Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-5q6g5 Total loading time: 0 Render date: 2025-09-27T02:50:10.194Z Has data issue: false hasContentIssue false

Chapter 8 - The Study of Emotion in Other Animals

A Primer for Humans

from Section II - Measuring Emotional Processes

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

The aim of this chapter is to offer an approachable introduction to the questions, goals, and techniques of affective neuroscience research in nonhuman animals. Rather than providing a detailed literature review, we attempt to outline the overarching principles of the neuroscience of emotion and highlight some areas of special interest. We begin by describing a broad conceptual framework for understanding emotion states that is relied upon by many affective neuroscientists working with nonhuman animals today. We then explore representative examples of work from especially instructive domains of emotion research in other animals, focusing on mice. We discuss each example in detail, introducing the relevant methods and highlighting their strengths and weaknesses, to convey the overall logic of affective neuroscience research in other animals and demonstrate its utility and potential for mechanistic insights into how emotions are manifested by the brain.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adolphs, R., & Anderson, D. (2018). The neuroscience of emotion: A new synthesis. Princeton University Press.Google Scholar
Anderson, D. J., & Adolphs, R. (2014). A framework for studying emotions across species. Cell, 157, 187–200.CrossRefGoogle ScholarPubMed
Ashhad, S., Kam, K., Negro, C. A. D., & Feldman, J. L. (2022). Breathing rhythm and pattern and their influence on emotion. Annual Review of Neuroscience, 45, 223–247.CrossRefGoogle ScholarPubMed
Bailey, K., & Crawley, J. (2008). Anxiety-related behaviors in mice. In Buccafusco, J. J. (Ed.), Methods of behavior analysis in neuroscience (Frontiers in neuroscience), 2nd ed. (pp. 77–101). CRC Press.Google Scholar
Berntson, G. G., & Khalsa, S. S. (2021). Neural circuits of interoception. Trends in Neurosciences, 44, 17–28.CrossRefGoogle ScholarPubMed
Bicks, L. K., Koike, H., Akbarian, S., & Morishita, H. (2015). Prefrontal cortex and social cognition in mouse and man. Frontiers in Psychology, 6, 1805.CrossRefGoogle ScholarPubMed
Campos, P., Walker, J. J., & Mollard, P. (2020). Diving into the brain: Deep-brain imaging techniques in conscious animals. The Journal of Endocrinology, 246, R33–R50.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1927). The James–Lange theory of emotions: A critical examination and an alternative theory. The American Journal of Psychology, 39, 106–124.CrossRefGoogle Scholar
Chen, X., Tong, C., Han, Z., Zhang, K., Bo, B., Feng, Y., & Liang, Z. (2020). Sensory evoked fMRI paradigms in awake mice. NeuroImage, 204, 116242.CrossRefGoogle ScholarPubMed
Critchley, H. D., & Garfinkel, S. N. (2017). Interoception and emotion. Current Opinion in Psychology, 17, 7–14.CrossRefGoogle ScholarPubMed
Crook, R. J. (2021). Behavioral and neurophysiological evidence suggests affective pain experience in octopus. iScience, 24, 102229.CrossRefGoogle ScholarPubMed
D’Acquisto, F. (2017). Affective immunology: Where emotions and the immune response converge. Dialogues in Clinical Neuroscience, 19, 9–19.Google ScholarPubMed
Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: Evolutionary and neurobiological origins. Nature Reviews Neuroscience, 14, 143–152.CrossRefGoogle ScholarPubMed
Darwin, R. C. (1872). The expression of the emotions in man and animals. John Murray.CrossRefGoogle Scholar
Datta, S. R., Anderson, D. J., Branson, K., Perona, P., & Leifer, A. (2019). Computational neuroethology: A call to action. Neuron, 104, 11–24.CrossRefGoogle ScholarPubMed
Dixon, M. L., Thiruchselvam, R., Todd, R., & Christoff, K. (2017). Emotion and the prefrontal cortex: An integrative review. Psychological Bulletin, 143, 1033–1081.CrossRefGoogle ScholarPubMed
Dolensek, N., Gehrlach, D. A., Klein, A. S., & Gogolla, N. (2020). Facial expressions of emotion states and their neuronal correlates in mice. Science, 368, 89–94.CrossRefGoogle ScholarPubMed
Dutschmann, M., & Dick, T. E. (2013). Comprehensive physiology. Comprehensive Physiology, 2, 2443–2469.Google Scholar
Edelman, B. J., & Macé, E. (2021). Functional ultrasound brain imaging: Bridging networks, neurons, and behavior. Current Opinion in Biomedical Engineering, 18, 100286.CrossRefGoogle Scholar
Emiliani, V., Entcheva, E., Hedrich, R., Hegemann, P., Konrad, K. R., Lüscher, C., … Yizhar, O. (2022). Optogenetics for light control of biological systems. Nature Reviews Methods Primers, 2, 55.CrossRefGoogle ScholarPubMed
Forkosh, O., Karamihalev, S., Roeh, S., Alon, U., Anpilov, S., Touma, C., … Chen, A. (2019). Identity domains capture individual differences from across the behavioral repertoire. Nature Neuroscience, 22, 2023–2028.CrossRefGoogle ScholarPubMed
Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., … Kempermann, G. (2013). Emergence of individuality in genetically identical mice. Science, 340, 756–759.CrossRefGoogle ScholarPubMed
Gibbons, M., Versace, E., Crump, A., Baran, B., & Chittka, L. (2022). Motivational trade-offs and modulation of nociception in bumblebees. Proceedings of the National Academy of Sciences of the United States of Ameria, 119, e2205821119.Google ScholarPubMed
Gibson, W. T., Gonzalez, C. R., Fernandez, C., Ramasamy, L., Tabachnik, T., Du, R. R., … Anderson, D. J. (2015). Behavioral responses to a repetitive visual threat stimulus express a persistent state of defensive arousal in Drosophila. Current Biology, 25, 1401–1415.CrossRefGoogle ScholarPubMed
Han, S., Soleiman, M. T., Soden, M. E., Zweifel, L. S., & Palmiter, R. D. (2015). Elucidating an affective pain circuit that creates a threat memory. Cell, 162, 363–374.CrossRefGoogle ScholarPubMed
Hsueh, B., Chen, R., Jo, Y., Tang, D., Raffiee, M., Kim, Y. S., … Deisseroth, K. (2023). Cardiogenic control of affective behavioural state. Nature, 615, 292–299.CrossRefGoogle ScholarPubMed
Kennedy, A., Kunwar, P. S., Li, L., Stagkourakis, S., Wagenaar, D. A., & Anderson, D. J. (2020). Stimulus-specific hypothalamic encoding of a persistent defensive state. Nature, 586, 730–734.CrossRefGoogle ScholarPubMed
Keysers, C., Knapska, E., Moita, M. A., & Gazzola, V. (2022). Emotional contagion and prosocial behavior in rodents. Trends in Cognitive Sciences, 26, 688–706.CrossRefGoogle ScholarPubMed
Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H. D., Davenport, P. W., Feinstein, J. S., … Zucker, N. (2018). Interoception and mental health: A roadmap. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 501–513.Google ScholarPubMed
Klein, A. S., Dolensek, N., Weiand, C., & Gogolla, N. (2021). Fear balance is maintained by bodily feedback to the insular cortex in mice. Science, 374, 1010–1015.CrossRefGoogle Scholar
Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., … Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109, 2404–2412.e5.CrossRefGoogle ScholarPubMed
Kunwar, P. S., Zelikowsky, M., Remedios, R., Cai, H., Yilmaz, M., Meister, M., & Anderson, D. J. (2015). Ventromedial hypothalamic neurons control a defensive emotion state. eLife, 4, e06633.CrossRefGoogle ScholarPubMed
Liu, S., Ye, M., Pao, G. M., Song, S. M., Jhang, J., Jiang, H., … Han, S. (2022). Divergent brainstem opioidergic pathways that coordinate breathing with pain and emotions. Neuron, 110, 857–873.e9.CrossRefGoogle ScholarPubMed
Margolis, K. G., Cryan, J. F., & Mayer, E. A. (2021). The microbiota–gut–brain axis: From motility to mood. Gastroenterology, 160, 1486–1501.CrossRefGoogle ScholarPubMed
Mayer, E. A. (2011). Gut feelings: The emerging biology of gut–brain communication. Nature Reviews Neuroscience, 12, 453–466.CrossRefGoogle ScholarPubMed
Mobbs, D., Adolphs, R., Fanselow, M. S., Barrett, L. F., LeDoux, J. E., Ressler, K., & Tye, K. M. (2019). Viewpoints: Approaches to defining and investigating fear. Nature Neuroscience, 22, 1205–1216.CrossRefGoogle ScholarPubMed
Montaldo, G., Urban, A., & Macé, E. (2022). Functional ultrasound neuroimaging. Annual Review of Neuroscience, 45, 491–513.CrossRefGoogle ScholarPubMed
Navabpour, S., Kwapis, J. L., & Jarome, T. J. (2020). A neuroscientist’s guide to transgenic mice and other genetic tools. Neuroscience & Biobehavioral Reviews, 108, 732–748.CrossRefGoogle ScholarPubMed
Panksepp, J. (2012). What is an emotional feeling? Lessons about affective origins from cross-species neuroscience. Motivation and Emotion, 36, 4–15.CrossRefGoogle Scholar
Papini, M. R., Penagos-Corzo, J. C., & Pérez-Acosta, A. M. (2019). Avian emotions: Comparative perspectives on fear and frustration. Frontiers in Psychology, 9, 2707.CrossRefGoogle ScholarPubMed
Russell, L. E., Dalgleish, H. W. P., Nutbrown, R., Gauld, O. M., Herrmann, D., Fişek, M., … Häusser, M. (2022). All-optical interrogation of neural circuits in behaving mice. Nature Protocols, 17, 1579–1620.CrossRefGoogle ScholarPubMed
Scheggia, D., Greca, F. L., Maltese, F., Chiacchierini, G., Italia, M., Molent, C., … Papaleo, F. (2022). Reciprocal cortico-amygdala connections regulate prosocial and selfish choices in mice. Nature Neuroscience, 25, 1505–1518.CrossRefGoogle ScholarPubMed
Scheggia, D., Managò, F., Maltese, F., Bruni, S., Nigro, M., Dautan, D., … Papaleo, F. (2019). Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice. Nature Neuroscience, 23, 47–60.Google ScholarPubMed
Seth, A. K., & Friston, K. J. (2016). Active interoceptive inference and the emotional brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20160007.CrossRefGoogle ScholarPubMed
Shemesh, Y., & Chen, A. (2023). A paradigm shift in translational psychiatry through rodent neuroethology. Molecular Psychiatry, 28, 993–1003.CrossRefGoogle ScholarPubMed
Silva, B. A., Gross, C. T., & Gräff, J. (2016). The neural circuits of innate fear: Detection, integration, action, and memorization. Learning & Memory, 23, 544–555.CrossRefGoogle ScholarPubMed
Silva, B. A., Mattucci, C., Krzywkowski, P., Murana, E., Illarionova, A., Grinevich, V., … Gross, C. T. (2013). Independent hypothalamic circuits for social and predator fear. Nature Neuroscience, 16, 1731–1733.CrossRefGoogle ScholarPubMed
Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., … Harris, T. D. (2021). Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science, 372, eabf4588.CrossRefGoogle ScholarPubMed
Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C. B., Carandini, M., & Harris, K. D. (2019). Spontaneous behaviors drive multidimensional, brainwide activity. Science, 364, 255.CrossRefGoogle ScholarPubMed
Terburg, D., Scheggia, D., Rio, R. T. del, Klumpers, F., Ciobanu, A. C., Morgan, B., … Honk, J. van. (2018). The basolateral amygdala is essential for rapid escape: A human and rodent study. Cell, 175, 723–735.e16.CrossRefGoogle ScholarPubMed
Tinbergen, N. (1951). The study of instinct. Clarendon Press.Google Scholar
Wilent, W. B., Oh, M. Y., Buetefisch, C. M., Bailes, J. E., Cantella, D., Angle, C., & Whiting, D. M. (2010). Induction of panic attack by stimulation of the ventromedial hypothalamus: Case report. Journal of Neurosurgery, 112, 1295–1298.CrossRefGoogle Scholar
Wilent, W. B., Oh, M. Y., Buetefisch, C., Bailes, J. E., Cantella, D., Angle, C., & Whiting, D. M. (2011). Mapping of microstimulation evoked responses and unit activity patterns in the lateral hypothalamic area recorded in awake humans: Technical note. Journal of Neurosurgery, 115, 295–300.CrossRefGoogle ScholarPubMed
Wiltschko, A. B., Johnson, M. J., Iurilli, G., Peterson, R. E., Katon, J. M., Pashkovski, S. L., … Datta, S. R. (2015). Mapping sub-second structure in mouse behavior. Neuron, 88, 1121–1135.CrossRefGoogle ScholarPubMed
Yap, E.-L., & Greenberg, M. E. (2018). Activity-regulated transcription: Bridging the gap between neural activity and behavior. Neuron, 100, 330–348.CrossRefGoogle Scholar
Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., Zwan, J. van der, … Linnarsson, S. (2018). Molecular architecture of the mouse nervous system. Cell, 174, 999–1014.e22.CrossRefGoogle ScholarPubMed
Ziegler, L. von, Sturman, O., & Bohacek, J. (2020). Big behavior: Challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology, 46, 33–44.Google Scholar
Zych, A. D., & Gogolla, N. (2021). Expressions of emotions across species. Current Opinion in Neurobiology, 68, 57–66.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×