli, CF, Sosner, J, Wolf, E. Needle electromyography of the diaphragm: a new technique. Muscle Nerve. 1993;16(1):1520.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×