Skip to main content Accessibility help
×
Hostname: page-component-84c44f86f4-t57w2 Total loading time: 0 Render date: 2025-10-14T23:43:12.172Z Has data issue: false hasContentIssue false

Chapter 18 - Neuromuscular Diseases

Published online by Cambridge University Press:  26 May 2025

Martin Groß
Affiliation:
MEDIAN Clinic Bad Tennstedt
Eelco F. M. Wijdicks
Affiliation:
Mayo Clinic
Maxwell S. Damian
Affiliation:
Basildon University Hospitals
Oliver Summ
Affiliation:
Evangelisches Krankenhaus Oldenburg
Get access

Summary

This chapter highlights the most important neuromuscular disorders affecting respiration, discusses their clinical characteristics and provides a guide to management. Respiratory involvement is common in many neuromuscular disorders (NMDs) to a variable degree. In most NMDs, hypoventilation is due to insufficient respiratory muscle pump and results in reduced quality of life and increased morbidity and mortality. Moreover, upper airway muscles and brain can be involved resulting in obstructive sleep apnea, central sleep apnea or central hypoventilation syndrome. Especially in congenital neuromuscular diseases with early disease onset, skeletal deformities reduce thoracic compliance with resulting restrictive ventilatory pattern. In some neuromuscular disorders, more than one system can be affected with the need for an individual diagnostic and therapeutic approach. Intensive care and long-term management of these conditions are discussed.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Schwartzstein, RM, Parker, MJ. Respiratory physiology: A clinical approach. Lippincott Williams & Wilkins; 2006.Google Scholar
Lumb, AB. Nunn’s applied respiratory physiology eBook. Elsevier Health Sciences; 2016.Google Scholar
Oczenski, W. Atmen – Atemhilfen: Atemphysiologie und Beatmungstechnik. Thieme; 2017.Google Scholar
Haaker, G, Forst, J, Forst, R, Fujak, A. Orthopedic management of patients with Pompe disease: a retrospective case series of 8 patients. ScientificWorldJournal. 2014;2014:963861.CrossRefGoogle ScholarPubMed
Gaume, M, Saudeau, E, Gomez-Garcia de la Banda, M, et al. Minimally invasive fusionless surgery for scoliosis in spinal muscular atrophy: long-term follow-up results in a series of 59 patients. J Pediatr Orthop. 2021;41(9):549–58.CrossRefGoogle Scholar
Ran, B, Fan, Y, Yuan, F, Guo, K, Zhu, X. Pulmonary function changes and its influencing factors after preoperative brace treatment in patients with adolescent idiopathic scoliosis: A retrospective case-control study. Medicine (Baltimore). 2016;95(43):e5088.CrossRefGoogle ScholarPubMed
Holt, JB, Dolan, LA, Weinstein, SL. Outcomes of primary posterior spinal fusion for scoliosis in spinal muscular atrophy: clinical, radiographic, and pulmonary outcomes and complications. J Pediatr Orthop. 2017;37(8):e505–e11.CrossRefGoogle ScholarPubMed
Kato, S, Murray, JC, Ganau, M, Tan, Y, Oshima, Y, Tanaka, S. Does posterior scoliosis correction improve respiratory function in adolescent idiopathic scoliosis? A systematic review and meta-analysis. Global Spine J. 2019;9(8):866–73.CrossRefGoogle ScholarPubMed
Farber, HJ, Phillips, WA, Kocab, KL, et al. Impact of scoliosis surgery on pulmonary function in patients with muscular dystrophies and spinal muscular atrophy. Pediatr Pulmonol. 2020 Apr;55(4):1037–42.CrossRefGoogle ScholarPubMed
Wenninger, S, Schoser, B. Ventilationsstörungen erkennen und richtig handeln. DNP – Der Neurologe & Psychiater. 2018;19(2):3947.CrossRefGoogle Scholar
Wenninger, S, Schoser, B. Behandelbare neuromuskuläre Erkrankungen als wichtige Differentialdiagnose der chronisch-progredienten Dyspnoe im höheren Erwachsenenalter. Pneumologe. 2015:12:420–25.CrossRefGoogle Scholar
Pellegrini, N, Laforet, P, Orlikowski, D, et al. Respiratory insufficiency and limb muscle weakness in adults with Pompe’s disease. Eur Respir J. 2005;26(6):1024–31.CrossRefGoogle ScholarPubMed
Dalton, J. Essay IV: on the expansion of elastic fluids by heat. Mem Lit Philos Soc Manch. 1802;5:595602.Google Scholar
Albdewi, MA, Liistro, G, El Tahry, R. Sleep-disordered breathing in patients with neuromuscular disease. Sleep Breath. 2018;22(2):277–86.CrossRefGoogle ScholarPubMed
Boentert, M, Wenninger, S, Sansone, VA. Respiratory involvement in neuromuscular disorders. Curr Opin Neurol. 2017;30(5):529–37.CrossRefGoogle ScholarPubMed
Johns, MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–5.CrossRefGoogle ScholarPubMed
Sansone, VA, Gagnon, C; Participants of the 207th ENMC Workshop. 207th ENMC Workshop on chronic respiratory insufficiency in myotonic dystrophies: management and implications for research, 27–29 June 2014, Naarden, The Netherlands. Neuromuscul Disord. 2015;25(5):432–42.CrossRefGoogle ScholarPubMed
De Mattia, E, Lizio, A, Falcier, E, et al. Screening for early symptoms of respiratory involvement in myotonic dystrophy type 1 using the Respicheck questionnaire. Neuromuscul Disord. 2020;30(4):301–9.CrossRefGoogle ScholarPubMed
Ferrari Aggradi, CR, Falcier, E, Lizio, A, et al. Assessment of respiratory function and need for non-invasive ventilation in a cohort of patients with myotonic dystrophy type 1 followed at one single expert centre. Can Respir J. 2022 Jun 18;2022:2321909.CrossRefGoogle Scholar
Sansone, VA, Proserpio, P, Mauro, L, et al. Assessment of self-reported and objective daytime sleepiness in adult-onset myotonic dystrophy type 1. J Clin Sleep Med. 2021;17(12):2383–91.CrossRefGoogle ScholarPubMed
Babacic, H, Goldina, O, Stahl, K, et al. How to interpret abnormal findings of spirometry and manometry in myotonic dystrophies? J Neuromuscul Dis. 2018;5(4):451–9.Google ScholarPubMed
Fromageot, C, Lofaso, F, Annane, D, et al. Supine fall in lung volumes in the assessment of diaphragmatic weakness in neuromuscular disorders. Arch Phys Med Rehabil. 2001;82(1):123–8.CrossRefGoogle ScholarPubMed
Phillips, MF, Quinlivan, RC, Edwards, RH, Calverley, PM. Changes in spirometry over time as a prognostic marker in patients with Duchenne muscular dystrophy. Am J Respir Crit Care Med. 2001;164(12):2191–4.CrossRefGoogle ScholarPubMed
Andersen, PM, Borasio, GD, Dengler, R, et al. EFNS task force on management of amyotrophic lateral sclerosis: guidelines for diagnosing and clinical care of patients and relatives. Eur J Neurol. 2005;12(12):921–38.CrossRefGoogle ScholarPubMed
Birnkrant, DJ, Bushby, K, Bann, CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17(4):347–61.CrossRefGoogle ScholarPubMed
Boentert, M, Prigent, H, Vardi, K, et al. Practical recommendations for diagnosis and management of respiratory muscle weakness in late-onset Pompe disease. Int J Mol Sci. 2016;17(10).CrossRefGoogle ScholarPubMed
Finkel, RS, Mercuri, E, Meyer, OH, et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord. 2018;28(3):197207.CrossRefGoogle ScholarPubMed
Miller, RG, Jackson, CE, Kasarskis, EJ, et al. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2009;73(15):1218–26.Google Scholar
Smith, CA, Gutmann, L. Myotonic dystrophy type 1 management and therapeutics. Curr Treat Options Neurol. 2016;18(12):52.CrossRefGoogle ScholarPubMed
Wang, CH, Finkel, RS, Bertini, ES, Schroth, M, Simonds, A, Wong, B, et al. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol. 2007;22(8):1027–49.CrossRefGoogle ScholarPubMed
Windisch, W, Dreher, M, Geiseler, J, et al. [Guidelines for non-invasive and invasive home mechanical ventilation for treatment of chronic respiratory failure: update 2017]. Pneumologie. 2017;71(11):722–95.Google ScholarPubMed
Bach, JR, Baird, JS, Plosky, D, Navado, J, Weaver, B. Spinal muscular atrophy type 1: management and outcomes. Pediatr Pulmonol. 2002;34(1):1622.CrossRefGoogle Scholar
Harper, PS. Myotonic Dystrophy. Saunders; 1979:xii, 331.Google Scholar
De Antonio, M, Dogan, C, Hamroun, D, et al. Unravelling the myotonic dystrophy type 1 clinical spectrum: a systematic registry-based study with implications for disease classification. Rev Neurol (Paris). 2016;172(10):572–80.CrossRefGoogle ScholarPubMed
Bird, TD. Myotonic dystrophy type 1. In: Adam, MP, Ardinger, HH, Pagon, RA, et al., eds. GeneReviews. University of Washington; 1993. Accessed June 14, 2024. www.ncbi.nlm.nih.gov/books/NBK1165/.Google Scholar
Wallgren-Pettersson, C, Bushby, K, Mellies, U, Simonds, A, ENMC. 117th ENMC workshop: ventilatory support in congenital neuromuscular disorders: congenital myopathies, congenital muscular dystrophies, congenital myotonic dystrophy and SMA (II) 4–6 April 2003, Naarden, The Netherlands. Neuromuscul Disord. 2004;14(1):5669.CrossRefGoogle ScholarPubMed
Wenninger, S, Montagnese, F, Schoser, B. Core clinical phenotypes in myotonic dystrophies. Front Neurol. 2018;9:303.CrossRefGoogle ScholarPubMed
Henke, C, Spiesshoefer, J, Kabitz, HJ, et al. Characteristics of respiratory muscle involvement in myotonic dystrophy type 1. Neuromuscul Disord. 2020;30(1):1727.CrossRefGoogle ScholarPubMed
Wenninger, S, Stahl, K, Wirner, C, et al. Utility of maximum inspiratory and expiratory pressures as a screening method for respiratory insufficiency in slowly progressive neuromuscular disorders. Neuromuscul Disord. 2020;30(8):640–8.CrossRefGoogle ScholarPubMed
Hahn, A, Bach, JR, Delaubier, A, Renardel-Irani, A, Guillou, C, Rideau, Y. Clinical implications of maximal respiratory pressure determinations for individuals with Duchenne muscular dystrophy. Arch Phys Med Rehabil. 1997;78(1):16.CrossRefGoogle ScholarPubMed
Bach, JR. Noninvasive respiratory management of patients with neuromuscular disease. Ann Rehabil Med. 2017;41(4):519–38.CrossRefGoogle ScholarPubMed
Schoser, B, Fong, E, Geberhiwot, T, et al. Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: a comprehensive review of the literature. Orphanet J Rare Dis. 2017;12(1):52.CrossRefGoogle ScholarPubMed
Moreira, S, Wood, L, Smith, D, et al. Respiratory involvement in ambulant and non-ambulant patients with facioscapulohumeral muscular dystrophy. J Neuro. 2017;264(6):1271–80.CrossRefGoogle ScholarPubMed
Kissel, JT. Facioscapulohumeral dystrophy. Semin Neuro. 1999;19(1):3543.CrossRefGoogle ScholarPubMed
Della Marca, G, Frusciante, R, Dittoni, S, et al. Sleep disordered breathing in facioscapulohumeral muscular dystrophy. J Neurol Sci. 2009;285(1-2):54–8.CrossRefGoogle ScholarPubMed
Henke, C, Spiesshoefer, J, Kabitz, HJ, et al. Respiratory muscle weakness in facioscapulohumeral muscular dystrophy. Muscle Nerve. 2019;60(6):679–86.CrossRefGoogle ScholarPubMed
Runte, M, Spiesshoefer, J, Heidbreder, A, et al. Sleep-related breathing disorders in facioscapulohumeral dystrophy. Sleep Breath. 2019;23(3):899906.CrossRefGoogle ScholarPubMed
Wohlgemuth, M, Horlings, CGC, van der Kooi, EL, et al. Respiratory function in facioscapulohumeral muscular dystrophy 1. Neuromuscul Disord. 2017;27(6):526–30.CrossRefGoogle ScholarPubMed
Rutkowski, A, Chatwin, M, Koumbourlis, A, Fauroux, B, Simonds, A; CMD Respiratory Physiology Consortium. 203rd ENMC international workshop: respiratory pathophysiology in congenital muscle disorders: implications for pro-active care and clinical research 13–15 December, 2013, Naarden, The Netherlands. Neuromuscul Disord. 2015;25(4):353–8.CrossRefGoogle ScholarPubMed
Schatz, UA, Weiss, S, Wenninger, S, et al. Evidence of mild founder LMOD3 mutations causing nemaline myopathy 10 in Germany and Austria. Neurology. 2018;91(18):e1690–e4.CrossRefGoogle ScholarPubMed
Angelini, C. LGMD. Identification, description and classification. Acta Myol. 2020;39(4):207–17.Google ScholarPubMed
Magri, F, Nigro, V, Angelini, C, et al. The Italian limb girdle muscular dystrophy registry: Relative frequency, clinical features, and differential diagnosis. Muscle Nerve. 2017;55(1):5568.CrossRefGoogle ScholarPubMed
Angelini, C, Giaretta, L, Marozzo, R. An update on diagnostic options and considerations in limb-girdle dystrophies. Expert Rev Neurother. 2018;18(9):693703.CrossRefGoogle ScholarPubMed
Prigent, H, Orlikowski, D, Laforet, P, et al. Supine volume drop and diaphragmatic function in adults with Pompe disease. Eur Respir J. 2012;39(6):1545–6.CrossRefGoogle ScholarPubMed
Boentert, M, Karabul, N, Wenninger, S, et al. Sleep-related symptoms and sleep-disordered breathing in adult Pompe disease. Eur J Neurol. 2015;22(2):369–76, e27.CrossRefGoogle ScholarPubMed
Andreassen, CS, Schlutter, JM, Vissing, J, Andersen, H. Effect of enzyme replacement therapy on isokinetic strength for all major muscle groups in four patients with Pompe disease: a long-term follow-up. Mol Genet Metab. 2014;112(1):40–3.CrossRefGoogle ScholarPubMed
Angelini, C, Semplicini, C, Ravaglia, S, et al. New motor outcome function measures in evaluation of late-onset Pompe disease before and after enzyme replacement therapy. Muscle Nerve. 2012;45(6):831–4.CrossRefGoogle ScholarPubMed
Baba, S, Yoshinaga, D, Akagi, K, et al. Enzyme replacement therapy provides effective, long-term treatment of cardiomyopathy in Pompe disease. Circ J. 2018;82(12):3100–1.CrossRefGoogle ScholarPubMed
Cupler, EJ, Berger, KI, Leshner, RT, et al. Consensus treatment recommendations for late-onset Pompe disease. Muscle Nerve. 2012;45(3):319–33.CrossRefGoogle ScholarPubMed
de Vries, JM, van der Beek, NA, Hop, WC, Karstens, FP, Wokke, JH, de Visser, M, et al. Effect of enzyme therapy and prognostic factors in 69 adults with Pompe disease: an open-label single-center study. Orphanet J Rare Dis. 2012;7:73.CrossRefGoogle ScholarPubMed
Desnick, RJ. Enzyme replacement and enhancement therapies for lysosomal diseases. J Inherit Metab Dis. 2004;27(3):385410.CrossRefGoogle ScholarPubMed
Gutschmidt, K, Musumeci, O, Diaz-Manera, J, et al. STIG study: real-world data of long-term outcomes of adults with Pompe disease under enzyme replacement therapy with alglucosidase alfa. J Neurol. 2021 Jul;268(7):2482–92.CrossRefGoogle ScholarPubMed
Schoser, B, Stewart, A, Kanters, S, et al. Survival and long-term outcomes in late-onset Pompe disease following alglucosidase alfa treatment: a systematic review and meta-analysis. J Neurol. 2017;264(4):621–30.CrossRefGoogle ScholarPubMed
van der Meijden, JC, Kruijshaar, ME, Harlaar, L. Long-term follow-up of 17 patients with childhood Pompe disease treated with enzyme replacement therapy. J Inherit Metab Dis. 2018;41(6):1205–14.CrossRefGoogle ScholarPubMed
van der Ploeg, AT, Kruijshaar, ME, Toscano, A, et al. European consensus for starting and stopping enzyme replacement therapy in adult patients with Pompe disease: a 10-year experience. Eur J Neurol. 2017;24(6):768e31.CrossRefGoogle ScholarPubMed
Pfeffer, G, Chinnery, PF. Diagnosis and treatment of mitochondrial myopathies. Ann Med. 2013;45(1):416.CrossRefGoogle ScholarPubMed
Smits, BW, Heijdra, YF, Cuppen, FW, van Engelen, BG. Nature and frequency of respiratory involvement in chronic progressive external ophthalmoplegia. J Neurol. 2011;258(11):2020–5.CrossRefGoogle ScholarPubMed
Flaherty, KR, Wald, J, Weisman, IM, et al. Unexplained exertional limitation: characterization of patients with a mitochondrial myopathy. Am J Respir Crit Care Med. 2001;164(3):425–32.CrossRefGoogle ScholarPubMed
Gorman, GS, Schaefer, AM, Ng, Y, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753–9.CrossRefGoogle ScholarPubMed
Mercuri, E, Finkel, RS, Muntoni, F, et al. Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord. 2018;28(2):103–15.CrossRefGoogle ScholarPubMed
Schroth, MK. Special considerations in the respiratory management of spinal muscular atrophy. Pediatrics. 2009;123(suppl 4):S245–9.CrossRefGoogle ScholarPubMed
GBD 2016 Motor Neuron Disease Collaborators. Global, regional, and national burden of motor neuron diseases 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(12):1083–97.Google Scholar
Johnston, CA, Stanton, BR, Turner, MR, et al. Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. J Neurol. 2006;253(12):1642–3.CrossRefGoogle Scholar
Renton, AE, Chio, A, Traynor, BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17(1):1723.CrossRefGoogle ScholarPubMed
Phukan, J, Elamin, M, Bede, P, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2012;83(1):102–8.CrossRefGoogle ScholarPubMed
Mathis, S, Couratier, P, Julian, A, Management and therapeutic perspectives in amyotrophic lateral sclerosis. Expert Rev Neurother. 2017;17(3):263–76.CrossRefGoogle ScholarPubMed
Mandler, RN, Anderson, FA, Jr, Miller, RG, et al. The ALS Patient Care Database: insights into end-of-life care in ALS. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2(4):203–8.Google ScholarPubMed
Govaarts, R, Beeldman, E, Kampelmacher, MJ, et al. The frontotemporal syndrome of ALS is associated with poor survival. J Neurol. 2016;263(12):2476–83.CrossRefGoogle ScholarPubMed
Chio, A, Logroscino, G, Hardiman, O, et al. Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler. 2009;10(5–6):310–23.CrossRefGoogle ScholarPubMed
Czaplinski, A, Yen, AA, Appel, SH. Forced vital capacity (FVC) as an indicator of survival and disease progression in an ALS clinic population. J Neurol Neurosurg Psychiatry. 2006;77(3):390–2.Google Scholar
Shoesmith, CL, Findlater, K, Rowe, A, Strong, MJ. Prognosis of amyotrophic lateral sclerosis with respiratory onset. J Neurol Neurosurg Psychiatry. 2007;78(6):629–31.CrossRefGoogle ScholarPubMed
Bensimon, G, Lacomblez, L, Meininger, V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994;330(9):585–91.CrossRefGoogle ScholarPubMed
Writing Group; Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017;16(7):505–12.Google Scholar
Miller, TM, Cudkowicz, ME, Genge, A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2022;387(12):1099–110.CrossRefGoogle ScholarPubMed
Shoseyov, D, Cohen-Kaufman, T, Schwartz, I, Portnoy, S. Comparison of activity and fatigue of the respiratory muscles and pulmonary characteristics between post-polio patients and controls: a pilot study. PLoS ONE. 2017;12(7):e0182036.CrossRefGoogle ScholarPubMed
Swinnen, B, Robberecht, W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10(11):661–70.CrossRefGoogle ScholarPubMed
Wijesekera, LC, Mathers, S, Talman, P, et al. Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology. 2009;72(12):1087–94.CrossRefGoogle ScholarPubMed
Masrori, P, Van Damme, P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918–29.CrossRefGoogle ScholarPubMed
Petri, S, Grehl, T, Grosskreutz, J, et al. Guideline “Motor neuron diseases” of the German Society of Neurology (Deutsche Gesellschaft für Neurologie). Neurol Res Pract. 2023;5(1):19.CrossRefGoogle ScholarPubMed
Haverkamp, LJ, Appel, V, Appel, SH. Natural history of amyotrophic lateral sclerosis in a database population: validation of a scoring system and a model for survival prediction. Brain. 1995;118(Pt 3):707–19.CrossRefGoogle Scholar
Almon, RR, Andrew, CG, Appel, SH. Serum globulin in myasthenia gravis: inhibition of alpha-bungarotoxin binding to acetylcholine receptors. Science. 1974;186(4158):55–7.CrossRefGoogle ScholarPubMed
Hoch, W, McConville, J, Helms, S. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001;7(3):365–8.CrossRefGoogle Scholar
Luchanok, V, Kaminski, HJ. Natural history of myasthenia gravis. In: Engel, AG, ed. Myasthenia Gravis and Myasthenic Disorders. 2nd ed. Oxford University Press; 2012:90107.CrossRefGoogle Scholar
Querol, L, Illa, I. Myasthenia gravis and the neuromuscular junction. Curr Opin Neurol. 2013;26(5):459–65.CrossRefGoogle ScholarPubMed
Vincent, A, Clover, L, Buckley, C, Grimley Evans, J, Rothwell, PM, UK Myasthenia Gravis Survey. Evidence of underdiagnosis of myasthenia gravis in older people. J Neurol Neurosurg Psychiatry. 2003;74(8):1105–8.CrossRefGoogle ScholarPubMed
Katzberg, HD, Vajsar, J, Vezina, K, et al. Respiratory dysfunction and sleep-disordered breathing in children with myasthenia gravis. J Child Neurol. 2020;35(9):600–6.CrossRefGoogle ScholarPubMed
Meyer, A, Meyer, N, Schaeffer, M, Gottenberg, JE, Geny, B, Sibilia, J. Incidence and prevalence of inflammatory myopathies: a systematic review. Rheumatology (Oxford). 2015;54(1):5063.CrossRefGoogle ScholarPubMed
Dalakas, MC. Inflammatory myopathies: update on diagnosis, pathogenesis and therapies, and COVID-19-related implications. Acta Myol. 2020;39(4):289301.Google ScholarPubMed
Schmidt, J. Current classification and management of inflammatory myopathies. J Neuromuscul Dis. 2018;5(2):109–29.Google ScholarPubMed
Shelly, S, Triplett, JD, Pinto, MV, et al. Immune checkpoint inhibitor-associated myopathy: a clinicoseropathologically distinct myopathy. Brain Commun. 2020;2(2):fcaa181.CrossRefGoogle ScholarPubMed
van der Meulen, MF, Bronner, IM, Hoogendijk, JE, et al. Polymyositis: an overdiagnosed entity. Neurology. 2003;61(3):316–21.CrossRefGoogle ScholarPubMed
Love, LA, Leff, RL, Fraser, DD, et al. A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore). 1991;70(6):360–74.CrossRefGoogle Scholar
Yoshifuji, H. Biomarkers and autoantibodies of interstitial lung disease with idiopathic inflammatory myopathies. Clin Med Insights Circ Respir Pulm Med. 2015;9(suppl 1):141–6.Google ScholarPubMed
Kim, JG, Park, Y, Lee, J, et al. Re-evaluation of the prognostic significance of oropharyngeal dysphagia in idiopathic inflammatory myopathies. Scand J Rheumatol. 2022;51(5):402–10.CrossRefGoogle ScholarPubMed
Ohmura, SI, Tamechika, SY, Miyamoto, T, Kunieda, K, Naniwa, T. Impact of dysphagia and its severity on long-term survival and swallowing function outcomes in patients with idiopathic inflammatory myopathies other than inclusion body myositis. Int J Rheum Dis. 2022;25(8):897909.CrossRefGoogle ScholarPubMed
Lelievre, MH, Hudson, M, Botez, SA, Dube, BP. Determinants and functional impacts of diaphragmatic involvement in patients with inclusion body myositis. Muscle Nerve. 2021;63(4):497505.CrossRefGoogle ScholarPubMed
Marco, JL, Collins, BF. Clinical manifestations and treatment of antisynthetase syndrome. Best Pract Res Clin Rheumatol. 2020;34(4):101503.CrossRefGoogle ScholarPubMed
Dres, M, Dube, BP, Mayaux, J, et al. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017;195(1):5766.CrossRefGoogle ScholarPubMed
Ropper, AH. Severe acute Guillain–Barré syndrome. Neurology. 1986;36(3):429–32.CrossRefGoogle ScholarPubMed
van den Berg, B, Storm, EF, Garssen, MJP, Blomkwist-Markens, PH, Jacobs, BC. Clinical outcome of Guillain–Barré syndrome after prolonged mechanical ventilation. J Neurol Neurosurg Psychiatry. 2018;89(9):949–54.CrossRefGoogle ScholarPubMed
Shang, P, Zhu, M, Baker, M, Feng, J, Zhou, C, Zhang, HL. Mechanical ventilation in Guillain–Barré syndrome. Expert Rev Clin Immunol. 2020;16(11):1053–64.CrossRefGoogle ScholarPubMed
Fletcher, DD, Lawn, ND, Wolter, TD, Wijdicks, EF. Long-term outcome in patients with Guillain–Barré syndrome requiring mechanical ventilation. Neurology. 2000;54(12):2311–15.CrossRefGoogle ScholarPubMed
Netto, AB, Taly, AB, Kulkarni, GB, Uma Maheshwara Rao, GS, Rao, S. Prognosis of patients with Guillain–Barré syndrome requiring mechanical ventilation. Neurol India. 2011;59(5):707–11.Google ScholarPubMed
Zivkovic, SA, Peltier, AC, Iacob, T, Lacomis, D. Chronic inflammatory demyelinating polyneuropathy and ventilatory failure: report of seven new cases and review of the literature. Acta Neurol Scand. 2011;124(1):5963.CrossRefGoogle ScholarPubMed
Straub, V, Murphy, A, Udd, B; LGMD workshop study group. 229th ENMC international workshop: Limb girdle muscular dystrophies: Nomenclature and reformed classification Naarden, the Netherlands, 17–19 March 2017. Neuromuscul Disord. 2018;28(8):702–10.CrossRefGoogle ScholarPubMed
Polla, B, D’Antona, G, Bottinelli, R, Reggiani, C. Respiratory muscle fibres: specialisation and plasticity. Thorax. 2004;59(9):808–17.CrossRefGoogle ScholarPubMed
Dube, BP, Dres, M. Diaphragm dysfunction: diagnostic approaches and management strategies. J Clin Med. 2016;5(12). doi: 10.3390/jcm5120113.CrossRefGoogle ScholarPubMed
Koessler, W, Wanke, T, Winkler, G, et al. 2 years’ experience with inspiratory muscle training in patients with neuromuscular disorders. Chest. 2001;120(3):765–9.CrossRefGoogle Scholar
McCool, FD, Tzelepis, GE. Inspiratory muscle training in the patient with neuromuscular disease. Phys Ther. 1995;75(11):1006–14.CrossRefGoogle ScholarPubMed
Jones, HN, Crisp, KD, Robey, RR, Case, LE, Kravitz, RM, Kishnani, PS. Respiratory muscle training (RMT) in late-onset Pompe disease (LOPD): effects of training and detraining. Mol Genet Metab. 2016;117(2):120–8.CrossRefGoogle ScholarPubMed
Jones, HN, Moss, T, Edwards, L, Kishnani, PS. Increased inspiratory and expiratory muscle strength following respiratory muscle strength training (RMST) in two patients with late-onset Pompe disease. Mol Genet Metab. 2011;104(3):417–20.CrossRefGoogle ScholarPubMed
Wenninger, S, Greckl, E, Babacic, H, Stahl, K, Schoser, B. Safety and efficacy of short- and long-term inspiratory muscle training in late-onset Pompe disease (LOPD): a pilot study. J Neurol. 2019;266(1):133–47.CrossRefGoogle Scholar
Plowman, EK, Tabor-Gray, L, Rosado, KM, et al. Impact of expiratory strength training in amyotrophic lateral sclerosis: results of a randomized, sham-controlled trial. Muscle Nerve. 2019;59(1):40–6.CrossRefGoogle ScholarPubMed
Plowman, EK, Watts, SA, Tabor, L, et al. Impact of expiratory strength training in amyotrophic lateral sclerosis. Muscle Nerve. 2016;54(1):4853.CrossRefGoogle ScholarPubMed
Ribeiro, BS, Lopes, AJ, Menezes, SLS, Guimaraes, FS. Selecting the best ventilator hyperinflation technique based on physiologic markers: a randomized controlled crossover study. Heart Lung. 2019;48(1):3945.CrossRefGoogle ScholarPubMed
Boitano, LJ. Management of airway clearance in neuromuscular disease. Respir Care. 2006;51(8):913–22; discussion 922–4.Google ScholarPubMed
Camela, F, Gallucci, M, Ricci, G. Cough and airway clearance in Duchenne muscular dystrophy. Paediatr Respir Rev. 2019;31:35–9.Google ScholarPubMed
Gómez-Merino, E, Sancho, J, Marín, J, et al. Mechanical insufflation-exsufflation: pressure, volume, and flow relationships and the adequacy of the manufacturer’s guidelines. Am J Phys Med Rehabil. 2002;81(8):579–83.CrossRefGoogle ScholarPubMed
Finder, JD. Airway clearance modalities in neuromuscular disease. Paediatr Respir Rev. 2010;11(1):31–4.CrossRefGoogle ScholarPubMed
Eagle, M, Baudouin, SV, Chandler, C, Giddings, DR, Bullock, R, Bushby, K. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord. 2002;12(10):926–9.CrossRefGoogle ScholarPubMed
Kieny, P, Chollet, S, Delalande, P, Le Fort, M, Magot, A, Pereon, Y, et al. Evolution of life expectancy of patients with Duchenne muscular dystrophy at AFM Yolaine de Kepper centre between 1981 and 2011. Ann Phys Rehabil Med. 2013;56(6):443–54.CrossRefGoogle Scholar
Landfeldt, E, Thompson, R, Sejersen, T, McMillan, HJ, Kirschner, J, Lochmuller, H. Life expectancy at birth in Duchenne muscular dystrophy: a systematic review and meta-analysis. Eur J Epidemiol. 2020;35(7):643–53.CrossRefGoogle ScholarPubMed
Aboussouan, LS, Khan, SU, Meeker, DP, Stelmach, K, Mitsumoto, H. Effect of noninvasive positive-pressure ventilation on survival in amyotrophic lateral sclerosis. Ann Intern Med. 1997;127(6):450–3.CrossRefGoogle ScholarPubMed
Bourke, SC, Bullock, RE, Williams, TL, Shaw, PJ, Gibson, GJ. Noninvasive ventilation in ALS: indications and effect on quality of life. Neurology. 2003;61(2):171–7.CrossRefGoogle ScholarPubMed
Bourke, SC, Tomlinson, M, Williams, TL, Bullock, RE, Shaw, PJ, Gibson, GJ. Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol. 2006;5(2):140–7.Google ScholarPubMed
Toussaint, M, Steens, M, Soudon, P. Lung function accurately predicts hypercapnia in patients with Duchenne muscular dystrophy. Chest. 2007;131(2):368–75.CrossRefGoogle ScholarPubMed
Raphael, JC, Chevret, S, Chastang, C, Bouvet, F. Randomised trial of preventive nasal ventilation in Duchenne muscular dystrophy. French Multicentre Cooperative Group on Home Mechanical Ventilation Assistance in Duchenne de Boulogne Muscular Dystrophy. Lancet. 1994;343(8913):1600–4.CrossRefGoogle Scholar
Finsterer, J. Congenital myasthenic syndromes. Orphanet J Rare Dis. 2019;14(1):57.CrossRefGoogle ScholarPubMed
Shardonofsky, FR, Perez-Chada, D, Milic-Emili, J. Airway pressures during crying: an index of respiratory muscle strength in infants with neuromuscular disease. Pediatr Pulmonol. 1991;10(3):172–7.CrossRefGoogle ScholarPubMed
Fauroux, B, Aubertin, G, Clément, A, Lofaso, F, Bonora, M. Which tests may predict the need for noninvasive ventilation in children with neuromuscular disease? Respir Med. 2009;103(4):574–81.CrossRefGoogle ScholarPubMed
Marcelino, AA, Fregonezi, GA, Lira, MGA, et al. Reference values of sniff nasal inspiratory pressure in healthy children. Pediatr Pulmonol. 2020;55(2):496502.CrossRefGoogle ScholarPubMed
Banerjee, SK, Davies, M, Sharples, L, Smith, I. The role of facemask spirometry in motor neuron disease. Thorax. 2013;68(4):385–6.CrossRefGoogle ScholarPubMed
Wohlgemuth, M, Van der Kooi, E, Hendriks, J, Padberg, G, Folgering, H. Face mask spirometry and respiratory pressures in normal subjects. Eur Respir J. 2003;22(6):1001–6.CrossRefGoogle ScholarPubMed
Hess, DR. Noninvasive ventilation in neuromuscular disease: equipment and application. Respir Care. 2006;51(8):896911; discussion 911–12.Google ScholarPubMed
Hess, DR. The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation. Respir Care. 2012;57(6):900–18; discussion 918–20.CrossRefGoogle ScholarPubMed
Mehta, S, Hill, NS. Noninvasive ventilation. Am J Respir Crit Care Med. 2001;163(2):540–77.CrossRefGoogle ScholarPubMed
Rabinstein, AA. Noninvasive ventilation for neuromuscular respiratory failure: when to use and when to avoid. Curr Opin Crit Care. 2016;22(2):94–9.Google ScholarPubMed
Spiesshoefer, J, Runte, M, Heidbreder, A, et al. Sleep-disordered breathing and effects of non-invasive ventilation on objective sleep and nocturnal respiration in patients with myotonic dystrophy type I. Neuromuscul Disord. 2019;29(4):302–9.CrossRefGoogle ScholarPubMed
Cantero, C, Adler, D, Pasquina, P, et al. Long-Term noninvasive ventilation in the geneva lake area: indications, prevalence, and modalities. Chest. 2020;158(1):279–91.CrossRefGoogle ScholarPubMed
Janssens, JP, Derivaz, S, Breitenstein, E, et al. Changing patterns in long-term noninvasive ventilation: a 7-year prospective study in the Geneva Lake area. Chest. 2003;123(1):6779.CrossRefGoogle ScholarPubMed
Rabec, C, Rodenstein, D, Leger, P, et al. Ventilator modes and settings during non-invasive ventilation: effects on respiratory events and implications for their identification. Thorax. 2011;66(2):170–8.CrossRefGoogle ScholarPubMed
Lofaso, F, Prigent, H, Tiffreau, V, et al. Long-term mechanical ventilation equipment for neuromuscular patients: meeting the expectations of patients and prescribers. Respir Care. 2014;59(1):97106.CrossRefGoogle ScholarPubMed
Annane, D, Orlikowski, D, Chevret, S. Nocturnal mechanical ventilation for chronic hypoventilation in patients with neuromuscular and chest wall disorders. Cochrane Database Syst Rev. 2014;2014(12):CD001941.Google ScholarPubMed
Sancho, J, Servera, E, Morelot-Panzini, C, Salachas, F, Similowski, T, Gonzalez-Bermejo, J. Non-invasive ventilation effectiveness and the effect of ventilatory mode on survival in ALS patients. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(1-2):5561.CrossRefGoogle ScholarPubMed
Georges, M, Nguyen‐Baranoff, D, Griffon, L, et al. Usefulness of transcutaneous PCO2 to assess nocturnal hypoventilation in restrictive lung disorders. Respirology. 2016;21(7):1300–6.CrossRefGoogle ScholarPubMed
Janssens, JP, Borel, JC, Pepin, JL; SomnoNIV Group. Nocturnal monitoring of home non-invasive ventilation: the contribution of simple tools such as pulse oximetry, capnography, built-in ventilator software and autonomic markers of sleep fragmentation. Thorax. 2011;66(5):438–45.CrossRefGoogle ScholarPubMed
Nardi, J, Prigent, H, Adala, A, et al. Nocturnal oximetry and transcutaneous carbon dioxide in home-ventilated neuromuscular patients. Respir Care. 2012;57(9):1425–30.CrossRefGoogle ScholarPubMed
Nardi, J, Prigent, H, Garnier, B, et al. Efficiency of invasive mechanical ventilation during sleep in Duchenne muscular dystrophy. Sleep Med. 2012;13(8):1056–65.CrossRefGoogle ScholarPubMed
Gonzalez-Bermejo, J, Janssens, JP, Rabec, C, et al. Framework for patient-ventilator asynchrony during long-term non-invasive ventilation. Thorax. 2019;74(7):715–7.CrossRefGoogle ScholarPubMed
Pasquina, P, Adler, D, Farr, P, Bourqui, P, Bridevaux, PO, Janssens, J-P. What does built-in software of home ventilators tell us? An observational study of 150 patients on home ventilation. Respiration. 2012;83(4):293–9.CrossRefGoogle Scholar
Rabec, C, Georges, M, Kabeya, NK, et al. Evaluating noninvasive ventilation using a monitoring system coupled to a ventilator: a bench-to-bedside study. Eur Respir J. 2009;34(4):902–13.CrossRefGoogle ScholarPubMed
Gonzalez-Bermejo, J, Perrin, C, Janssens, J-P, et al. Proposal for a systematic analysis of polygraphy or polysomnography for identifying and scoring abnormal events occurring during non-invasive ventilation. Thorax. 2012;67(6):546–52.CrossRefGoogle ScholarPubMed
Borel, JC, Tamisier, R, Dias-Domingos, S, et al. Type of mask may impact on continuous positive airway pressure adherence in apneic patients. PLoS ONE. 2013;8(5):e64382.CrossRefGoogle ScholarPubMed
Andrade, RG, Piccin, VS, Nascimento, JA, Viana, FM, Genta, PR, Lorenzi-Filho, G. Impact of the type of mask on the effectiveness of and adherence to continuous positive airway pressure treatment for obstructive sleep apnea. J Bras Pneumol. 2014;40(6):658–68.CrossRefGoogle ScholarPubMed
Benditt, JO. Full-time noninvasive ventilation: possible and desirable. Respir Care. 2006;51(9):1005–12; discussion 1012–5.Google ScholarPubMed
Toussaint, M, Steens, M, Wasteels, G, Soudon, P. Diurnal ventilation via mouthpiece: survival in end-stage Duchenne patients. Eur Respir J. 2006;28(3):549–55.CrossRefGoogle ScholarPubMed
Nardi, J, Leroux, K, Orlikowski, D, Prigent, H, Lofaso, F. Home monitoring of daytime mouthpiece ventilation effectiveness in patients with neuromuscular disease. Chron Respir Dis. 2016;13(1):6774.CrossRefGoogle ScholarPubMed
Davies, G, Reid, L. Growth of the alveoli and pulmonary arteries in childhood. Thorax. 1970;25(6):669–81.CrossRefGoogle ScholarPubMed
Simonds, AK. Nasal intermittent positive pressure ventilation in neuromuscular and chest wall disease. Monaldi Arch Chest Dis. 1993;48(2):165–8.Google ScholarPubMed
Guerin, C, Vincent, B, Petitjean, T, et al. The short-term effects of intermittent positive pressure breathing treatments on ventilation in patients with neuromuscular disease. Respir Care. 2010;55(7):866–72.Google ScholarPubMed
Lacombe, M, Del Amo Castrillo, L, Bore, A, et al. Comparison of three cough-augmentation techniques in neuromuscular patients: mechanical insufflation combined with manually assisted cough, insufflation-exsufflation alone and insufflation-exsufflation combined with manually assisted cough. Respiration. 2014;88(3):215–22.CrossRefGoogle ScholarPubMed
Pascoe, JE, Sawnani, H, Mayer, OH, et al. Adherence and barriers to hyperinsufflation in children with congenital muscular dystrophy. Pediatr Pulmonol. 2017;52(7):939–45.CrossRefGoogle ScholarPubMed
Bach, JR, Mahajan, K, Lipa, B, Saporito, L, Goncalves, M, Komaroff, E. Lung insufflation capacity in neuromuscular disease. Am J Phys Med Rehabil. 2008;87(9):720–5.CrossRefGoogle ScholarPubMed
Molgat-Seon, Y, Hannan, LM, Dominelli, PB, et al. Lung volume recruitment acutely increases respiratory system compliance in individuals with severe respiratory muscle weakness. ERJ Open Res. 2017;3(1). doi: 10.1183/23120541.00135-2016.CrossRefGoogle ScholarPubMed
Bach, JR, Goncalves, MR, Hamdani, I, Winck, JC. Extubation of patients with neuromuscular weakness: a new management paradigm. Chest. 2010;137(5):1033–9.CrossRefGoogle ScholarPubMed
Davidson, AC, Banham, S, Elliott, M, et al. BTS/ICS guideline for the ventilatory management of acute hypercapnic respiratory failure in adults. Thorax. 2016;71(suppl 2):ii135.CrossRefGoogle ScholarPubMed
Racca, F, Del Sorbo, L, Mongini, T, Vianello, A, Ranieri, VM. Respiratory management of acute respiratory failure in neuromuscular diseases. Minerva Anestesiol. 2010;76(1):5162.Google ScholarPubMed
Simonds, AK. Ventilator support in children with neuromuscular disorders. In: Sterni, LM, Carroll, JL, eds. Caring for the Ventilator Dependent Child. Springer; 2016:283–98.Google Scholar
Chen, TH, Hsu, JH, Wu, JR, et al. Combined noninvasive ventilation and mechanical in‐exsufflator in the treatment of pediatric acute neuromuscular respiratory failure. Pediatric Pulmonology. 2014;49(6):589–96.CrossRefGoogle ScholarPubMed
Sejvar, JJ, Baughman, AL, Wise, M, Morgan, OW. Population incidence of Guillain–Barré syndrome: a systematic review and meta-analysis. Neuroepidemiology. 2011;36(2):123–33.CrossRefGoogle ScholarPubMed
McGrogan, A, Madle, GC, Seaman, HE, de Vries, CS. The epidemiology of Guillain–Barré syndrome worldwide: a systematic literature review. Neuroepidemiology. 2009;32(2):150–63.CrossRefGoogle ScholarPubMed
Leonhard, SE, Mandarakas, MR, Gondim, FAA, et al. Diagnosis and management of Guillain–Barré syndrome in ten steps. Nat Rev Neurol. 2019;15(11):671–83.CrossRefGoogle ScholarPubMed
Krauer, F, Riesen, M, Reveiz, L, et al. Zika virus infection as a cause of congenital brain abnormalities and Guillain–Barré syndrome: systematic review. PLoS Med. 2017;14(1):e1002203.CrossRefGoogle ScholarPubMed
Jacobs, BC, Rothbarth, PH, van der Meche, FG, et al. The spectrum of antecedent infections in Guillain–Barré syndrome: a case-control study. Neurology. 1998;51(4):1110–5.CrossRefGoogle ScholarPubMed
Liu, H, Ma, Y. Hepatitis E virus-associated Guillain–Barré syndrome: Revision of the literature. Brain Behav. 2020;10(1):e01496.CrossRefGoogle ScholarPubMed
Ruts, L, Drenthen, J, Jongen, JL, et al. Pain in Guillain–Barré syndrome: a long-term follow-up study. Neurology. 2010;75(16):1439–47.CrossRefGoogle ScholarPubMed
Wakerley, BR, Uncini, A, Yuki, N; GBS Classification Group. Guillain–Barré and Miller Fisher syndromes: new diagnostic classification. Nat Rev Neurol. 2014;10(9):537–44.Google Scholar
Fokke, C, van den Berg, B, Drenthen, J, Walgaard, C, van Doorn, PA, Jacobs, BC. Diagnosis of Guillain–Barré syndrome and validation of Brighton criteria. Brain. 2014;137(Pt 1):3343.CrossRefGoogle ScholarPubMed
van den Berg, B, Walgaard, C, Drenthen, J, Fokke, C, Jacobs, BC, van Doorn, PA. Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014;10(8):469–82.CrossRefGoogle ScholarPubMed
Lawn, ND, Fletcher, DD, Henderson, RD, Wolter, TD, Wijdicks, EF. Anticipating mechanical ventilation in Guillain–Barré syndrome. Arch Neurol. 2001;58(6):893–8.CrossRefGoogle ScholarPubMed
Sander, D, Wolfe, G, Benatar, M, Evli, A, Gilhus, N, Illa, I. International consensus guidelines for management of myasthenia gravis. Neurology. 2016;87:419–25.Google Scholar
Oosterhuis, HJ. Observations of the natural history of myasthenia gravis and the effect of thymectomy. Ann N Y Acad Sci. 1981;377:678–90.CrossRefGoogle ScholarPubMed
Meriggioli, MN, Sanders, DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol. 2009;8(5):475–90.CrossRefGoogle ScholarPubMed
Thomas, CE, Mayer, SA, Gungor, Y, et al. Myasthenic crisis: clinical features, mortality, complications, and risk factors for prolonged intubation. Neurology. 1997;48(5):1253–60.CrossRefGoogle ScholarPubMed
Alshekhlee, A, Miles, JD, Katirji, B, Preston, DC, Kaminski, HJ. Incidence and mortality rates of myasthenia gravis and myasthenic crisis in US hospitals. Neurology. 2009;72(18):1548–54.CrossRefGoogle ScholarPubMed
Seneviratne, J, Mandrekar, J, Wijdicks, EF, Rabinstein, AA. Noninvasive ventilation in myasthenic crisis. Arch Neurol. 2008;65(1):54–8.CrossRefGoogle ScholarPubMed
Teramoto, K, Kuwabara, M, Matsubara, Y. Respiratory failure due to vocal cord paresis in myasthenia gravis. Respiration. 2002;69(3):280–2.CrossRefGoogle ScholarPubMed
Damian, MS, Wijdicks, EFM. The clinical management of neuromuscular disorders in intensive care. Neuromuscul Disord. 2019;29(2):8596.CrossRefGoogle ScholarPubMed
Oosterhuis, HJ. The natural course of myasthenia gravis: a long term follow up study. J Neurol Neurosurg Psychiatry. 1989;52(10):1121–7.CrossRefGoogle ScholarPubMed
Damian, MS, Ben-Shlomo, Y, Howard, R, et al. The effect of secular trends and specialist neurocritical care on mortality for patients with intracerebral haemorrhage, myasthenia gravis and Guillain-Barré syndrome admitted to critical care: an analysis of the Intensive Care National Audit & Research Centre (ICNARC) national United Kingdom database. Intensive Care Med. 2013;39(8):1405–12.CrossRefGoogle Scholar
Oyama, M, Okada, K, Masuda, M, et al. Suitable indications of eculizumab for patients with refractory generalized myasthenia gravis. Ther Adv Neurol Disord. 2020;13:1756286420904207.CrossRefGoogle ScholarPubMed
Howard, JF, Vu, T, Mantegazza, R, et al. Long-term efficacy and safety of ravulizumab, a long-acting terminal complement inhibitor, in adults with anti-acetylcholine receptor antibody-positive generalized myasthenia gravis: results from the Phase 3 CHAMPION MG Open-label Extension (S25.005). J Neurol. 2023 Aug;270(8):3862–75.Google Scholar
Howard, JF, Jr., Bril, V, Vu, T, et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021;20(7):526–36.CrossRefGoogle ScholarPubMed
Vuillard, C, Pineton de Chambrun, M, de Prost, N, et al. Clinical features and outcome of patients with acute respiratory failure revealing anti-synthetase or anti-MDA-5 dermato-pulmonary syndrome: a French multicenter retrospective study. Ann Intensive Care. 2018;8(1):87.CrossRefGoogle ScholarPubMed
Hervier, B, Uzunhan, Y. Inflammatory myopathy-related interstitial lung disease: from pathophysiology to treatment. Front Med (Lausanne). 2019;6:326.CrossRefGoogle ScholarPubMed
Fragoulis, GE, Conway, R, Nikiphorou, E. Methotrexate and interstitial lung disease: controversies and questions: a narrative review of the literature. Rheumatology (Oxford). 2019;58(11):1900–6.CrossRefGoogle ScholarPubMed
Allenbach, Y, Benveniste, O, Stenzel, W, Boyer, O. Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nat Rev Rheumatol. 2020;16(12):689701.CrossRefGoogle ScholarPubMed
Ameye, H, Ruttens, D, Benveniste, O, Verleden, G, Wuyts, W. Is lung transplantation a valuable therapeutic option for patients with pulmonary polymyositis? Experiences from the Leuven transplant cohort. Transplant Proc. 2014;6(9):3147–53.Google Scholar
University of Newcastle. Mitochondrial Disease Clinical Guidelines. 2023. Accessed June 16, 2024. www.newcastle-mitochondria.com/guidelines/.Google Scholar
Parikh, S, Goldstein, A, Karaa, A, et al. Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med. 2017;19(12). doi: 10.1038/gim.2014.177CrossRefGoogle ScholarPubMed
Jackson, CE, Rosenfeld, J, Moore, DH, et al. A preliminary evaluation of a prospective study of pulmonary function studies and symptoms of hypoventilation in ALS/MND patients. J Neurol Sci. 2001;191(1–2):75–8.CrossRefGoogle ScholarPubMed
Lo Coco, D, Marchese, S, Pesco, MC, La Bella, V, Piccoli, F, Lo, Coco A. Noninvasive positive-pressure ventilation in ALS: predictors of tolerance and survival. Neurology. 2006;67(5):761–5.CrossRefGoogle ScholarPubMed
Forshew, DA, Bromberg, MB. A survey of clinicians’ practice in the symptomatic treatment of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4(4):258–63.Google ScholarPubMed
Jackson, CE, McVey, AL, Rudnicki, S, Dimachkie, MM, Barohn, RJ. Symptom management and end-of-life care in amyotrophic lateral sclerosis. Neurol Clin. 2015;33(4):889908.CrossRefGoogle ScholarPubMed
Annane, D, Orlikowski, D, Chevret, S, Chevrolet, JC, Raphael, JC. Nocturnal mechanical ventilation for chronic hypoventilation in patients with neuromuscular and chest wall disorders. Cochrane Database Syst Rev. 2007(4):CD001941.Google Scholar
Perrin, C, Unterborn, JN, Ambrosio, CD, Hill, NS. Pulmonary complications of chronic neuromuscular diseases and their management. Muscle Nerve. 2004;29(1):527.CrossRefGoogle ScholarPubMed
Bach, JR, Ishikawa, Y, Kim, H. Prevention of pulmonary morbidity for patients with Duchenne muscular dystrophy. Chest. 1997;112(4):1024–8.CrossRefGoogle ScholarPubMed
Vianello, A, Bevilacqua, M, Arcaro, G, Gallan, F, Serra, E. Non-invasive ventilatory approach to treatment of acute respiratory failure in neuromuscular disorders: a comparison with endotracheal intubation. Intensive Care Med. 2000;26(4):384–90.CrossRefGoogle ScholarPubMed
Chatwin, M, Toussaint, M, Goncalves, MR, et al. Airway clearance techniques in neuromuscular disorders: a state of the art review. Respir Med. 2018;136:98110.CrossRefGoogle ScholarPubMed
Vianello, A, Bevilacqua, M, Arcaro, G, Serra, E. Prevention of pulmonary morbidity in patients with neuromuscular disorders: a possible role for permanent cricothyroid minitracheostomy. Chest. 1998;114(1):346–7.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×