Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-br6xx Total loading time: 0 Render date: 2025-09-27T14:39:36.311Z Has data issue: false hasContentIssue false

Section I - Theoretical Models of Emotion

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Adolphs, R., & Anderson, D. J. (2018). The neuroscience of emotion: A new synthesis. Princeton University Press.Google Scholar
Arnold, M. B. (1960). Emotion and personality. Columbia University Press.Google Scholar
Barrett, L. F. (2006). Solving the emotion paradox: Categorization and the experience of emotion. Personality and Social Psychology Review, 10, 20–46.CrossRefGoogle ScholarPubMed
Barrett, L. F., & Lida, T. (2024). Constructionist theories of emotions in psychology and neuroscience. In Scarantino, A. (Ed.), Emotion theory: The Routledge comprehensive guide (Ch. 17). Routledge.Google Scholar
Bayne, T., Brainard, D., Byrne, R.W., Chittka, L., Clayton, N., Heyes, C., … Webb, B. (2019). What is cognition? Current Biology, 29, R608–R615.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86, 646–664.CrossRefGoogle ScholarPubMed
Bradley, M. (2009). Natural selective attention: Orienting and emotion. Psychophysiology, 46, 1–11.CrossRefGoogle ScholarPubMed
Brosch, T., & Sander, D. (2013). The appraising brain: Towards a neuro-cognitive model of appraisal processes in emotion. Emotion Review, 5, 163–168.CrossRefGoogle Scholar
Brosch, T., & Sander, D. (Eds.) (2015). Handbook of value: Perspectives from economics, neuroscience, philosophy, psychology, and sociology. Oxford University Press.CrossRefGoogle Scholar
Cacioppo, J. T., & Berntson, G. G. (1994). Relationship between attitudes and evaluative space: A critical review, with emphasis on the separability of positive and negative substrates. Psychological Bulletin, 115, 401–423.CrossRefGoogle Scholar
Calder, A. J., Lawrence, A. D., & Young, A. W. (2001). Neuropsychology of fear and loathing. Nature Reviews Neuroscience, 2, 352–363.CrossRefGoogle Scholar
Conte, B., Hahnel, U. J. J., & Brosch, T. (2023). From values to emotions: Cognitive appraisal mediates the impact of core values on emotional experience. Emotion, 23, 1115–1129.CrossRefGoogle ScholarPubMed
Coricelli, G., & Rustichini, A. (2010). Counterfactual thinking and emotions: Regret and envy learning. Philosophical Transactions of the Royal Society B, 365, 241–247.CrossRefGoogle ScholarPubMed
Cowen, A. S., Keltner, D., Schroff, F., Jou, B., Adam, H., & Prasad, G. (2021). Sixteen facial expressions occur in similar contexts worldwide. Nature, 589, 251–257.CrossRefGoogle ScholarPubMed
Crivelli, C., & Fridlund, A. J. (2018). Facial displays are tools for social influence. Trends in Cognitive Sciences, 22, 388–399.CrossRefGoogle ScholarPubMed
Cunningham, W. A., & Brosch, T. (2012). Motivational salience: Amygdala tuning from traits, needs, values, and goals. Current Directions in Psychological Science, 21, 54–59.CrossRefGoogle Scholar
Damasio, A. R. (1998). Emotion in the perspective of an integrated nervous system. Brain Research Reviews, 26, 83–86.Google ScholarPubMed
Damasio, A. R., & Damasio, H. (2006). Minding the body. Daedalus, 135, 15–22.CrossRefGoogle Scholar
Darwin, C. (1872). The expression of the emotions in man and animals. John Murray.CrossRefGoogle Scholar
Davidson, R. J. (1994). Asymmetric brain function, affective style and psychopathology: The role of early experience and plasticity. Development and Psychopathology, 6, 741–758.CrossRefGoogle Scholar
Davidson, R. J. (2000). Cognitive neuroscience needs affective neuroscience (and vice versa). Brain and Cognition, 42, 89–92.CrossRefGoogle ScholarPubMed
Davidson, R. J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3, 11–21.CrossRefGoogle ScholarPubMed
De Leersnyder, J., Koval, P., Kuppens, P., & Mesquita, B. (2018). Emotions and concerns: Situational evidence for their systematic co-occurrence. Emotion, 18, 597–614.CrossRefGoogle ScholarPubMed
Deonna, J., & Teroni, F. (2020). Emotional experience: Affective consciousness and its role in emotion theory. In Kriegel, U. (Ed.), The Oxford handbook of the philosophy of consciousness (pp. 102–121). Oxford University Press.Google Scholar
Descartes, R. (1649). Les passions de l’âme. Henry le Gras.Google Scholar
de Sousa, R. (1987). The rationality of emotion. MIT Press.CrossRefGoogle Scholar
Dewey, J. (1895). The theory of emotion. (2) The significance of emotions. Psychological Review, 2, 13–32.CrossRefGoogle Scholar
Dixon, M. L., Thiruchselvam, R., Todd, R., & Christoff, K. (2017). Emotion and the prefrontal cortex: An integrative review. Psychological Bulletin, 143, 1033–1081.CrossRefGoogle ScholarPubMed
Duchenne, G. B. A. (1862). Mécanisme de la physionomie humaine ou analyse électrophysiologique de l’expression des passions. Ve Jules Renouard.CrossRefGoogle Scholar
Duffy, E. (1957). The psychological significance of the concept of “arousal” or “activation.” Psychological Review, 64, 265–275.CrossRefGoogle ScholarPubMed
Dukes, D., Abrams, K., Adolphs, R., Ahmed, M. E., Beatty, A., Berridge, K. C., … Sander, D. (2021). The rise of affectivism. Nature Human Behaviour, 5, 816–820.CrossRefGoogle ScholarPubMed
Ekman, P. (1972). Universal and cultural differences in facial expressions of emotions. In Cole, J. (Ed.), Nebraska symposium on motivation (pp. 207–283). University of Nebraska Press.Google Scholar
Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6, 169–200.CrossRefGoogle Scholar
Ekman, P. (1999). Basic emotions. In Dalgleish, T. and Power, M. (Eds.), Handbook of cognition and emotion (pp. 45–60). Wiley.Google Scholar
Ekman, P., & Davidson, R. J. (1994). Afterword: Is there emotion-specific physiology? In Ekman, P. and Davidson, R. J. (Eds), The nature of emotion: Fundamental questions (pp. 261–262). Oxford University Press.Google Scholar
Fehr, B., & Russell, J. A. (1984). Concept of emotion viewed from a prototype perspective. Journal of Experimental Psychology: General, 113, 464–486.Google Scholar
Fontaine, J. R., Scherer, K. R., Roesch, E. B., & Ellsworth, P. (2007). The world of emotions is not two-dimensional. Psychological Science, 18, 1050–1057.CrossRefGoogle Scholar
Fowles, D. C. (2009). Arousal. In Sander, D. and Scherer, K. R. (Eds.), The Oxford companion to emotion and the affective sciences (p. 50). Oxford University Press.Google Scholar
Friedman, B. H., & Thayer, J. F. (2024). Is emotion physiology more compatible with discrete, dimensional or appraisal accounts? In Scarantino, A. (Ed.), Emotion theory: The Routledge comprehensive guide (Ch. 22). Routledge.Google Scholar
Frijda, N. H. (1986). The emotions. Cambridge University Press.Google Scholar
Frijda, N. H. (2005). Emotion experience. Cognition & Emotion, 19, 473–498.CrossRefGoogle Scholar
Frijda, N. H. (2007). The laws of emotion. Lawrence Erlbaum Associates Publishers.Google Scholar
Gable, P. A., & Harmon-Jones, E. (2008). Approach-motivated positive affect reduces breadth of attention. Psychological Science, 19, 476–482.CrossRefGoogle ScholarPubMed
Grandjean, D., Sander, D., & Scherer, K. R. (2008). Conscious emotional experience emerges as a function of multilevel, appraisal–driven response synchronization. Consciousness & Cognition, 17, 484–495.CrossRefGoogle ScholarPubMed
Grandjean, D., & Scherer, K. R. (2008). Unpacking the cognitive architecture of emotion processes. Emotion, 8, 341–351.CrossRefGoogle ScholarPubMed
Haidt, J. (2003). The moral emotions. In Davidson, R. J., Scherer, K. R., & Goldsmith, H. H. (Eds.), Handbook of affective sciences (pp. 852–870). Oxford University Press.Google Scholar
Hamann, S. (2024). An overview of contemporary theories of emotions in neuroscience. In Scarantino, A. (Ed.), Emotion theory: The Routledge comprehensive guide (Ch. 13). Routledge.Google Scholar
Hareli, S., & Parkinson, B. (2009). Social emotions. In Sander, D. & Scherer, K. R. (Eds.), The Oxford companion to emotion and the affective sciences (pp. 374–375). Oxford University Press.Google Scholar
Heisenberg, W. (1971). Physics and beyond: Encounters and conversations. Harper & Row.Google Scholar
Hilgard, E. R. (1980). The trilogy of mind: Cognition, affection, and conation. Journal of the History of Behavioral Sciences, 16, 107–117.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Hommel, B., Moors, A., Sander, D., & Deonna, J. (2017). Emotion meets action: Towards an integration of research and theory. Emotion Review, 9, 295–298.CrossRefGoogle Scholar
Hsueh, B., Chen, R., Jo, Y., Tang, D., Raffiee, M., Kim, Y. S., … Deisseroth, K. (2023). Cardiogenic control of affective behavioural state. Nature 615, 292–299.CrossRefGoogle ScholarPubMed
Izard, C. E. (2009). Emotion theory and research: Highlights, unanswered questions, and emerging issues. Annual Review of Psychology, 60, 1–25.CrossRefGoogle ScholarPubMed
James, W. (1884). What is an emotion? Mind, 9, 188–205.Google Scholar
Kappas, A., & Gratch, J. (2023). These aren’t the droids you are looking for: Promises and challenges for the intersection of affective science and robotics/AI. Affective Science, 4, 580–585.CrossRefGoogle ScholarPubMed
Keltner, D., & Cordaro, D. T. (2017). Understanding multimodal emotional expressions: Recent advances in basic emotion theory. In Fernández-Dols, J.-M. and Russell, J. A. (Eds.), The science of facial expression (pp. 57–75). Oxford University Press.Google Scholar
Kleinginna, P. R. Jr., & Kleinginna, A. M. (1981). A categorized list of emotion definitions with suggestions for a consensual definition. Motivation and Emotion, 5, 345–379.Google Scholar
Kragel, P. A., & LaBar, K. S. (2016). Decoding the nature of emotion in the brain. Trends in Cognitive Sciences, 20, 444–455.CrossRefGoogle ScholarPubMed
Kragel, P. A., Sander, D., & LaBar, K. S. (2024). Can brain data be used to arbitrate among emotion theories? In Scarantino, A. (Ed.), Emotion theory: The Routledge comprehensive guide (Ch. 23). Routledge.Google Scholar
Kret, M. E., Prochazkova, E., Sterck, E. H., & Clay, Z. (2020). Emotional expressions in human and non-human great apes. Neuroscience & Biobehavioral Reviews, 115, 378–395.CrossRefGoogle Scholar
Lange, C. G. (1885). The mechanism of the emotions (B. Rand, Trans.). From Rand, B. (Ed.) (1912), The classical psychologists (pp. 672–684). Houghton Mifflin.Google Scholar
Lange, J. (2023). Embedding research on emotion duration in a network model. Affective Science, 4, 541–549.CrossRefGoogle Scholar
Lange, J., & Zickfeld, J. H. (2021). Emotions as overlapping causal networks of emotion components: Implications and methodological approaches. Emotion Review, 13, 157–167.CrossRefGoogle Scholar
Lazarus, R. S. (1982). Thoughts on the relations between emotion and cognition. American Psychologist, 37, 1019–1024.CrossRefGoogle Scholar
Lazarus, R. S. (1984). On the primacy of cognition. American Psychologist, 39, 124–129.CrossRefGoogle Scholar
Lazarus, R. S. (1991). Emotion and Adaptation. Oxford University Press.CrossRefGoogle Scholar
LeDoux, J. E. (1989). Cognitive-emotional interactions in the brain. Cognition and Emotion, 3, 267–289.CrossRefGoogle Scholar
LeDoux, J. E. (2007). Unconscious and conscious contributions to the emotional and cognitive aspects of emotions: A comment on Scherer’s view of what an emotion is. Social Science Information, 46, 395–404.CrossRefGoogle Scholar
Leitão, J., Meuleman, B., Van De Ville, D., & Vuilleumier, P. (2020). Brain networks of emotions in sync: Computational imaging of video-game playing. PLoS Biology, 18, e3000900.CrossRefGoogle Scholar
Levenson, R. W. (2011). Basic emotion questions. Emotion Review, 3, 379–386.CrossRefGoogle Scholar
Lindquist, K. A. (2013). Emotions emerge from more basic psychological ingredients: A modern psychological constructionist model. Emotion Review, 5, 356–368.CrossRefGoogle Scholar
Mandler, G. (2003). Emotion. In Freedheim, D. K. and Weiner, I. B. (Eds.), History of psychology (pp. 157–175). John Wiley & Sons.Google Scholar
Matsumoto, D., & Ekman, P. (2009). Basic emotions. In Sander, D. and Scherer, K. R. (Eds.), The Oxford companion to emotion and the affective sciences (pp. 69–72). Oxford University Press.Google Scholar
McCosh, J. (1880). The emotions. Charles Scribner’s Sons.CrossRefGoogle Scholar
Menninghaus, W., Wagner, V., Wassiliwizky, E., Schindler, I., Hanich, J., Jacobsen, T., & Koelsch, S. (2019). What are aesthetic emotions? Psychological Review, 126, 171–195.CrossRefGoogle ScholarPubMed
Mesquita, B., & Parkinson, B. (2024). Social constructionist theories of emotions. In Scarantino, A. (Ed.), Emotion theory: The Routledge comprehensive guide (Ch. 18). Routledge.Google Scholar
Mineka, S., & Öhman, A. (2002). Phobias and preparedness: The selective, automatic, and encapsulated nature of fear. Biological Psychiatry, 52, 927–937.CrossRefGoogle ScholarPubMed
Mohammadi, G., Van De Ville, D., & Vuilleumier, P. (2023). Brain networks subserving functional core processes of emotions identified with componential modeling. Cerebral Cortex, 33, 7993–8010.CrossRefGoogle ScholarPubMed
Moors, A. (2007). Can cognitive methods be used to study the unique aspect of emotion: An appraisal theorist’s answer. Cognition and Emotion, 21, 1238–1269.CrossRefGoogle Scholar
Moors, A. (2022). Demystifying emotions. A typology of theories in psychology and philosophy. Cambridge University Press.CrossRefGoogle Scholar
Müri, R. (2016). Cortical control of facial expression. Journal of Comparative Neurology, 524, 1578–1585.Google ScholarPubMed
Murray, R. J., Brosch, T., & Sander, D. (2014). The functional profile of the human amygdala in affective processing: Insights from intracranial recordings. Cortex, 60, 10–33.CrossRefGoogle ScholarPubMed
Murray, R. J., Kutlikova, H. H., Brosch, T., & Sander, D. (2023). The amygdala and appraised concern-relevance: Initial evidence that intrinsic motivation modulates amygdala response to otherwise neutral stimuli. Motivation Science, 9, 95–106.CrossRefGoogle Scholar
Neiss, R. (1988). Reconceptualizing arousal: Psychobiological states in motor performance. Psychological Bulletin, 103, 345–366.CrossRefGoogle ScholarPubMed
Niedenthal, P. M. (2007). Embodying emotion. Science, 316, 1002–1005.CrossRefGoogle ScholarPubMed
Olteanu, L., Golani, S., Eitam, B., & Kron, A. (2019). The effect of relevance appraisal on the emotional response. Emotion, 19, 715–725.CrossRefGoogle ScholarPubMed
Panksepp, J. (1991). Affective neuroscience: A conceptual framework for the neurobiological study of emotions. In Strongman, K. (Ed.), International reviews of emotion research (pp. 59–99). Wiley.Google Scholar
Panksepp, J. (2003). Neuroscience. Feeling the pain of social loss. Science, 302, 237–239.CrossRefGoogle ScholarPubMed
Panksepp, J. (2005). Affective consciousness: Core emotional feelings in animals and humans. Consciousness and Cognition, 14, 30–80.CrossRefGoogle Scholar
Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18, 315–341.CrossRefGoogle Scholar
Pool, E. R., Brosch, T., Delplanque, S., & Sander, D. (2016). Attentional bias for positive emotional stimuli: A meta-analytic investigation. Psychological Bulletin, 142, 79–106.CrossRefGoogle ScholarPubMed
Pool, E. R., Munoz Tord, D., Delplanque, S., Stussi, Y., Cereghetti, D., Vuilleumier, P., & Sander, D. (2022). Differential contributions of ventral striatum subregions in the motivational and hedonic components of affective processing of reward. The Journal of Neuroscience, 42, 2716–2728.CrossRefGoogle ScholarPubMed
Pool, E. R., & Sander, D. (2021). Emotional learning: Measuring how affective values are acquired and updated. In Meiselman, H. L. (Ed.), Emotion measurement, 2nd ed. (pp. 133–165). Woodhead Publishing.Google Scholar
Quadt, L., Critchley, H., & Nagai, Y. (2022). Cognition, emotion, and the central autonomic network. Autonomic Neuroscience, 238, 102948.CrossRefGoogle ScholarPubMed
Robbins, T. (1997). Arousal systems and attentional processes. Biological Psychology, 45, 57–71.CrossRefGoogle ScholarPubMed
Robertson, I. H., & Garavan, H. (2004). Vigilant attention. In Gazzaniga, M. S. (Ed.), The cognitive neurosciences (pp. 631–640). MIT Press.Google Scholar
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.CrossRefGoogle Scholar
Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110, 145–172.CrossRefGoogle ScholarPubMed
Russell, J. A. (2009). Emotion, core affect, and psychological construction. Cognition & Emotion, 23, 1259–1283.CrossRefGoogle Scholar
Saarimäki, H., Gotsopoulos, A., Jääskeläinen, I. P., Lampinen, J., Vuilleumier, P., Hari, R., … & Nummenmaa, L. (2016). Discrete neural signatures of basic emotions. Cerebral Cortex, 26, 2563–2573.CrossRefGoogle ScholarPubMed
Säätelä, S. (1994). Fiction, make-believe and quasi emotions. British Journal of Aesthetics, 34, 25–34.CrossRefGoogle Scholar
Samson, A. C., Sander, D., & Kramer, U. (Eds) (2024). Change in emotion and mental health. Elsevier Academic Press.Google Scholar
Sander, D. (2013). Models of emotion: The affective neuroscience approach. In Armony, J. L. and Vuilleumier, P. (Eds.), The Cambridge handbook of human affective neuroscience (pp. 5–53). Cambridge University Press.Google Scholar
Sander, D. (2022). Feelings, and the multicomponential approach to emotions. Emotion Researcher, February, 32–37. http://emotionresearcher.com/wp-content/uploads/2022/02/Emotion-Researcher-February-2022.pdfGoogle Scholar
Sander, D., Grafman, J., & Zalla, T. (2003). The human amygdala: An evolved system for relevance detection. Reviews in the Neurosciences, 14, 303–316.CrossRefGoogle ScholarPubMed
Sander, D., Grandjean, D., & Scherer, K. R. (2005). A systems approach to appraisal mechanisms in emotion. Neural Networks, 18, 317–352.CrossRefGoogle ScholarPubMed
Sander, D., Grandjean, D., & Scherer, K. R. (2018). An appraisal-driven componential approach to the emotional brain. Emotion Review, 10, 219–231.CrossRefGoogle Scholar
Sander, D., & Nummenmaa, L. (2021). Reward and emotion: An affective neuroscience approach. Current Opinion in Behavioral Sciences, 39, 161–167.CrossRefGoogle Scholar
Sander, D., & Scherer, K. R. (Eds.) (2009). The Oxford companion to emotion and the affective sciences. Oxford University Press.Google Scholar
Sauter, D. A., & Russell, J. A. (2024). What do nonverbal expressions tell us about emotion? In Scarantino, A. (Ed.), Emotion theory: The Routledge comprehensive guide (Ch. 24). Routledge.Google Scholar
Scarantino, A. (Ed.) (2024a). Emotion theory: The Routledge comprehensive guide. Routledge.Google Scholar
Scarantino, A. (2024b). Introduction to volume 1: The value of history, a wealth of theoretical options and the ingredients of emotion theory. In Scarantino, A. (Ed.), Emotion theory: The Routledge comprehensive guide. Routledge.Google Scholar
Scarantino, A. (2024c). Motivational theories of emotions in philosophy and affective science. In Scarantino, A. (Ed.), Emotion theory: The Routledge comprehensive guide (Ch. 20). Routledge.Google Scholar
Schachter, S., & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69, 379–399.CrossRefGoogle ScholarPubMed
Scherer, K. R. (1992). What does facial expression express? In Strongman, K. (Ed.), International review of studies on emotion, Vol. 2 (pp. 139–165). Wiley.Google Scholar
Scherer, K. R. (1993). Neuroscience projections to current debates in emotion psychology. Cognition and Emotion, 7, 1–41.CrossRefGoogle Scholar
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44, 695–729.CrossRefGoogle Scholar
Scherer, K. R. (2019). Studying appraisal-driven emotion processes: Taking stock and moving to the future. Cognition and Emotion, 36, 154–170.Google Scholar
Scherer, K. R. (2022). Theory convergence in emotion science is timely and realistic. Cognition and Emotion, 33, 31–40.Google Scholar
Schiller, D., Yu, A. N. C., Alia-Klein, N., Becker, S., Cromwell, H. C., Dolcos, F., … Loeffler, L. (2024). The human affectome. Neuroscience & Biobehavioural Reviews, 158, 105450.CrossRefGoogle ScholarPubMed
Silvia, P. J. (2006). Exploring the psychology of interest. Oxford University Press.CrossRefGoogle Scholar
Skerry, A. E., & Saxe, R. (2015). Neural representations of emotion are organized around abstract event features. Current Biology 25, 1945–1954.CrossRefGoogle ScholarPubMed
Smith, R., & Lane, R. D. (2015). The neural basis of one’s own conscious and unconscious emotional states. Neuroscience & Biobehavioral Reviews, 57, 1–29.CrossRefGoogle ScholarPubMed
Smith, K. E., Woodard, K., & Pollak, S. D. (2024). Arousal may not be anything to get excited about. Emotion Review, 17, 3–15.Google Scholar
Stussi, Y., Pourtois, G., & Sander, D. (2018). Enhanced Pavlovian aversive conditioning to positive emotional stimuli. Journal of Experimental Psychology: General, 147, 905–923.Google ScholarPubMed
Susskind, J., Lee, D., Cusi, A., Feinman, R., Grabski, W., & Anderson, A. K. (2008). Expressing fear enhances sensory acquisition. Nature Neuroscience, 11, 843–50.CrossRefGoogle ScholarPubMed
Tompkins, S. S. (1963a). Affect, imagery, consciousness: I. The positive affects. Springer.Google Scholar
Tompkins, S. S. (1963b). Affect, imagery, consciousness: II. The negative affects. Springer.Google Scholar
Tracy, J. L., Robins, R. W., & Tangney, J. P. (Eds.) (2007). The self-conscious emotions: Theory and research. The Guildford Press.Google Scholar
Verduyn, P. (2021). Emotion duration. In Waugh, C. and Kuppens, P. (Eds.), Affective dynamics (pp. 3–18). Springer.Google Scholar
Walle, E. A., & Dukes, D. (2023). We (still!) need to talk about valence: Contemporary issues and recommendations for affective science. Affective Science, 4, 463–469.CrossRefGoogle ScholarPubMed
Wharton, T., Bonard, C., Dukes, D., Sander, D., & Oswald, S. (2021). Relevance and emotion. Journal of Pragmatics, 181, 259–269.CrossRefGoogle Scholar
Wundt, (1905). Grundriss der Psychologie, 7th rev. ed. Engelman.Google Scholar
Yeo, G. C., & Ong, D. C. (2024). Associations between cognitive appraisals and emotions: A meta-analytic review. Psychological Bulletin, 150, 1440–1471.CrossRefGoogle ScholarPubMed
Yih, J., Uusberg, A., Taxer, J. L., & Gross, J. J. (2019). Better together: A unified perspective on appraisal and emotion regulation. Cognition and Emotion, 33, 41–47.CrossRefGoogle ScholarPubMed
Zachar, P. (2022). The psychological construction of emotion: A non-essentialist philosophy of science. Emotion Review, 14, 3–14.CrossRefGoogle Scholar
Zajonc, R. B. (1980). Feeling and thinking: Preferences need no inferences. American Psychologist, 35, 151–175.CrossRefGoogle Scholar
Zajonc, R. B. (1984). On the primacy of affect. American Psychologist, 39, 117–123.CrossRefGoogle Scholar

References

Alheid, G. F., & Heimer, L. (1988). New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience, 27, 1–39.CrossRefGoogle ScholarPubMed
Amaral, D. G., Price, J. L., Pitkanen, A., & Carmichael, S. (1992). Anatomical organization of the primate amygdaloid complex. In Aggleton, J. P. (Ed.), The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction (pp. 1–66). Wiley-Liss.Google Scholar
Amir, A., Kyriazi, P., Lee, S.-C., Headley, D. B., & Paré, D. (2019). Basolateral amygdala neurons are activated during threat expectation. Journal of Neurophysiology, 121, 1761–1777.CrossRefGoogle ScholarPubMed
Anderson, D. J., & Perona, P. (2014). Toward. Neuron, 84, 18–31.Google ScholarPubMed
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 1115–1118.CrossRefGoogle Scholar
Berridge, K. (2018). Evolving concepts of emotion and motivation. Frontiers in Psychology, 9, 1679.CrossRefGoogle ScholarPubMed
Blanchard, D. C. (2018). Risk assessment: At the interface of cognition and emotion. Current Opinion in Behavioral Sciences, 24, 69–74.CrossRefGoogle Scholar
Blanchard, D. C., & Blanchard, R. J. (1988). Ethoexperimental approaches to the biology of emotion. Annual Review of Psychology, 39, 43–68.CrossRefGoogle Scholar
Blanchard, D. C., Blanchard, R. J., & Rodgers, R. J. (1991). Risk assessment and animal models of anxiety. In Olivier, B., Mos, J. & Slangen, J. L. (Eds.), Animal models in psychopharmacology (pp. 117–134). Birkhäuser.Google Scholar
Blanchard, D. C., Griebel, G., Pobbe, R., & Blanchard, R. J. (2011). Risk assessment as an evolved threat detection and analysis process. Neuroscience & Biobehavioral Reviews, 35, 991–998.CrossRefGoogle Scholar
Bouton, M. E., Maren, S., & McNally, G. P. (2021). Behavioral and neurobiological mechanisms of Pavlovian and instrumental extinction learning. Physiological Reviews, 101, 611–681.CrossRefGoogle ScholarPubMed
Branco, T., & Redgrave, P. (2020). The neural basis of escape behavior in vertebrates. Annual Review of Neuroscience, 43, 417–439.CrossRefGoogle ScholarPubMed
Calhoon, G. G., & Tye, K. M. (2015). Resolving the neural circuits of anxiety. Nature Neuroscience, 18, 1394–1404.CrossRefGoogle ScholarPubMed
Charbonneau, J. A., Bennett, J. L., & Bliss-Moreau, E. (2022). Amygdala or hippocampus damage only minimally impacts affective responding to threat. Behavioral Neuroscience, 136, 30–45.CrossRefGoogle ScholarPubMed
Choi, J.-S., & Kim, J. J. (2010). Amygdala regulates risk of predation in rats foraging in a dynamic fear environment. Proceedings of the National Academy of Sciences, 107, 21773–21777.CrossRefGoogle Scholar
Corcoran, K. A., & Quirk, G. J. (2007). Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. Journal of Neuroscience, 27, 840–844.CrossRefGoogle Scholar
Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353–375.CrossRefGoogle ScholarPubMed
Davis, M., Walker, D. L., Miles, L., & Grillon, C. (2010). Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology, 35, 105–135.CrossRefGoogle Scholar
Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6, 13–34.CrossRefGoogle ScholarPubMed
DesJardin, J. T., Holmes, A. L., Forcelli, P. A., Cole, C. E., Gale, J. T., Wellman, L. L., … Malkova, L. (2013). Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. Journal of Neuroscience, 33, 150–155.CrossRefGoogle ScholarPubMed
Distler, C., Boussaoud, D., Desimone, R., & Ungerleider, L. G. (1993). Cortical connections of inferior temporal area TEO in macaque monkeys. Journal of Comparative Neurology, 334, 125–150.Google ScholarPubMed
Do-Monte, F. H., Quiñones-Laracuente, K., & Quirk, G. J. (2015). A temporal shift in the circuits mediating retrieval of fear memory. Nature, 519, 460–463.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Niv, Y., Daw, N., & Phelps, E. A. (2015). Rethinking extinction. Neuron, 88, 47–63.CrossRefGoogle ScholarPubMed
Elorette, C., Forcelli, P. A., Saunders, R. C., & Malkova, L. (2018). Colocalization of tectal inputs with amygdala-projecting neurons in the macaque pulvinar. Frontiers in Neural Circuits, 12, 91.CrossRefGoogle ScholarPubMed
Evans, D. A., Stempel, A. V., Vale, R., & Branco, T. (2019). Cognitive control of escape behaviour. Trends in Cognitive Sciences, 23, 334–348.CrossRefGoogle ScholarPubMed
Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Bolles, R. C. & Beecher, M. D. (Eds.), Evolution and learning (pp. 185–212). Lawrence Erlbaum Associates, Inc.Google Scholar
Fanselow, M. S., Lester, L. S., & Helmstetter, F. J. (1988). Changes in feeding and foraging patterns as an antipredator defensive strategy: A laboratory simulation using aversive stimulation in a closed economy. Journal of the Experimental Analysis of Behavior, 50, 361–374.CrossRefGoogle Scholar
Fox, A. S., & Shackman, A. J. (2019). The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research. Neuroscience Letters, 693, 58–67.CrossRefGoogle Scholar
Fullana, M. A., Harrison, B. J., Soriano-Mas, C., Vervliet, B., Cardoner, N., Àvila-Parcet, A., & Radua, J. (2016). Neural signatures of human fear conditioning: An updated and extended meta-analysis of fMRI studies. Molecular Psychiatry, 21, 500–508.CrossRefGoogle ScholarPubMed
George, D. T., Ameli, R., & Koob, G. F. (2019). Periaqueductal gray sheds light on dark areas of psychopathology. Trends in Neurosciences, 42, 349–360.CrossRefGoogle ScholarPubMed
Gogolla, M., & Hilken, F. (2016). Model validation and verification options in a contemporary UML and OCL analysis tool. Gesellschaft für Informatik e.V.Google Scholar
Gründemann, J., Bitterman, Y., Lu, T., Krabbe, S., Grewe, B. F., Schnitzer, M. J., & Lüthi, A. (2019). Amygdala ensembles encode behavioral states. Science, 364, eaav8736.CrossRefGoogle ScholarPubMed
Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14, 488–501.CrossRefGoogle ScholarPubMed
Gungor, N. Z., & Paré, D. (2016). Functional heterogeneity in the bed nucleus of the stria terminalis. Journal of Neuroscience, 36, 8038–8049.CrossRefGoogle ScholarPubMed
Hermans, E. J., van Marle, H. J. F., Ossewaarde, L., Henckens, M. J. A. G., Qin, S., van Kesteren, M. T. R., … Fernández, G. (2011). Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science, 334, 1151–1153.CrossRefGoogle ScholarPubMed
Herry, C., Ciocchi, S., Senn, V., Demmou, L., Müller, C., & Lüthi, A. (2008). Switching on and off fear by distinct neuronal circuits. Nature, 454, 600–606.CrossRefGoogle ScholarPubMed
Hur, J., Smith, J. F., DeYoung, K. A., Anderson, A. S., Kuang, J., Kim, H. C., … Shackman, A. J. (2020). Anxiety and the neurobiology of temporally uncertain threat anticipation. Journal of Neuroscience, 40, 7949–7964.CrossRefGoogle ScholarPubMed
Kavaliers, M., & Choleris, E. (2001). Antipredator responses and defensive behavior: Ecological and ethological approaches for the neurosciences. Neuroscience & Biobehavioral Reviews, 25, 577–586.CrossRefGoogle ScholarPubMed
Kim, E. J., Park, M., Kong, M.-S., Park, S. G., Cho, J., & Kim, J. J. (2015). Alterations of hippocampal place cells in foraging rats facing a “predatory” threat. Current Biology, 25, 1362–1367.CrossRefGoogle ScholarPubMed
Kim, S.-Y., Adhikari, A., Lee, S. Y., Marshel, J. H., Kim, C. K., Mallory, C. S., … Deisseroth, K. (2013). Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature, 496, 219–223.CrossRefGoogle ScholarPubMed
Klumpers, F., Morgan, B., Terburg, D., Stein, D. J., & van Honk, J. (2015). Impaired acquisition of classically conditioned fear-potentiated startle reflexes in humans with focal bilateral basolateral amygdala damage. Social Cognitive and Affective Neuroscience, 10, 1161–1168.CrossRefGoogle ScholarPubMed
LaBar, K., LeDoux, J., Spencer, D., & Phelps, E. (1995). Impaired fear conditioning following unilateral temporal lobectomy in humans. The Journal of Neuroscience, 15, 6846–6855.CrossRefGoogle ScholarPubMed
LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.CrossRefGoogle ScholarPubMed
Letzkus, J. J., Wolff, S. B. E., Meyer, E. M. M., Tovote, P., Courtin, J., Herry, C., & Lüthi, A. (2011). A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature, 480, 331–335.CrossRefGoogle ScholarPubMed
Li, W., & Keil, A. (2023). Sensing fear: Fast and precise threat evaluation in human sensory cortex. Trends in Cognitive Sciences, 27, 341–352.CrossRefGoogle ScholarPubMed
Likhtik, E., Stujenske, J. M., A Topiwala, M., Harris, A. Z., & Gordon, J. A. (2014). Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nature Neuroscience, 17, 106–113.CrossRefGoogle ScholarPubMed
Malkova, L., Alvarado, M. C., & Bachevalier, J. (2016). Effects of separate or combined neonatal damage to the orbital frontal cortex and the inferior convexity on object recognition in monkeys. Cerebral Cortex, 26, 618–627.Google ScholarPubMed
Maren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897–931.CrossRefGoogle ScholarPubMed
McFadyen, J., Dolan, R. J., & Garrido, M. I. (2020). The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nature Reviews Neuroscience, 21, 264–276.CrossRefGoogle ScholarPubMed
McFadyen, J., Mattingley, J. B., & Garrido, M. I. (2019). An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife, 8, e40766.CrossRefGoogle Scholar
McMenamin, B. W., Langeslag, S. J. E., Sirbu, M., Padmala, S., & Pessoa, L. (2014). Network organization unfolds over time during periods of anxious anticipation. The Journal of Neuroscience, 34, 11261–11273.CrossRefGoogle ScholarPubMed
McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience & Biobehavioral Reviews, 28, 285–305.CrossRefGoogle ScholarPubMed
Meyer, C., Padmala, S., & Pessoa, L. (2019). Dynamic threat processing. Journal of Cognitive Neuroscience, 31, 522–542.CrossRefGoogle ScholarPubMed
Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B., & Prévost, C. (2015). The ecology of human fear: Survival optimization and the nervous system. Frontiers in Neuroscience, 9, 55.CrossRefGoogle ScholarPubMed
Mobbs, D., Headley, D. B., Ding, W., & Dayan, P. (2020). Space, time, and fear: Survival computations along defensive circuits. Trends in Cognitive Sciences, 24, 228–241.CrossRefGoogle ScholarPubMed
Mobbs, D., Marchant, J. L., Hassabis, D., Seymour, B., Tan, G., Gray, M., … Frith, C. D. (2009). From threat to fear: The neural organization of defensive fear systems in humans. Journal of Neuroscience, 29, 12236–12243.CrossRefGoogle ScholarPubMed
Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N., Seymour, B., … Frith, C. D. (2007). When fear is near: Threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science, 317, 1079–1083.CrossRefGoogle ScholarPubMed
Mobbs, D., Yu, R., Rowe, J. B., Eich, H., FeldmanHall, O., & Dalgleish, T. (2010). Neural activity associated with monitoring the oscillating threat value of a tarantula. Proceedings of the National Academy of Sciences, 107, 20582–20586.CrossRefGoogle ScholarPubMed
Mormann, F., Dubois, J., Kornblith, S., Milosavljevic, M., Cerf, M., Ison, M., … Koch, C. (2011). A category-specific response to animals in the right human amygdala. Nature Neuroscience, 14, 1247–1249.CrossRefGoogle ScholarPubMed
Murty, D. V. P. S., Song, S., Surampudi, S. G., & Pessoa, L. (2023). Threat and reward imminence processing in the human brain. bioRxiv, https://doi.org/10.1101/2023.01.20.524987Google ScholarPubMed
Nakamura, H., Gattass, R., Desimone, R., & Ungerleider, L. G. (1993). The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. Journal of Neuroscience, 13, 3681–3691.CrossRefGoogle ScholarPubMed
Nieuwenhuys, A., Pijpers, J. R., Oudejans, R. R. D., & Bakker, F. C. (2008). The influence of anxiety on visual attention in climbing. Journal of Sport and Exercise Psychology, 30, 171–185.CrossRefGoogle ScholarPubMed
O’Callaghan, C., Kveraga, K., Shine, J. M., Adams, R. B., & Bar, M. (2017). Predictions penetrate perception: Converging insights from brain, behaviour and disorder. Consciousness and Cognition, 47, 63–74.CrossRefGoogle ScholarPubMed
Padmala, S., & Pessoa, L. (2008). Affective learning enhances visual detection and responses in primary visual cortex. Journal of Neuroscience, 28, 6202–6210.CrossRefGoogle ScholarPubMed
Paré, D., & Quirk, G. J. (2017). When scientific paradigms lead to tunnel vision: Lessons from the study of fear. npj Science of Learning, 2, 6.CrossRefGoogle Scholar
Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60, 383–387.CrossRefGoogle ScholarPubMed
Pessoa, L. (2017). A network model of the emotional brain. Trends in Cognitive Sciences, 21, 357–371.CrossRefGoogle ScholarPubMed
Pessoa, L. (2018a). Understanding emotion with brain networks. Current Opinion in Behavioral Sciences, 19, 19–25.CrossRefGoogle Scholar
Pessoa, L. (2018b). Emotion and the interactive brain: Insights from comparative neuroanatomy and complex systems. Emotion Review, 10, 204–216.CrossRefGoogle Scholar
Pessoa, L. (2022). The entangled brain: How perception, cognition, and emotion are woven together. MIT Press.CrossRefGoogle Scholar
Pessoa, L. (2023). The entangled brain. Journal of Cognitive Neuroscience, 35, 349–360.CrossRefGoogle ScholarPubMed
Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neuroscience, 11, 773–782.CrossRefGoogle Scholar
Pessoa, L., Medina, L., & Desfilis, E. (2021). Refocusing neuroscience: Moving away from mental categories and towards complex behaviours. Philosophical Transactions of the Royal Society B: Biological Sciences, 377, 20200534.Google ScholarPubMed
Pessoa, L., Medina, L., Hof, P. R., & Desfilis, E. (2019). Neural architecture of the vertebrate brain: Implications for the interaction between emotion and cognition. Neuroscience & Biobehavioral Reviews, 107, 296–312.CrossRefGoogle ScholarPubMed
Qi, S., Hassabis, D., Sun, J., Guo, F., Daw, N., & Mobbs, D. (2018). How cognitive and reactive fear circuits optimize escape decisions in humans. Proceedings of the National Academy of Sciences of the United States of America, 115, 3186–3191.Google ScholarPubMed
Rafal, R. D., Koller, K., Bultitude, J. H., Mullins, P., Ward, R., Mitchell, A. S., & Bell, A. H. (2015). Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: Virtual dissection with probabilistic DTI tractography. Journal of Neurophysiology, 114, 1947–1962.CrossRefGoogle ScholarPubMed
Shackman, A. J., & Fox, A. S. (2016). Contributions of the central extended amygdala to fear and anxiety. The Journal of Neuroscience, 36, 8050–8063.CrossRefGoogle ScholarPubMed
Shemesh, Y., & Chen, A. (2023). A paradigm shift in translational psychiatry through rodent neuroethology. Molecular Psychiatry, 28, 993–1003.CrossRefGoogle ScholarPubMed
Somerville, L. H., Whalen, P. J., & Kelley, W. M. (2010). Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biological Psychiatry, 68, 416–424.CrossRefGoogle ScholarPubMed
Tamietto, M., Pullens, P., de Gelder, B., Weiskrantz, L., & Goebel, R. (2012). Subcortical connections to human amygdala and changes following destruction of the visual cortex. Current Biology, 22, 1449–1455.CrossRefGoogle ScholarPubMed
Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16, 317–331.Google ScholarPubMed
Weiskrantz, L. (1956). Behavioral changes associated with ablation of the amygdaloid complex in monkeys. Journal of Comparative and Physiological Psychology, 49, 381–391.CrossRefGoogle ScholarPubMed
Wen, Z., Raio, C. M., Pace-Schott, E. F., Lazar, S. W., LeDoux, J. E., Phelps, E. A., & Milad, M. R. (2022). Temporally and anatomically specific contributions of the human amygdala to threat and safety learning. Proceedings of the National Academy of Sciences, 119, e2204066119.CrossRefGoogle ScholarPubMed
Woody, E. Z., & Szechtman, H. (2011). Adaptation to potential threat: The evolution, neurobiology, and psychopathology of the security motivation system. Neuroscience & Biobehavioral Reviews, 35, 1019–1033.CrossRefGoogle ScholarPubMed
Wurtz, R. H., McAlonan, K., Cavanaugh, J., & Berman, R. A. (2011). Thalamic pathways for active vision. Trends in Cognitive Sciences, 15, 177–184.CrossRefGoogle ScholarPubMed
Zanette, L. Y., & Clinchy, M. (2017). Predator–prey interactions: Integrating fear effects. In Call, J., Burghardt, G. M., Pepperberg, I. M., Snowdon, C. T. & Zentall, T. (Eds.), APA handbook of comparative psychology: Basic concepts, methods, neural substrate, and behavior, Vol. 1 (pp. 815–831). American Psychological Association.Google Scholar
Zhu, Y., Nachtrab, G., Keyes, P. C., Allen, W. E., Luo, L., & Chen, X. (2018). Dynamic salience processing in paraventricular thalamus gates associative learning. Science, 362, 423–429.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×