Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-2bdfx Total loading time: 0 Render date: 2025-10-14T05:17:59.273Z Has data issue: false hasContentIssue false

Chapter 10 - Management of Secretions and Augmentation of Coughing in Diseases of the Nervous System and the Muscles

Published online by Cambridge University Press:  26 May 2025

Martin Groß
Affiliation:
MEDIAN Clinic Bad Tennstedt
Eelco F. M. Wijdicks
Affiliation:
Mayo Clinic
Maxwell S. Damian
Affiliation:
Basildon University Hospitals
Oliver Summ
Affiliation:
Evangelisches Krankenhaus Oldenburg
Get access

Summary

Coughing is essential for survival as it clears secretions and foreign bodies from the central airways. Insufficient cough flows and aspiration of saliva are frequent problems in neurological illness and lead to tracheobronchial retention of secretions. Comorbidities like chronic obstructive pulmonary disease, certain medications and failure to adequately humidify the lower airways can lead to hypersecretion, thick and tenacious secretions and ciliary dysfunction, respectively. This can further aggravate any bronchopulmonary retention of secretions, finally leading to atelectasis, pneumonia, respiratory failure as well as death. Noninvasive ventilatory support is effective only if accompanied by adequate management of secretions. This chapter provides a comprehensive overview of the neuronal control, physiology and pathophysiology of coughing and bronchopulmonary retention of secretions as well as effective techniques to reduce secretions and to eliminate them from the airways.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Canning, BJ. The cough reflex in animals: relevance to human cough research. Lung. 2008;186(1 suppl):S23–8. doi: 10.1007/s00408-007-9054-6.CrossRefGoogle ScholarPubMed
Bucher, U, Reid, L. Development of the mucus secreting elements in human lung. Thorax. 1961;16:219–5.CrossRefGoogle ScholarPubMed
Ledowski, T, Paech, MJ, Patel, B, Schug, SA. Bronchial mucus transport velocity in patients receiving Propofol and Remifentanil versus Sevoflurane and Remifentanil anesthesia. Anesth Analg. 2006;102:1427–30.CrossRefGoogle ScholarPubMed
Konrad, F, Schreiber, T, Brecht-Kraus, D, Georgieff, M. Mucociliary transport in ICU patients. Chest. 1994;105:237–41.CrossRefGoogle ScholarPubMed
Mutolo, D. Brainstem mechanisms underlying the cough reflex and its regulation. Respir Physiol Neurobiol. 2017;243:6076CrossRefGoogle ScholarPubMed
Narula, M, McGovern, AE, Yang, SK, et al. Afferent neural pathways mediating cough in animals and humans. J Thorac Dis. 2014;6(suppl 7):S712–9. doi: 10.3978/j.issn.2072-1439.2014.03.15.Google Scholar
Mazzone, SB, Cole, LJ, Ando, A, et al. Investigation of the neural control of cough and cough suppression in humans using functional brain imaging. J Neurosci. 2011;31(8):2948–58. doi: 10.1523/JNEUROSCI.4597-10.2011.CrossRefGoogle ScholarPubMed
Mazzone, SB, McGovern, AE, Yang, YK, et al. Sensorimotor circuitry involved in the higher brain control of coughing. Cough. 2013;9(1):7. doi: 10.1186/1745-9974-9-7.CrossRefGoogle ScholarPubMed
Widdicombe, J, Fontana, G. Cough: what’s in a name? Eur Respir J. 2006;28(1):1015. doi: 10.1183/09031936.06.00096905.CrossRefGoogle Scholar
Sharpey-Schafer, EP. Effects of coughing on intrathoracic pressure, arterial pressure and peripheral blood flow. J Physiol. 1953;122(2):351–7CrossRefGoogle ScholarPubMed
Man, WD, Kyroussis, D, Fleming, TA, et al. Cough gastric pressure and maximum expiratory mouth pressure in humans. Am J Respir Crit Care Med. 2003;168(6):714–7. doi: 10.1164/rccm.200303-334BC.CrossRefGoogle ScholarPubMed
Andrani, F, Aiello, M, Bertorelli, G, et al. Cough, a vital reflex. mechanisms, determinants and measurements. Acta Biomed. 2019;89(4):477–80. doi: 10.23750/abm.v89i4.6182.Google ScholarPubMed
Bach, JR. Cough and exsufflation therapies: theory and function. In: Bach, JR, Gonçalves, MR, eds. A Compendium of Interventions for the Noninvasive Management of Ventilatory Pump Failure: For Humane Management of Neuromuscular Diseases, Spinal Cord Injury, Morbid Obesity, Chest Wall Deformity, Critical Care Neuromyopathy, and Other Neurological and Pulmonary Disorders, 1st ed., 2nd issue. Lightning Press; 2023:283–98.Google Scholar
Bianchi, C, Biardi, P. Peak cough flows: standard values for children and adolescents. Am J Phys Med Rehabil. 2008:87:461–7.CrossRefGoogle ScholarPubMed
Berlowitz, DJ, Wadsworth, B, Ross, J. Respiratory problems and management in people with spinal cord injury. Breathe (Sheff). 2016;12(4):328–40. doi: 10.1183/20734735.012616.Google ScholarPubMed
Roth, EJ, Lu, A, Primack, S, et al. Ventilatory function in cervical and high thoracic spinal cord injury. Relationship to level of injury and tone. Am J Phys Med Rehabil. 1997;76(4):262–7. doi: 10.1097/00002060-199707000-00002.CrossRefGoogle ScholarPubMed
Benditt, JO. Pathophysiology of neuromuscular respiratory diseases. Clin Chest Med. 2016;39(2):297308.CrossRefGoogle Scholar
Verde, F, Del Tredici, K, Braak, H, Ludolph, A. The multisystem degeneration amyotrophic lateral sclerosis - neuropathological staging and clinical translation. Arch Ital Biol. 2017;155(4):118–30. doi: 10.12871/00039829201746.Google ScholarPubMed
Andersen, T, Sandnes, A, Brekka, AK, et al. Laryngeal response patterns influence the efficacy of mechanical assisted cough in amyotrophic lateral sclerosis. Thorax. 2017;72(3):221–9. doi: 10.1136/thoraxjnl-2015-207555.CrossRefGoogle ScholarPubMed
van der Graaff, MM, Grolman, W, Westermann, EJ, et al. Vocal cord dysfunction in amyotrophic lateral sclerosis: four cases and a review of the literature. Arch Neurol. 2009;66(11):1329–33. doi: 10.1001/archneurol.2009.250.CrossRefGoogle Scholar
Bach, JR, Upadhyaya, N. Association of need for tracheotomy with decreasing mechanical in-exsufflation flows in amyotrophic lateral sclerosis. Am J Phys Med Rehabil. 2018;97(4):e20–2. doi: 10.1097/PHM.0000000000000755.CrossRefGoogle ScholarPubMed
Shock, LA, Gallemore, BC, Hinkel, CJ. Improving the utility of laryngeal adductor reflex testing: a translational tale of mice and men. Otolaryngol Head Neck Surg. 2015;153(1):94101. doi: 10.1177/0194599815578103.CrossRefGoogle ScholarPubMed
Bosma, JF, and Brodie, D. R. Disabilities of the pharynx in amyotrophic lateral sclerosis as demonstrated by cineradiography. Radiology. 1969;92(1):97103. doi: 10.1148/92.1.97.CrossRefGoogle ScholarPubMed
Bach, JR. POINT: is noninvasive ventilation always the most appropriate manner of long-term ventilation for infants with spinal muscular atrophy type 1? Yes, almost always. Chest. 2017;151(5):962–5. doi: 10.1016/j.chest.2016.11.043.CrossRefGoogle ScholarPubMed
Canning, BJ, Chang, AB, Bolser, DC, et al.; CHEST Expert Cough Panel. Anatomy and neurophysiology of cough: CHEST Guideline and Expert Panel report. Chest. 2014;146(6):1633–48. doi: 10.1378/chest.14-1481.CrossRefGoogle ScholarPubMed
Suntrup-Krueger, S, KemmLing, A, Warnecke, T, et al. The impact of lesion location on dysphagia incidence, pattern and complications in acute stroke. Part 2: oropharyngeal residue, swallow and cough response, and pneumonia. Eur J Neurol. 2017;24(6):867–74. doi: 10.1111/ene.13307.CrossRefGoogle ScholarPubMed
Al-Biltagi, M, Bediwy, AS, Saeed, NK. Cough as a neurological sign: what a clinician should know. World J Crit Care Med. 2022;11(3):115–28. doi: 10.5492/wjccm.v11.i3.115.CrossRefGoogle ScholarPubMed
Kang, Y, Chun, MH, Lee, SJ. Evaluation of salivary aspiration in brain-injured patients with tracheostomy. Ann Rehabil Med. 2013;37(1):96102. doi: 10.5535/arm.2013.37.1.96.CrossRefGoogle ScholarPubMed
Choi, JW, Kim, DY, Joo, SY, Park, D, Chang, MC. Evaluation of clinical factors predicting dysphagia in patients with traumatic and non-traumatic cervical spinal cord injury: a retrospective study. Front Neurol. 2024 May 15;15:1376171. doi: 10.3389/fneur.2024.1376171. PMID: 38813244; PMCID: PMC11133571.CrossRefGoogle Scholar
Zuercher, P, Moret, CS, Dziewas, R, Schefold, JC. Dysphagia in the intensive care unit: epidemiology, mechanisms, and clinical management. Crit Care. 2019;23(1):103. doi: 10.1186/s13054-019-2400-2.CrossRefGoogle ScholarPubMed
Fink, JB. Positioning versus postural drainage. Respir Care. 2002;47(7):769–77.Google ScholarPubMed
Geltser, BI, Kurpatov, IG, Kotelnikov, VN, Zayats, YV. Chronic obstructive pulmonary disease and cerebrovascular diseases: functional and clinical aspect of comorbidity. Ter Arkh. 2018;90(3):81–8. doi: 10.26442/terarkh201890381-88.Google ScholarPubMed
Gomez-Merino, E, Bach, JR. Duchenne muscular dystrophy: prolongation of life by noninvasive respiratory muscle aids. Am J Phys Med Rehabil. 2002;81(6):411–15. doi: 10.1097/00002060-200206000-00003.CrossRefGoogle Scholar
Bach, JR, Wang, D. Mechanical insufflation–exsufflation to facilitate ventilator weaning and possible decannulation for patients with encephalopathic conditions. Journal of Neurorestoratology. 2023;11(1). Accessed February 21, 2024. www.sciencedirect.com/science/article/pii/S2324242622001334.CrossRefGoogle Scholar
Seipp, A, Klausen, A, Timmer, A, et al. Effect of mechanical insufflation-exsufflation for ineffective cough on weaning duration in diseases of the peripheral or central nervous system (MEDINE): study protocol for a randomised controlled trial in a neurological weaning centre. BMJ Open. 2023;13(7):e071273. doi: 10.1136/bmjopen-2022-071273.CrossRefGoogle ScholarPubMed
Garnock-Jones, KP. Glycopyrrolate oral solution: for chronic, severe drooling in pediatric patients with neurologic conditions. Paediatr Drugs. 2012;14(4):263–9. doi: 10.2165/11208120-000000000-00000.CrossRefGoogle ScholarPubMed
Parr, JR, Todhunter, E, Pennington, L, et al. Drooling Reduction Intervention randomised trial (DRI): comparing the efficacy and acceptability of hyoscine patches and glycopyrronium liquid on drooling in children with neurodisability. Arch Dis Child. 2018;103(4):371–6. doi: 10.1136/archdischild-2017-313763.CrossRefGoogle ScholarPubMed
Berweck, S, Bonikowski, M, Kim, H, et al. Placebo-controlled clinical trial of incobotulinumtoxinA for sialorrhea in children: SIPEXI. Neurology. 2021;97(14):e1425–36. doi: 10.1212/WNL.0000000000012573.CrossRefGoogle ScholarPubMed
Jost, WH, Friedman, A, Michel, O, et al. SIAXI: placebo-controlled, randomized, double-blind study of incobotulinumtoxinA for sialorrhea. Neurology. 2019;92(17):e1982–991. doi: 10.1212/WNL.0000000000007368.CrossRefGoogle ScholarPubMed
Assouline, A, Levy, A, Abdelnour-Mallet, M, et al. Radiation therapy for hypersalivation: a prospective study in 50 amyotrophic lateral sclerosis patients. Int J Radiat Oncol Biol Phys. 2014;88(3):589–95. doi: 10.1016/j.ijrobp.2013.11.230.CrossRefGoogle ScholarPubMed
Larsen, GL. Rehabilitation for dysphagia paralytica. J Speech Hear Disord. 1972;37(2):187–94. doi: 10.1044/jshd.3702.187.CrossRefGoogle ScholarPubMed
Logemann, JA. The role of the speech language pathologist in the management of dysphagia. Otolaryngol Clin North Am. 1988;21(4):783–8.CrossRefGoogle ScholarPubMed
Miller, RM, Groher, ME. Speech-language pathology and dysphagia: A historical perspective. Dysphagia. 1993;8:180–4. doi: 10.1007/BF01354536.CrossRefGoogle ScholarPubMed
Bath, PM, Lee, HS, Everton, LF. Swallowing therapy for dysphagia in acute and subacute stroke. Cochrane Database Syst Rev. 2018;10(10):CD000323. doi: 10.1002/14651858.CD000323.pub3.Google ScholarPubMed
Rollnik, JD, Brocke, J, Gorsler, A, et al. Weaning in neurological and neurosurgical early rehabilitation: results from the “WennFrüh” study of the German Society for Neurorehabilitation. Nervenarzt. 2020;91(12):1122–9. doi: 10.1007/s00115-020-00976-z.Google ScholarPubMed
Jongprasitkul, H, Kitisomprayoonkul, W. Effectiveness of conventional swallowing therapy in acute stroke patients with dysphagia. Rehabil Res Pract. 2020;2020:2907293. doi: 10.1155/2020/2907293.Google ScholarPubMed
Mao, Z, Gao, L, Wang, G. Subglottic secretion suction for preventing ventilator-associated pneumonia: an updated meta-analysis and trial sequential analysis. Crit Care. 2016;20(1):353. doi: 10.1186/s13054-016-1527-7.CrossRefGoogle ScholarPubMed
Bach, JR, Alba, AS. Tracheostomy ventilation: a study of efficacy with deflated cuffs and cuffless tubes. Chest. 1990;97(3):679–83. doi: 10.1378/chest.97.3.679.CrossRefGoogle ScholarPubMed
Chew, K, Carey, K, Ho, G, et al. The relationship of body habitus and respiratory function in Duchenne muscular dystrophy. Respir Med. 2016;119:3540. doi: 10.1016/j.rmed.2016.08.018.CrossRefGoogle ScholarPubMed
Nakanishi, N, Oto, J, Itagaki, T, et al. Humidification performance of passive and active humidification devices within a spontaneously breathing tracheostomized cohort. Respir Care. 2019;64(2):130–5. doi: 10.4187/respcare.06294.CrossRefGoogle ScholarPubMed
Geiseler, J, Mönig, O, Butzert, P, Haidl, P. Aerosoltherapie auf Intensivstation. Pneumologie. 2022;76(4), 260–71. doi: 10.1055/a-1652-5960.Google Scholar
Borghardt, JM, Kloft, C, Sharma, A. Inhaled therapy in respiratory disease: the complex interplay of pulmonary kinetic processes. Can Respir J. 2018;2018:2732017. doi: 10.1155/2018/2732017.CrossRefGoogle ScholarPubMed
Kim, CS. Physiological factors affecting lung deposition. J Aerosol Med Pulm Drug Deliv. 2021;34(3):147–54. doi: 10.1089/jamp.2021.29036.csk.CrossRefGoogle ScholarPubMed
Galindo-Filho, VC, Alcoforado, L, Rattes, C. A mesh nebulizer is more effective than jet nebulizer to nebulize bronchodilators during non-invasive ventilation of subjects with COPD: A randomized controlled trial with radiolabeled aerosols. Respir Med. 2019;153:60–7. doi: 10.1016/j.rmed.2019.05.016.CrossRefGoogle ScholarPubMed
Alcoforado, L, Ari, A, Barcelar, J, et al. Impact of gas flow and humidity on trans-nasal aerosol deposition via nasal cannula in adults: a randomized cross-over study. Pharmaceutics. 2019;11(7):320. doi: 10.3390/pharmaceutics11070320.CrossRefGoogle ScholarPubMed
Fernández, EF, MacLoughlin, R. Aerosol therapy and humidification. In: Esquinas, AM, ed. Humidification in the Intensive Care Unit. Springer; 2023:323–36. Accessed July 11, 2024. https://doi.org/10.1007/978-3-031-23953-3_35.Google Scholar
Fujinaga, J, Kuriyama, A, Onodera, M. Early administration of mucoactive agents and ventilator-free days: a propensity score-matched study. Ann Transl Med. 2023;11(5):195. doi: 10.21037/atm-22-4340.CrossRefGoogle Scholar
van Meenen, DMP, van der Hoeven, SM, Binnekade, JM, et al. Effect of on-demand vs routine nebulization of acetylcysteine with salbutamol on ventilator-free days in intensive care unit patients receiving invasive ventilation: a randomized clinical trial. JAMA. 2018;319(10):9931001. doi: 10.1001/jama.2018.0949.CrossRefGoogle ScholarPubMed
Wood, KE, Flaten, AL, Backes, WJ, Inspissated secretions: a life-threatening complication of prolonged noninvasive ventilation. Respir Care. 2000;45:491–3.Google ScholarPubMed
Leith, DE, Lung biology in health and disease: respiratory defense mechanisms, part 2. In: Brain, JD, Proctor, D, Reid, L, eds. Cough. Marcel Dekker; 1977:545–92.Google Scholar
Bach, JR, Saporito, LR. Criteria for extubation and tracheostomy tube removal for patients with ventilatory failure: a different approach to weaning. Chest. 1996;110(6):1566–71. doi: 10.1378/chest.110.6.1566.CrossRefGoogle ScholarPubMed
Bach, JR, Martinez, D. Duchenne muscular dystrophy: continuous noninvasive ventilatory support prolongs survival. Respir Care 2011;56(6):744–50. doi: 10.4187/respcare.00831.CrossRefGoogle ScholarPubMed
Sancho, J, Servera, E, Diaz, J, Marin, J. Predictors of ineffective cough during a chest infection in patients with stable amyotrophic lateral sclerosis. Am J Respir Crit Care Med. 2007;175(12):1266–71. doi: 10.1164/rccm.200612-1841OC.CrossRefGoogle ScholarPubMed
Bach, JR. Mechanical insufflation-exsufflation: comparison of peak expiratory flows with manually assisted and unassisted coughing techniques. Chest. 1993;104(5):1553–62. doi: 10.1378/chest.104.5.1553.CrossRefGoogle ScholarPubMed
Julia, PE, Sa’ari, M-Y, Hasnan, N. Benefit of triple-strap abdominal binder on voluntary cough in patients with spinal cord injury. Spinal Cord. 2011;49(11):1138–42. doi: 10.1038/sc.2011.53.CrossRefGoogle ScholarPubMed
Bach, JR, Smith, WH, Michaels, J, et al. Airway secretion clearance by mechanical exsufflation for post-poliomyelitis ventilator assisted individuals. Arch Phys Med Rehabil. 1993;74(2):170–7.Google ScholarPubMed
Bach, JR. Perspectives on nasal ventilation: indications, methods, and complementary techniques for patients with neuromuscular disease. Eur Respir Rev. 1993;3(12):243–4.Google Scholar
Bach, JR. Comprehensive rehabilitation of the severely disabled ventilator-assisted individual. Monaldi Arch Chest Dis. 1993;48(4):331–45.Google ScholarPubMed
Bach, JR. Update and perspectives on noninvasive respiratory muscle aids: part 2--the expiratory muscle aids. Chest. 1994;105(5):1538–44. doi: 10.1378/chest.105.5.1538.Google Scholar
Hardy, KA, Bach, JR, Stoller, JK, et al. A review of airway clearance: new techniques, indications, and recommendations. Respir Care. 1994;39(5):440–55.Google Scholar
McCool, FD. Global physiology and pathophysiology of cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 suppl):48S53S. doi: 10.1378/chest.129.1_suppl.48S.CrossRefGoogle ScholarPubMed
Bach, JR. Mechanical insufflation/exsufflation: has it come of age? A commentary. Eur Respir J. 2003; 21(3):385–6.CrossRefGoogle Scholar
Bach, JR, Chiou, M, Saporito, LR, Esquinas, AM. Evidence-based medicine analysis of mechanical insufflation-exsufflation devices. Respir Care. 2017;62(5):643. doi: 10.4187/respcare.05535.CrossRefGoogle ScholarPubMed
Baart de la Faille, RL. The cofflator, an instrument for artificial inhalation & exhalation. Ned Tijdschr Geneeskd. 1957;101(5):253–5.Google ScholarPubMed
Rose, L, Adhikari, NK, Leasa, D, et al. Cough augmentation techniques for extubation or weaning critically ill patients from mechanical ventilation. Cochrane Database Syst Rev. 2017;1(1):CD011833. doi: 10.1002/14651858.CD011833.pub2.Google ScholarPubMed
Bach, JR, Giménez, GC, Chiou, M. Mechanical in-exsufflation–expiratory flows as indication for tracheostomy tube decannulation: case studies. Am J Phys Med Rehabil. 2019;98:e1820. doi: 10.1097/PHM.0000000000000999.CrossRefGoogle ScholarPubMed
Bach, JR, Upadhyaya, N. Association of need for tracheotomy with decreasing mechanical in-exsufflation flows in amyotrophic lateral sclerosis: a case report. Am J Phys Med Rehabil. 2018;97(4):e20–2. doi: 10.1097/PHM.0000000000000755.CrossRefGoogle Scholar
Siriwat, R, Deerojanawong, J, Sritippayawan, S, et al. Mechanical insufflation-exsufflation versus conventional chest physiotherapy in children with cerebral palsy. Respir Care. 2018;63(2):187–93. doi: 10.4187/respcare.05663.CrossRefGoogle ScholarPubMed
Kuroiwa, R, Tateishi, Y, Oshima, T. Cardiovascular autonomic dysfunction induced by mechanical insufflation-exsufflation in Guillain–Barré syndrome. Respirol Case Rep. 2023;11(5):e01135. doi: 10.1002/rcr2.1135.CrossRefGoogle ScholarPubMed
Yasokawa, N, Tanaka, H, Kurose, K, et al. Mechanical insufflation-exsufflation-related bilateral pneumothorax. Respir Med Case Rep. 2020;29:101017. doi: 10.1016/j.rmcr.2020.101017.Google ScholarPubMed
Goncalves, MR, Honrado, T, Winck, JC, Paiva, JA. Effects of mechanical insufflation-exsufflation in preventing respiratory failure after extubation: a randomized controlled trial. Critical Care. 2012;16:R48. doi:10.1186/cc11249.CrossRefGoogle ScholarPubMed
Bach, JR, Gonçalves, MR, Hamdani, I, Winck, JC. Extubation of unweanable patients with neuromuscular weakness: a new management paradigm. Chest. 2010;137(5):1033–9. doi: 10.1378/chest.09-2144.CrossRefGoogle ScholarPubMed
Bach, JR, Sinquee, D, Saporito, LR, Botticello, AL. Efficacy of mechanical insufflation-exsufflation in extubating unweanable subjects with restrictive pulmonary disorders. Respir Care. 2015;60(4):477–83. doi: 10.4187/respcare.03584.CrossRefGoogle ScholarPubMed
Fishburn, MJ, Marino, RJ, Ditunno, JF. Atelectasis and pneumonia in acute spinal cord injury. Arch Phys Med Rehabil. 1990;71:197200.Google ScholarPubMed
Volpe, MS, Naves, JM, Ribeiro, GG, et al. Airway clearance with an optimized mechanical insufflation-exsufflation maneuver. Respir Care. 2018;63(10):1214–22. doi: 10.4187/respcare.05965.CrossRefGoogle ScholarPubMed
Striegl, AM, Redding, GJ, Diblasi, R, et al. Use of a lung model to assess mechanical in-exsufflator therapy in infants with tracheostomy. Pediatr Pulmonol. 2011 Mar;46(3):211–7. doi: 10.1002/ppul.21353.CrossRefGoogle ScholarPubMed
Chatwin, M, Simonds, A. Long-term mechanical insufflation-exsufflation cough assistance in neuromuscular disease: patterns of use and lessons for application. Respir Care. 2020;65(2):135–43. doi: 10.4187/respcare.06882.CrossRefGoogle ScholarPubMed
Chatwin, M, Toussaint, M, Goncalves, M, et al. Airway clearance techniques in neuromuscular disorders: A state of the art review. Respir Med. 2018;13:98110. doi: 10.1016/j.rmed.2018.01.012.CrossRefGoogle Scholar
Bach, JR, Bianchi, C, Aufiero, E. Oximetry and indications for tracheotomy for amyotrophic lateral sclerosis. Chest. 2004;126(5):1502–7. doi: 10.1378/chest.126.5.1502.CrossRefGoogle ScholarPubMed
Bach, JR, Ishikawa, Y, Kim, H. Prevention of pulmonary morbidity for patients with Duchenne muscular dystrophy. Chest. 1997;112:1024–8. doi: 10.1378/chest.112.4.1024.CrossRefGoogle ScholarPubMed
Bento, J, Gonçalves, M, Silva, N, et al. Indications and compliance of home mechanical insufflation-exsufflation in patients with neuromuscular diseases. Archivos de Bronconeumologia. 2010;46(8):420–5.CrossRefGoogle ScholarPubMed
Moran, FCE, Spittle, AJ, Delany, C, et al. Effect of home mechanical in-exsufflation on hospitalisation and life-style in neuromuscular disease: A pilot study. J Paediatr Child Health. 2013;49(3):233–7. doi: 10.1111/jpc.12111.CrossRefGoogle ScholarPubMed
Moran, FCE, Spittle, AJ, Delany, C. Lifestyle implications of home mechanical insufflation-exsufflation for children with neuromuscular disease and their families. Respir Care. 2015;60(7):967–74. doi: 10.4187/respcare.03641.CrossRefGoogle ScholarPubMed
Mahede, T, Davis, G, Rutkay, A, et al. Use of mechanical airway clearance devices in the home by people with neuromuscular disorders: effects on health service use and lifestyle benefits. Orphanet J Rare Dis. 2015;10:54. doi: 10.1186/s13023-015-0267-0.CrossRefGoogle ScholarPubMed
Sancho, J, Servera, E, Marin, J. Mechanical in-exsufflation vs tracheal suctioning via tracheostomy tubes for patients with amyotrophic lateral sclerosis: a pilot study. Am J Phys Med Rehabil. 2003;82(10):750–3. doi: 10.1097/01.PHM.0000087456.28979.2E.CrossRefGoogle Scholar
Garstang, SV, Kirshblum, SC, Wood, KE. Patient preference for in-exsufflation for secretion management with spinal cord injury. J Spinal Cord Med. 2000;23(2):80–5.CrossRefGoogle ScholarPubMed
Blakeman, TC, Scott, JB, Yoder, MA, et al. AARC clinical practice guidelines: artificial airway suctioning. Respir Care. 2022;67(2):258–71. doi: 10.4187/respcare.09548.CrossRefGoogle ScholarPubMed
Nilsestuen, J, Holland, V. Graphics analysis during mechanical insufflation-exsufflation and implications for improving cough effectiveness. Respiratory Therapy. 2020 ; 15(3):2937. doi: 10.1080/10790268.2000.11753511.Google Scholar
Sancho, J, Ferrer, S, Bues, E, et al. Waveforms analysis in patients with amyotrophic lateral sclerosis for enhanced efficacy of mechanically assisted coughing. Respir Care. 2022;67(10):1226–35. doi: 10.4187/respcare.09978.CrossRefGoogle ScholarPubMed
Holanda, MA, Vasconcelos, RDS, Ferreira, JC, Pinheiro, BV. Patient–ventilator asynchrony. J Bras Pneumol. 2018;44(4):321–33.CrossRefGoogle ScholarPubMed
Suarez, AA, Pessolano, FA, Moteiro, SG, et al. Peak flow and peak cough flow in the evaluation of expiratory muscle weakness and bulbar impairment in patients with neuromuscular disease. Am J Phys Med Rehabil. 2002;81(7):506–11. doi: 10.1097/00002060-200207000-00007.CrossRefGoogle ScholarPubMed
Sancho, J, Servera, E, Diaz, J, Marin, J. Efficacy of mechanical insufflation-exsufflation in medically stable patients with amyotrophic lateral sclerosis. Chest. 2004;125(4):1400–5. doi: 10.1378/chest.125.4.1400.CrossRefGoogle ScholarPubMed
Andersen, TM, Hov, B, Halvorsen, T, et al. Upper airway assessment and responses during mechanically assisted cough. Respir Care. 2021;66(7):1196–213. doi: 10.4187/respcare.08960.CrossRefGoogle ScholarPubMed
Nilsestuen, J, Troxell, D. Lung volume recruitment: a novel method that maximizes the therapeutic impact from MIE devices. Respir Ther. 2020;15(2):1620.Google Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×