Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-wlffp Total loading time: 0 Render date: 2025-09-27T05:15:47.833Z Has data issue: false hasContentIssue false

Section VI - Social Emotions

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Adolphs, R. (2002). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1, 21–62.CrossRefGoogle ScholarPubMed
Andreou, M., & Skrimpa, V. (2020). Theory of mind deficits and neurophysiological operations in autism spectrum disorders: A review. Brain Sciences, 10, 393.CrossRefGoogle ScholarPubMed
Ashar, Y. K., Andrews-Hanna, J. R., Dimidjian, S., & Wager, T. D. (2017). Empathic care and distress: Predictive brain markers and dissociable brain systems. Neuron, 94, 1263–1273.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 37–46.CrossRefGoogle ScholarPubMed
Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21, 1155–1166.CrossRefGoogle ScholarPubMed
Batson, C. D. (1991). The altruism question: Toward a social-psychological answer. Psychology Press.Google Scholar
Batson, C. D. (2009). These things called empathy: Eight related but distinct phenomena. In Decety, J. & Ickes, W. (Eds.), The social neuroscience of empathy (pp. 3–15). Boston Review.Google Scholar
Beauregard, M., Courtemanche, J., Paquette, V., & St-Pierre, É. L. (2009). The neural basis of unconditional love. Psychiatry Research: Neuroimaging, 172, 93–98.Google ScholarPubMed
Bernhardt, B. C., Valk, S. L., Silani, G., Bird, G., Frith, U., & Singer, T. (2014). Selective disruption of sociocognitive structural brain networks in autism and alexithymia. Cerebral Cortex, 24, 3258–3267.CrossRefGoogle ScholarPubMed
Bird, G., & Cook, R. (2013). Mixed emotions: The contribution of alexithymia to the emotional symptoms of autism. Translational Psychiatry, 3, e285.CrossRefGoogle Scholar
Bird, G., Silani, G., Brindley, R., White, S., Frith, U., & Singer, T. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain, 133, 1515–1525.CrossRefGoogle Scholar
Bird, G., & Viding, E. (2014). The self to other model of empathy: Providing a new framework for understanding empathy impairments in psychopathy, autism, and alexithymia. Neuroscience & Biobehavioral Reviews, 47, 520–532.CrossRefGoogle ScholarPubMed
Böckler, A., Tusche, A., Schmidt, P., & Singer, T. (2018). Distinct mental trainings differentially affect altruistically motivated, norm motivated, and self-reported prosocial behaviour. Scientific Reports, 8, 13560.CrossRefGoogle ScholarPubMed
Bodnar, A., & Rybakowski, J. K. (2017). Increased affective empathy in bipolar patients during a manic episode. Brazilian Journal of Psychiatry, 39, 342–345.CrossRefGoogle ScholarPubMed
Bonfils, K. A., Lysaker, P. H., Minor, K. S., & Salyers, M. P. (2016). Affective empathy in schizophrenia: A meta-analysis. Schizophrenia Research, 175, 109–117.CrossRefGoogle ScholarPubMed
Bora, E. (2022). Social cognition and empathy in adults with obsessive compulsive disorder: A meta-analysis. Psychiatry Research, 316, 114752.CrossRefGoogle ScholarPubMed
Byrne, R. W., & Whiten, A. (1991). Computation and mindreading in primate tactical deception. In Whiten, A. (Ed.), Natural theories of mind: Evolution, development and simulation of everyday mindreading (pp. 127–141). Basil Blackwell.Google Scholar
Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, S. B. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure and Function, 217, 783–796.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. (1994). Social neuroscience: Autonomic, neuroendocrine, and immune responses to stress. Psychophysiology, 31, 113–128.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., & Berntson, G. G. (1992). Social psychological contributions to the decade of the brain: Doctrine of multilevel analysis. American Psychologist, 47, 1019–1028.CrossRefGoogle Scholar
Carrillo, M., Han, Y., Migliorati, F., Liu, M., Gazzola, V., & Keysers, C. (2019). Emotional mirror neurons in the rat’s anterior cingulate cortex. Current Biology, 29, 1301–1312.CrossRefGoogle ScholarPubMed
Chierchia, G., Przyrembel, M., Lesemann, F. P., Bosworth, S., Snower, D., & Singer, T. (2021). Navigating motivation: A semantic and subjective Atlas of 7 motives. Frontiers in Psychology, 11, 568064.CrossRefGoogle ScholarPubMed
Condon, P. (2017). Mindfulness, compassion, and prosocial behaviour. In Karremans, J. C. & Papies, E. K. (Eds.), Mindfulness in social psychology (pp. 124–138). Routledge/Taylor & Francis Group.Google Scholar
Condon, P., Desbordes, G., Miller, W. B., & DeSteno, D. (2013). Meditation increases compassionate responses to suffering. Psychological Science, 24, 2125–2127.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.CrossRefGoogle ScholarPubMed
Corradi-Dell’Acqua, C., Tusche, A., Vuilleumier, P., & Singer, T. (2016). Cross-modal representations of first-hand and vicarious pain, disgust and fairness in insular and cingulate cortex. Nature Communications, 7, 10904.CrossRefGoogle ScholarPubMed
Cuff, B. M. P., Brown, S. J., Taylor, L., & Howat, D. J. (2016). Empathy: A review of the concept. Emotion Review, 8, 144–153.CrossRefGoogle Scholar
Czarna, A. Z., Wróbel, M., Dufner, M., & Zeigler-Hill, V. (2015). Narcissism and emotional contagion: Do narcissists “catch” the emotions of others? Social Psychological and Personality Science, 6, 318–324.CrossRefGoogle Scholar
Czarna, A. Z., Zajenkowski, M., & Dufner, M. (2018). How does it feel to be a narcissist? Narcissism and emotions. In Hermann, A. D., Brunell, A. B., & Foster, J. D. (Eds.), Handbook of trait narcissism (pp. 255–263). Springer.Google Scholar
Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44, 113–126.CrossRefGoogle Scholar
Davis, M. H., Conklin, L., Smith, A., & Luce, C. (1996). Effect of perspective taking on the cognitive representation of persons: A merging of self and other. Journal of Personality and Social Psychology, 70, 713–726.CrossRefGoogle Scholar
Decety, J. (2010). The neurodevelopment of empathy in humans. Developmental Neuroscience, 32, 257–267.CrossRefGoogle ScholarPubMed
Decety, J., Chen, C., Harenski, C., & Kiehl, K. (2013). An fMRI study of affective perspective taking in individuals with psychopathy: Imagining another in pain does not evoke empathy. Frontiers in Human Neuroscience, 7, 489.CrossRefGoogle Scholar
Decety, J., & Jackson, P. L. (2004). The functional architecture of human empathy. Behavioral and Cognitive Neuroscience Reviews, 3, 71–100.CrossRefGoogle ScholarPubMed
Decety, J., Skelly, L. R., & Kiehl, K. A. (2013). Brain response to empathy-eliciting scenarios involving pain in incarcerated individuals with psychopathy. JAMA Psychiatry, 70, 638–645.CrossRefGoogle ScholarPubMed
Derntl, B., Seidel, E.-M., Schneider, F., & Habel, U. (2012). How specific are emotional deficits? A comparison of empathic abilities in schizophrenia, bipolar and depressed patients. Schizophrenia Research, 142, 58–64.CrossRefGoogle ScholarPubMed
de Vignemont, F., & Singer, T. (2006). The empathic brain: How, when and why? Trends in Cognitive Sciences, 10, 435–441.CrossRefGoogle Scholar
Dinsdale, N., & Crespi, B. J. (2013). The borderline empathy paradox: Evidence and conceptual models for empathic enhancements in borderline personality disorder. Journal of Personality Disorders, 27, 172–195.CrossRefGoogle ScholarPubMed
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176–180.CrossRefGoogle ScholarPubMed
Donald, J. N., Sahdra, B. K., Van Zanden, B., Duineveld, J. J., Atkins, P. W. B., Marshall, S. L., & Ciarrochi, J. (2019). Does your mindfulness benefit others? A systematic review and meta-analysis of the link between mindfulness and prosocial behaviour. British Journal of Psychology, 110, 101–125.CrossRefGoogle ScholarPubMed
Eisenberg, N., Fabes, R. A., & Spinrad, T. L. (2006). Prosocial development. In Eisenberg, N., Damon, W., & Lerner, R. M. (Eds.), Handbook of child psychology: Social, emotional, and personality development, Vol. 3, 6th ed. (pp. 646–718). John Wiley & Sons.Google Scholar
Eres, R., Decety, J., Louis, W. R., & Molenberghs, P. (2015). Individual differences in local gray matter density are associated with differences in affective and cognitive empathy. NeuroImage, 117, 305–310.CrossRefGoogle ScholarPubMed
Fan, Y., Duncan, N. W., de Greck, M., & Northoff, G. (2011). Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neuroscience & Biobehavioral Reviews, 35, 903–911.CrossRefGoogle Scholar
Fertuck, E. A., Fischer, S., & Beeney, J. (2018). Social cognition and borderline personality disorder: Splitting and trust impairment findings. The Psychiatric Clinics of North America, 41, 613–632.CrossRefGoogle ScholarPubMed
Fletcher, P. C., Happé, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S. J., & Frith, C. D. (1995). Other minds in the brain: A functional imaging study of “theory of mind” in story comprehension. Cognition, 57, 109–128.CrossRefGoogle Scholar
Fox, K. C., Nijeboer, S., Dixon, M. L., Floman, J. L., Ellamil, M., Rumak, S. P., … Christoff, K. (2014). Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neuroscience & Biobehavioral Reviews, 43, 48–73.CrossRefGoogle ScholarPubMed
Frith, C., & Frith, U. (2005). Theory of mind. Current Biology, 15, R644–R645.CrossRefGoogle ScholarPubMed
Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358, 459–473.CrossRefGoogle ScholarPubMed
Frith, U., Morton, J., & Leslie, A. M. (1991). The cognitive basis of a biological disorder: Autism. Trends in Neurosciences, 14, 433–438.CrossRefGoogle ScholarPubMed
Gaigg, S. B., Cornell, A. S., & Bird, G. (2018). The psychophysiological mechanisms of alexithymia in autism spectrum disorder. Autism: The International Journal of Research and Practice, 22, 227–231.CrossRefGoogle ScholarPubMed
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493–501.CrossRefGoogle ScholarPubMed
Gilbert, P. (2017). Compassion as a social mentality: An evolutionary approach. In Gilbert, P. (Ed.), Compassion: Concepts, research and applications (pp. 31–68). Routledge/Taylor & Francis Group.CrossRefGoogle Scholar
Goetz, J. L., Keltner, D., & Simon-Thomas, E. (2010). Compassion: An evolutionary analysis and empirical review. Psychological Bulletin, 136, 351–374.CrossRefGoogle ScholarPubMed
Hall, J. A., & Schwartz, R. (2022). Empathy, an important but problematic concept. The Journal of Social Psychology, 162, 1–6.CrossRefGoogle ScholarPubMed
Hanh, T. N. (2002). Teachings on love. Parallax Press.Google Scholar
Harmsen, I. E. (2019). Empathy in autism spectrum disorder. Journal of Autism and Developmental Disorders, 49, 3939–3955.CrossRefGoogle ScholarPubMed
Hatfield, E., Cacioppo, J. T., & Rapson, R. L. (1993). Emotional contagion. Current Directions in Psychological Science, 2, 96–100.CrossRefGoogle Scholar
Heckhausen, J. (2000). Evolutionary perspectives on human motivation. American Behavioral Scientist, 43, 1015–1029.CrossRefGoogle Scholar
Heckhausen, J., & Heckhausen, H. (2010). Motivation und Entwicklung. In Heckhausen, J. & Heckhausen, H. (Eds.), Motivation und Handeln (pp. 427–488). Springer.CrossRefGoogle Scholar
Hoffmann, F., Banzhaf, C., Kanske, P., Gärtner, M., Bermpohl, F., & Singer, T. (2016). Empathy in depression: Egocentric and altercentric biases and the role of alexithymia. Journal of Affective Disorders, 199, 23–29.CrossRefGoogle ScholarPubMed
Hoffmann, F., Koehne, S., Steinbeis, N., Dziobek, I., & Singer, T. (2016). Preserved self-other distinction during empathy in autism is linked to network integrity of right supramarginal Gyrus. Journal of Autism and Developmental Disorders, 46, 637–648.CrossRefGoogle ScholarPubMed
Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878.CrossRefGoogle ScholarPubMed
Jabbi, M., Swart, M., & Keysers, C. (2007). Empathy for positive and negative emotions in the gustatory cortex. NeuroImage, 34, 1744–1753.CrossRefGoogle ScholarPubMed
Jauniaux, J., Khatibi, A., Rainville, P., & Jackson, P. L. (2019). A meta-analysis of neuroimaging studies on pain empathy: Investigating the role of visual information and observers’ perspective. Social Cognitive and Affective Neuroscience, 14, 789–813.CrossRefGoogle ScholarPubMed
Jinpa, T. (2015). A fearless heart. Why compassion is the key to greater well-being. Little Brown.Google Scholar
Joinson, C. (1992). Coping with compassion fatigue. Nursing, 22, 116–118.Google ScholarPubMed
Kang, D.-H., Jo, H. J., Jung, W. H., Kim, S. H., Jung, Y.-H., Choi, C.-H., … Kwon, J. S. (2013). The effect of meditation on brain structure: Cortical thickness mapping and diffusion tensor imaging. Social Cognitive and Affective Neuroscience, 8, 27–33.CrossRefGoogle ScholarPubMed
Kanske, P. (2018). The social mind: Disentangling affective and cognitive routes to understanding others. Interdisciplinary Science Reviews, 43, 115–124.CrossRefGoogle Scholar
Kanske, P., Böckler, A., & Singer, T. (2015). Models, mechanisms and moderators dissociating empathy and theory of mind. In Wöhr, M. & Krach, S. (Eds.), Social behavior from rodents to humans: Neural foundations and clinical implications (pp. 193–206). Springer International Publishing.Google Scholar
Kanske, P., Böckler, A., Trautwein, F. M., & Singer, T. (2015). Dissecting the social brain: Introducing the EmpaToM to reveal distinct neural networks and brain-behavior relations for empathy and Theory of Mind. NeuroImage, 122, 6–19.CrossRefGoogle ScholarPubMed
Kanske, P., Böckler, A., Trautwein, F.-M., Parianen Lesemann, F. H., & Singer, T. (2016). Are strong empathizers better mentalizers? Evidence for independence and interaction between the routes of social cognition. Social Cognitive and Affective Neuroscience, 11, 1383–1392.CrossRefGoogle ScholarPubMed
Kerr-Gaffney, J., Harrison, A., & Tchanturia, K. (2019). Cognitive and affective empathy in eating disorders: A systematic review and meta-analysis. Frontiers in Psychiatry, 10, 102.CrossRefGoogle ScholarPubMed
Keysers, C., & Gazzola, V. (2021). Emotional contagion: Improving survival by preparing for socially sensed threats. Current Biology, 31, R728–R730.CrossRefGoogle ScholarPubMed
Keysers, C., Knapska, E., Moita, M. A., & Gazzola, V. (2022). Emotional contagion and prosocial behavior in rodents. Trends in Cognitive Sciences, 26, 688–706.CrossRefGoogle ScholarPubMed
Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy: Evidence for paralimbic system dysfunction. Psychiatry Research, 142, 107–128.CrossRefGoogle ScholarPubMed
Klimecki, O. M., Leiberg, S., Lamm, C., & Singer, T. (2013). Functional neural plasticity and associated changes in positive affect after compassion training. Cerebral Cortex, 23, 1552–1561.CrossRefGoogle ScholarPubMed
Klimecki, O. M., Leiberg, S., Ricard, M., & Singer, T. (2013). Differential pattern of functional brain plasticity after compassion and empathy training. Social Cognitive and Affective Neuroscience, 9, 873–879.Google ScholarPubMed
Klimecki, O. M., & Singer, T. (2012). Empathic distress fatigue rather than compassion fatigue? Integrating findings from empathy research in psychology and social neuroscience. In Oakley, B., Knafo, A., Madhavan, G., & Wilson, D. S. (Eds.), Pathological altruism (pp. 368–383). Oxford University Press.Google Scholar
Krishnan, A., Woo, C.-W., Chang, L. J., Ruzic, L., Gu, X., López-Solà, M., … Wager, T. D. (2016). Somatic and vicarious pain are represented by dissociable multivariate brain patterns. eLife, 5, e15166.CrossRefGoogle ScholarPubMed
Kupferberg, A., Bicks, L., & Hasler, G. (2016). Social functioning in major depressive disorder. Neuroscience & Biobehavioral Reviews, 69, 313–332.CrossRefGoogle ScholarPubMed
Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54, 2492–2502.CrossRefGoogle ScholarPubMed
Lamm, C., Rütgen, M., & Wagner, I. C. (2019). Imaging empathy and prosocial emotions. Functional Neuroimaging of the Emotional Brain, 693, 49–53.Google ScholarPubMed
Langford, D. J., Crager, S. E., Shehzad, Z., Smith, S. B., Sotocinal, S. G., Levenstadt, J. S., … Mogil, J. S. (2006). Social modulation of pain as evidence for empathy in mice. Science, 312, 1967–1970.CrossRefGoogle Scholar
Leiberg, S., Klimecki, O. M., & Singer, T. (2011). Short-term compassion training increases prosocial behavior in a newly developed prosocial game. PLoS ONE, 6, e17798.CrossRefGoogle Scholar
Liakakis, G., Nickel, J., & Seitz, R. (2011). Diversity of the inferior frontal gyrus – A meta-analysis of neuroimaging studies. Behavioural Brain Research, 225, 341–347.CrossRefGoogle ScholarPubMed
López, A., Sanderman, R., Ranchor, A. V., & Schroevers, M. J. (2018). Compassion for others and self-compassion: Levels, correlates, and relationship with psychological well-being. Mindfulness, 9, 325–331.CrossRefGoogle ScholarPubMed
Luberto, C. M., Shinday, N., Song, R., Philpotts, L. L., Park, E. R., Fricchione, G. L., & Yeh, G. Y. (2018). A systematic review and meta-analysis of the effects of meditation on empathy, compassion, and prosocial behaviors. Mindfulness, 9, 708–724.CrossRefGoogle ScholarPubMed
Lutz, A., Brefczynski-Lewis, J., Johnstone, T., & Davidson, R. J. (2008). Regulation of the neural circuitry of emotion by compassion meditation: Effects of meditative expertise. PLoS ONE, 3, e1897.CrossRefGoogle ScholarPubMed
MacBeth, A., & Gumley, A. (2012). Exploring compassion: A meta-analysis of the association between self-compassion and psychopathology. Clinical Psychology Review, 32, 545–552.CrossRefGoogle ScholarPubMed
Masten, C. L., Morelli, S. A., & Eisenberger, N. I. (2011). An fMRI investigation of empathy for “social pain” and subsequent prosocial behavior. NeuroImage, 55, 381–388.CrossRefGoogle ScholarPubMed
Meffert, H., Gazzola, V., den Boer, J. A., Bartels, A. A. J., & Keysers, C. (2013). Reduced spontaneous but relatively normal deliberate vicarious representations in psychopathy. Brain, 136, 2550–2562.CrossRefGoogle ScholarPubMed
Miller, D. T. (1999). The norm of self-interest. American Psychologist, 54, 1053–1060.CrossRefGoogle ScholarPubMed
Miller, P. A., & Eisenberg, N. (1988). The relation of empathy to aggressive and externalizing/antisocial behavior. Psychological Bulletin, 103, 324–344.CrossRefGoogle ScholarPubMed
Mohnke, S., Erk, S., Schnell, K., Schütz, C., Romanczuk-Seiferth, N., Grimm, O., … Schmitgen, M. M. (2014). Further evidence for the impact of a genome-wide-supported psychosis risk variant in ZNF804A on the theory of mind network. Neuropsychopharmacology, 39, 1196–1205.CrossRefGoogle ScholarPubMed
Müller-Pinzler, L., Gazzola, V., Keysers, C., Sommer, J., Jansen, A., Frässle, S., … Krach, S. (2015). Neural pathways of embarrassment and their modulation by social anxiety. NeuroImage, 119, 252–261.CrossRefGoogle ScholarPubMed
Murray, H. A. (1938). Explorations in personality: A clinical and experimental study of fifty men of college age. Oxford University Press.Google Scholar
Nazeri, M., Nezhadi, A., & Shabani, M. (2019). Role of opioid system in empathy-like behaviours in rats. Addiction & Health, 11, 216–222.Google ScholarPubMed
Neff, K. (2003). Self-compassion: An alternative conceptualization of a healthy attitude toward oneself. Self and Identity, 2, 85–101.CrossRefGoogle Scholar
Nelson, E. E., & Panksepp, J. (1998). Brain substrates of infant–mother attachment: Contributions of opioids, oxytocin, and norepinephrine. Neuroscience & Biobehavioral Reviews, 22, 437–452.CrossRefGoogle ScholarPubMed
Novak, L., Malinakova, K., Mikoska, P., van Dijk, J. P., & Tavel, P. (2022). Neural correlates of compassion – An integrative systematic review. International Journal of Psychophysiology, 172, 46–59.CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Lieberman, M. D. (2001). The emergence of social cognitive neuroscience. American Psychologist, 56, 717–734.CrossRefGoogle ScholarPubMed
Panksepp, J. (2011). The basic emotional circuits of mammalian brains: Do animals have affective lives? Neuroscience & Biobehavioral Reviews, 35, 1791–1804.CrossRefGoogle ScholarPubMed
Paradiso, E., Gazzola, V., & Keysers, C. (2021). Neural mechanisms necessary for empathy-related phenomena across species. Current Opinion in Neurobiology, 68, 107–115.CrossRefGoogle ScholarPubMed
Pittelkow, M.-M., Aan Het Rot, M., Seidel, L. J., Feyel, N., & Roest, A. M. (2021). Social anxiety and empathy: A systematic review and meta-analysis. Journal of Anxiety Disorders, 78, 102357.CrossRefGoogle ScholarPubMed
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 515–526.CrossRefGoogle Scholar
Preston, S. D. (2013). The origins of altruism in offspring care. Psychological Bulletin, 139, 1305–1341.CrossRefGoogle ScholarPubMed
Preston, S. D., & De Waal, F. B. (2002). Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences, 25, 1–20.CrossRefGoogle ScholarPubMed
Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRefGoogle Scholar
Quaglia, J. T., Soisson, A., & Simmer-Brown, J. (2021). Compassion for self versus other: A critical review of compassion training research. The Journal of Positive Psychology, 16, 675–690.CrossRefGoogle Scholar
Ricard, M. (2015). Altruism: The power of compassion to change itself and the world. London Atlantic Books.Google Scholar
Ritter, K., Dziobek, I., Preißler, S., Rüter, A., Vater, A., Fydrich, T., … Roepke, S. (2011). Lack of empathy in patients with narcissistic personality disorder. Psychiatry Research, 187, 241–247.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Luppino, G. (2001). The cortical motor system. Neuron, 31, 889–901.CrossRefGoogle ScholarPubMed
Rogers, K., Dziobek, I., Hassenstab, J., Wolf, O. T., & Convit, A. (2007). Who cares? Revisiting empathy in Asperger syndrome. Journal of Autism and Developmental Disorders, 37, 709–715.CrossRefGoogle ScholarPubMed
Rütgen, M., Seidel, E.-M., Pletti, C., Riěanský, I., Gartus, A., Eisenegger, C., & Lamm, C. (2018). Psychopharmacological modulation of event-related potentials suggests that first-hand pain and empathy for pain rely on similar opioidergic processes. Neuropsychologia, 116, 5–14.CrossRefGoogle ScholarPubMed
Saxe, R., & Kanwisher, N. (2004). People thinking about thinking people: The role of the temporo-parietal junction in “Theory of Mind.” In Cacioppo, J. T. & Berntson, G. G. (Eds.), Social Neuroscience: Key readings (pp. 171–182). Psychology Press.Google Scholar
Schreiter, S., Pijnenborg, G., & Aan Het Rot, M. (2013). Empathy in adults with clinical or subclinical depressive symptoms. Journal of Affective Disorders, 150, 1–16.CrossRefGoogle ScholarPubMed
Schurz, M., Maliske, L., & Kanske, P. (2020). Cross-network interactions in social cognition: A review of findings on task related brain activation and connectivity. Cortex, 130, 142–157.CrossRefGoogle ScholarPubMed
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 9–34.CrossRefGoogle ScholarPubMed
Silani, G., Bird, G., Brindley, R., Singer, T., Frith, C., & Frith, U. (2008). Levels of emotional awareness and autism: An fMRI study. Social Neuroscience, 3, 97–112.CrossRefGoogle ScholarPubMed
Singer, T. (2006). The neuronal basis and ontogeny of empathy and mind reading: Review of literature and implications for future research. Neuroscience and Biobehavioral Reviews, 30, 855–863.CrossRefGoogle ScholarPubMed
Singer, T. (2012). The past, present and future of social neuroscience: A European perspective. NeuroImage, 61, 437–449.CrossRefGoogle ScholarPubMed
Singer, T., & Engert, V. (2019). It matters what you practice: Differential training effects on subjective experience, behavior, brain and body in the ReSource Project. Current Opinion in Psychology, 28, 151–158.CrossRefGoogle ScholarPubMed
Singer, T., & Klimecki, O. M. (2014). Empathy and compassion. Current Biology, 24, R875–R878.CrossRefGoogle ScholarPubMed
Singer, T., Kok, B. E., Bornemann, B., Bolz, M., & Bochow, C. (2016). The ReSource project: Background, design, samples, and measurements, 2nd ed. Max Planck Institute for Human Cognitive and Brain Sciences.Google Scholar
Singer, T., & Lamm, C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156, 81–96.CrossRefGoogle ScholarPubMed
Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303, 1157–1162.CrossRefGoogle Scholar
Singer, T., & Steinbeis, N. (2009). Differential roles of fairness‐and compassion‐based motivations for cooperation, defection, and punishment. Annals of the New York Academy of Sciences, 1167, 41–50.CrossRefGoogle ScholarPubMed
Smith, M. L., Asada, N., & Malenka, R. C. (2021). Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science, 371, 153–159.CrossRefGoogle ScholarPubMed
Soyman, E., Bruls, R., Ioumpa, K., Müller-Pinzler, L., Gallo, S., Qin, C., … Gazzola, V. (2022). Intracranial human recordings reveal association between neural activity and perceived intensity for the pain of others in the insula. eLife, 11, e75197.CrossRefGoogle ScholarPubMed
Stevens, F., & Taber, K. (2021). The neuroscience of empathy and compassion in pro-social behavior. Neuropsychologia, 159, 107925.CrossRefGoogle ScholarPubMed
Stietz, J., Jauk, E., Krach, S., & Kanske, P. (2019). Dissociating empathy from perspective-taking: Evidence from intra- and inter-individual differences research. Frontiers in Psychiatry, 10, 126.CrossRefGoogle ScholarPubMed
Strauss, C., Taylor, B. L., Gu, J., Kuyken, W., Baer, R., Jones, F., & Cavanagh, K. (2016). What is compassion and how can we measure it? A review of definitions and measures. Clinical Psychology Review, 47, 15–27.CrossRefGoogle ScholarPubMed
Thoma, P., Friedmann, C., & Suchan, B. (2013). Empathy and social problem solving in alcohol dependence, mood disorders and selected personality disorders. Neuroscience & Biobehavioral Reviews, 37, 448–470.CrossRefGoogle ScholarPubMed
Timmers, I., Park, A. L., Fischer, M. D., Kronman, C. A., Heathcote, L. C., Hernandez, J. M., & Simons, L. E. (2018). Is empathy for pain unique in its neural correlates? A meta-analysis of neuroimaging studies of empathy. Frontiers in Behavioral Neuroscience, 12, 289.CrossRefGoogle ScholarPubMed
Tully, E. C., Ames, A. M., Garcia, S. E., & Donohue, M. R. (2016). Quadratic associations between empathy and depression as moderated by emotion dysregulation. The Journal of Psychology, 150, 15–35.CrossRefGoogle ScholarPubMed
Trautwein, F., Kanske, P., Böckler-Raettig, A., & Singer, T. (2020). Differential benefits of mental training types for attention, compassion, and theory of mind. Cognition, 194, 104039.CrossRefGoogle ScholarPubMed
Valk, S. L., Bernhardt, B. C., Trautwein, F. M., Böckler, A., Kanske, P., Guizard, N., … Singer, T. (2017). Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training. Science Advances, 3, e1700489.CrossRefGoogle ScholarPubMed
Wai, M., & Tiliopoulos, N. (2012). The affective and cognitive empathic nature of the dark triad of personality. Personality and Individual Differences, 52, 794–799.CrossRefGoogle Scholar
Weinberger, J., Cotler, T., & Fishman, D. (2010). The duality of affiliative motivation. In Schultheiss, O. & Brunstein, J. (Eds.), Implicit motives (p. 71–88). Oxford University Press.Google Scholar
Wicker, B., Keysers, C., Plailly, J., Royet, J.-P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron, 40, 655–664.CrossRefGoogle Scholar
Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13, 103–128.CrossRefGoogle Scholar
Winter, K., Spengler, S., Bermpohl, F., Singer, T., & Kanske, P. (2017). Social cognition in aggressive offenders: Impaired empathy, but intact theory of mind. Scientific Reports, 7, 670.CrossRefGoogle ScholarPubMed
Wolkenstein, L., Schönenberg, M., Schirm, E., & Hautzinger, M. (2011). I can see what you feel, but I can’t deal with it: Impaired theory of mind in depression. Journal of Affective Disorders, 132, 104–111.CrossRefGoogle ScholarPubMed
Yan, Z., Hong, S., Liu, F., & Su, Y. (2020). A meta-analysis of the relationship between empathy and executive function. PsyCh Journal, 9, 34–43.CrossRefGoogle ScholarPubMed
Zhou, F., Li, J., Zhao, W., Xu, L., Zheng, X., Fu, M., … Becker, B. (2020). Empathic pain evoked by sensory and emotional-communicative cues share common and process-specific neural representations. eLife, 9, e56929.CrossRefGoogle ScholarPubMed

References

Alexander, B., Brewin, C. R., Vearnals, S., Wolff, G., & Leff, J. (1999). An investigation of shame and guilt in a depressed sample. British Journal of Medical Psychology, 72, 323–338.CrossRefGoogle Scholar
Augstein, H. F. (1996). J. C. Prichard’s concept of moral insanity: A medical theory of the corruption of human nature. Medical History, 40, 311–343.CrossRefGoogle Scholar
Baez, S., Morales, J. P., Slachevsky, A., Torralva, T., Matus, C., Manes, F., & Ibanez, A. (2016). Orbitofrontal and limbic signatures of empathic concern and intentional harm in the behavioral variant frontotemporal dementia. Cortex, 75, 20–32.CrossRefGoogle ScholarPubMed
Basile, B., Mancini, F., Macaluso, E., Caltagirone, C., Frackowiak, R. S. J., & Bozzali, M. (2011). Deontological and altruistic guilt: Evidence for distinct neurobiological substrates. Human Brain Mapping, 32, 229–239.CrossRefGoogle ScholarPubMed
Bastin, C., Harrison, B. J., Davey, C. G., Moll, J., & Whittle, S. (2016). Feelings of shame, embarrassment and guilt and their neural correlates: A systematic review. Neuroscience & Biobehavioral Review, 71, 455–471.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.CrossRefGoogle ScholarPubMed
Berrios, G. E., Bulbena, A., Bakshi, N., Dening, T. R., Jenaway, A., Markar, H., … Mitchell, S. L. (1992). Feelings of guilt in major depression – conceptual and psychometric aspects. British Journal of Psychiatry, 160, 781–787.CrossRefGoogle ScholarPubMed
Bishop, J. D. (1996). Moral motivation and the development of Francis Hutcheson’s philosophy. Journal of the History of Ideas, 57, 277–295.CrossRefGoogle Scholar
Borg, J. S., Lieberman, D., & Kiehl, K. A. (2008). Infection, incest, and iniquity: Investigating the neural correlates of disgust and morality. Journal of Cognitive Neuroscience, 20, 1529–1546.Google Scholar
Bozeat, S., Gregory, C. A., Ralph, M. A., & Hodges, J. R. (2000). Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer’s disease? Journal of Neurology, Neurosurgery, and Psychiatry, 69, 178–186.CrossRefGoogle ScholarPubMed
Brutkowski, S. (1965). Functions of prefrontal cortex in animals. Physiological Review, 45, 721–746.CrossRefGoogle ScholarPubMed
Chang, L. J., Smith, A., Dufwenberg, M., & Sanfey, A. G. (2011). Triangulating the neural, psychological, and economic bases of guilt aversion. Neuron, 70, 560–572.CrossRefGoogle ScholarPubMed
Ciaramelli, E., Muccioli, M., Ladavas, E., & di Pellegrino, G. (2007). Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex. Social Cognitive and Affective Neuroscience, 2, 84–92.CrossRefGoogle ScholarPubMed
Cleckley, H. M. (1976). The mask of sanity, 5th ed. Mosby.Google Scholar
Cooper, J. C., Kreps, T. A., Wiebe, T., Pirkl, T., & Knutson, B. (2010). When giving is good: Ventromedial prefrontal cortex activation for others’ intentions. Neuron, 67, 511–521.CrossRefGoogle ScholarPubMed
Cutler, J., & Campbell-Meiklejohn, D. (2019). A comparative fMRI meta-analysis of altruistic and strategic decisions to give. NeuroImage, 184, 227–241.CrossRefGoogle ScholarPubMed
Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102–1105.CrossRefGoogle ScholarPubMed
Decety, J., & Jackson, P. L. (2004). The functional architecture of human empathy. Behavioral and Cognitive Neuroscience Review, 3, 71–100.CrossRefGoogle ScholarPubMed
Decety, J., Norman, G. J., Berntson, G. G., & Cacioppo, J. T. (2012). A neurobehavioral evolutionary perspective on the mechanisms underlying empathy. Progress in Neurobiology, 98, 38–48.CrossRefGoogle ScholarPubMed
de Oliveira-Souza, R., Hare, R. D., Bramati, I. E., Garrido, G. J., Azevedo Ignácio, F., Tovar-Moll, F., & Moll, J. (2008). Psychopathy as a disorder of the moral brain: Fronto-temporo-limbic grey matter reductions demonstrated by voxel-based morphometry. NeuroImage, 40, 1202–1213.CrossRefGoogle ScholarPubMed
Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, 28, 313–350.CrossRefGoogle ScholarPubMed
de Vignemont, F., & Singer, T. (2006). The empathic brain: How, when and why? Trends in Cognitive Sciences, 10, 435–441.CrossRefGoogle Scholar
Duan, S., Valmaggia, L., Fennema, D., Moll, J., & Zahn, R. (2023). Remote virtual reality assessment elucidates self-blame-related action tendencies in depression. Journal of Psychiatric Research, 161, 77–83.CrossRefGoogle ScholarPubMed
Eisenberg, N. (2000). Emotion, regulation, and moral development. Annual Review of Psychology, 51, 665–697.CrossRefGoogle ScholarPubMed
Elliott, R., Zahn, R., Deakin, J. F., & Anderson, I. M. (2010). Affective cognition and its disruption in mood disorders. Neuropsychopharmacology, 36, 153–182.Google ScholarPubMed
Eslinger, P. J. (1998). Neurological and neuropsychological bases of empathy. European Neurology, 39, 193–199.CrossRefGoogle ScholarPubMed
Eslinger, P. J., & Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR. Neurology, 35, 1731–1741.CrossRefGoogle ScholarPubMed
Fehse, K., Silveira, S., Elvers, K., & Blautzik, J. (2015). Compassion, guilt and innocence: An fMRI study of responses to victims who are responsible for their fate. Social Neuroscience, 10, 243–252.CrossRefGoogle ScholarPubMed
FeldmanHall, O., Dalgleish, T., Evans, D., & Mobbs, D. (2015). Empathic concern drives costly altruism. NeuroImage, 105, 347–356.CrossRefGoogle ScholarPubMed
Fischer, A. H., & Roseman, I. J. (2007). Beat them or ban them: The characteristics and social functions of anger and contempt. Journal of Personality and Social Psychology, 93, 103–115.CrossRefGoogle ScholarPubMed
Gifuni, A. J., Kendal, A., & Jollant, F. (2016). Neural mapping of guilt: A quantitative meta-analysis of functional imaging studies. Brain Imaging and Behavior, 11, 1164–1178.Google Scholar
Gilead, M., Katzir, M., Eyal, T., & Liberman, N. (2016). Neural correlates of processing “self-conscious” vs. “basic” emotions. Neuropsychologia, 81, 207–218.CrossRefGoogle ScholarPubMed
Gintis, H., Henrich, J., Bowles, S., Boyd, R., & Fehr, E. (2008). Strong reciprocity and the roots of human morality. Social Justice Research, 21, 241–253.CrossRefGoogle Scholar
Green, S., Lambon Ralph, M. A., Moll, J., Deakin, J. F., & Zahn, R. (2012). Guilt-selective functional disconnection of anterior temporal and subgenual cortices in major depressive disorder. Archives of General Psychiatry, 69, 1014–1021.CrossRefGoogle ScholarPubMed
Greene, J. D. (2007). Why are VMPFC patients more utilitarian? A dual-process theory of moral judgment explains. 11, 322–323.Google ScholarPubMed
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44, 389–400.CrossRefGoogle ScholarPubMed
Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293, 2105–2108.CrossRefGoogle ScholarPubMed
Grossman, M., Eslinger, P. J., Troiani, V., Anderson, C., Avants, B., Gee, J. C., … Antani, S. (2010). The role of ventral medial prefrontal cortex in social decisions: Converging evidence from fMRI and frontotemporal lobar degeneration. Neuropsychologia, 48, 3505–3512.CrossRefGoogle ScholarPubMed
Haidt, J. (2003). The moral emotions. In Davidson, R. J., Scherer, K. R., & Goldsmith, H. H. (Eds.), Handbook of affective sciences (pp. 852–870). Oxford University Press.Google Scholar
Harbaugh, W. T., Mayr, U., & Burghart, D. R. (2007). Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science, 316, 1622–1625.CrossRefGoogle ScholarPubMed
Hare, R. D. (2003). The hare psychopathy checklist-revised, 2nd ed. Multi-Health Systems.Google Scholar
Hare, T. A., Camerer, C. F., Knoepfle, D. T., & Rangel, A. (2010). Value computations in ventral medial prefrontal cortex during charitable decision making incorporate input from regions involved in social cognition. Journal of Neuroscience, 30, 583–590.CrossRefGoogle ScholarPubMed
Herholz, K. (2003). PET studies in dementia. Annals of Nuclear Medicine, 17, 79–89.CrossRefGoogle ScholarPubMed
Higgins, E. T. (1987). Self-discrepancy – a theory relating self and affect. Psychological Review, 94, 319–340.CrossRefGoogle ScholarPubMed
Hodges, J. R. (2001). Frontotemporal dementia (Pick’s disease): Clinical features and assessment. Neurology, 56, S6–S10.CrossRefGoogle ScholarPubMed
Hsu, M., Anen, C., & Quartz, S. R. (2008). The right and the good: Distributive justice and neural encoding of equity and efficiency. Science, 320, 1092–1095.CrossRefGoogle ScholarPubMed
Hume, D. (1777). An enquiry into the principles of morals, Vol. 2. T. Cadell.Google Scholar
Immordino-Yang, M. H., McColl, A., Damasio, H., & Damasio, A. (2009). Neural correlates of admiration and compassion. Proceedings of the National Academy of Sciences of the United States of America, 106, 8021–8026.Google ScholarPubMed
Insel, T. R., & Young, L. J. (2001). The neurobiology of attachment. Nature Reviews Neuroscience, 2, 129–136.CrossRefGoogle ScholarPubMed
Janoff-Bulman, R. (1979). Characterological versus behavioral self-blame – inquiries into depression and rape. Journal of Personality and Social Psychology, 37, 1798–1809.CrossRefGoogle ScholarPubMed
Kant, I. (1786). Grundlegung zur Metaphysik der Sitten, 2nd ed. Johann Friedrich Hartknoch.Google Scholar
Kedia, G., Berthoz, S., Wessa, M., Hilton, D., & Martinot, J. L. (2008). An agent harms a victim: A functional magnetic resonance imaging study on specific moral emotions. Journal of Cognitive Neuroscience, 20, 1788–1798.CrossRefGoogle Scholar
Kim, S. A., Hamann, S., & Kim, S. H. (2021). Neurocognitive mechanisms underlying improvement of prosocial responses by a novel implicit compassion promotion task. NeuroImage, 240, 118333.CrossRefGoogle ScholarPubMed
Koenigs, M., & Tranel, D. (2007). Irrational economic decision-making after ventromedial prefrontal damage: Evidence from the Ultimatum Game. Journal of Neuroscience, 27, 951–956.CrossRefGoogle ScholarPubMed
Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446, 908–911.CrossRefGoogle Scholar
Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341–372.CrossRefGoogle ScholarPubMed
Krueger, F., McCabe, K., Moll, J., Kriegeskorte, N., Zahn, R., Strenziok, M., … Grafman, J. (2007). Neural correlates of trust. Proceedings of the National Academy of Sciences of the United States of America, 104, 20084–20089.Google ScholarPubMed
Lamb, R. B. (1974). Adam Smith’s system: Sympathy not self-interest. Journal of the History of Ideas, 35, 671–682.CrossRefGoogle Scholar
Liu, W., Miller, B. L., Kramer, J. H., Rankin, K., Wyss-Coray, C., Gearhart, R., … Rosen, H. J. (2004). Behavioral disorders in the frontal and temporal variants of frontotemporal dementia. Neurology, 62, 742–748.CrossRefGoogle ScholarPubMed
Lockwood, P. L., Apps, M. A. J., Valton, V., Viding, E., & Roiser, J. P. (2016). Neurocomputational mechanisms of prosocial learning and links to empathy. Proceedings of the National Academy of Sciences of the United States of America, 113, 9763–9768.Google ScholarPubMed
Lythe, K. E., Gethin, J. A., Workman, C. I., Lambon Ralph, M. A., Deakin, J. F. W., Moll, J., & Zahn, R. (2022). Subgenual activation and the finger of blame: Individual differences and depression vulnerability. Psychological Medicine, 52, 1560–1568.CrossRefGoogle ScholarPubMed
McClure, S. M., Botvinick, M. M., Yeung, J. D., & Cohen, J. D. (2006). Conflict monitoring in cognition-emotion competition. In Gross, J. J. (Ed.), Handbook of emotion regulation. Guilford Press.Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefGoogle ScholarPubMed
Moll, J., de Oliveira-Souza, R., & Eslinger, P. J. (2003). Morals and the human brain: A working model. Neuroreport, 14, 299–305.Google ScholarPubMed
Moll, J., de Oliveira-Souza, R., Garrido, G. J., Bramati, I. E., Caparelli-Daquer, E. M. A., Paiva, M. M. F., … Grafman, J. (2007). The self as a moral agent: Linking the neural bases of social agency and moral sensitivity. Social Neuroscience, 2, 336–352.CrossRefGoogle ScholarPubMed
Moll, J., de Oliveira-Souza, R., Moll, F. T., Ignacio, F. A., Bramati, I. E., Caparelli-Daquer, E. M., & Eslinger, P. J. (2005). The moral affiliations of disgust: A functional MRI study. Cognitive and Behavioral Neurology, 18, 68–78.CrossRefGoogle ScholarPubMed
Moll, J., de Oliveira-Souza, R., & Zahn, R. (2008). The neural basis of moral cognition: Sentiments, concepts, and values. Annals of New York Academy of Sciences, 1124, 161–180.CrossRefGoogle ScholarPubMed
Moll, J., Eslinger, P. J., & de Oliveira-Souza, R. (2001). Frontopolar and anterior temporal cortex activation in a moral judgment task: Preliminary functional MRI results in normal subjects. Arquivos de Neuro-psiquiatria, 59, 657–664.CrossRefGoogle Scholar
Moll, J., Krueger, F., Zahn, R., Pardini, M., de Oliveira-Souza, R., & Grafman, J. (2006). Human fronto-mesolimbic networks guide decisions about charitable donation. Proceedings of the National Academy of Sciences of the United States of America, 103, 15623–15628.Google ScholarPubMed
Moll, J., de Oliveira-Souza, R., Zahn, R., & Grafman, J. (2007). The cognitive neuroscience of moral emotions. In Sinnott-Armstrong, W. (Ed.), Moral psychology, volume 3: Morals and the brain. MIT Press.Google Scholar
Moll, J., & Schulkin, J. (2009). Social attachment and aversion in human moral cognition. Neuroscience and Biobehavioral Reviews, 33, 456–465.CrossRefGoogle ScholarPubMed
Moll, J., Zahn, R., de Oliveira-Souza, R., Bramati, I. E., Krueger, F., Tura, B., … Grafman, J. (2011). Impairment of prosocial sentiments is associated with frontopolar and septal damage in frontotemporal dementia. NeuroImage, 54, 1735–1742.CrossRefGoogle ScholarPubMed
Moll, J., Zahn, R., de Oliveira-Souza, R., Krueger, F., & Grafman, J. (2005). Opinion: The neural basis of human moral cognition. Nature Review Neuroscience, 6, 799–809.CrossRefGoogle ScholarPubMed
Morelli, S. A., Rameson, L. T., & Lieberman, M. D. (2014). The neural components of empathy: Predicting daily prosocial behavior. Social Cognitive and Affective Neuroscience, 9, 39–47.CrossRefGoogle ScholarPubMed
Morey, R. A., McCarthy, G., Selgrade, E. S., Seth, S., Nasser, J. D., & LaBar, K. S. (2012). Neural systems for guilt from actions affecting self versus others. NeuroImage, 60, 683–692.CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., … Benson, D. F. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51, 1546–1554.CrossRefGoogle ScholarPubMed
O’Connor, L. E., Berry, J. W., Weiss, J., & Gilbert, P. (2002). Guilt, fear, submission, and empathy in depression. Journal of Affective Disorders, 71, 19–27.CrossRefGoogle ScholarPubMed
Oaten, M., Stevenson, R. J., Williams, M. A., Rich, A. N., Butko, M., & Case, T. I. (2018). Moral violations and the experience of disgust and anger. Frontiers in Behavioral Neuroscience, 12, 179.CrossRefGoogle ScholarPubMed
Rankin, K. P., Gorno-Tempini, M. L., Allison, S. C., Stanley, C. M., Glenn, S., Weiner, M. W., & Miller, B. L. (2006). Structural anatomy of empathy in neurodegenerative disease. Brain, 129, 2945–2956.CrossRefGoogle ScholarPubMed
Saver, J. L., & Damasio, A. R. (1991). Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage. Neuropsychologia, 29, 1241–1249.CrossRefGoogle Scholar
Schwartz, S. H. (1992). Universals in the content and structure of values – theoretical advances and empirical tests in 20 countries. Advances in Experimental Social Psychology, 25, 1–65.CrossRefGoogle Scholar
Shamay-Tsoory, S. G., Aharon-Peretz, J., & Perry, D. (2009). Two systems for empathy: A double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain, 132, 617–627.CrossRefGoogle ScholarPubMed
Shin, L. M., Dougherty, D. D., Orr, S. P., Pitman, R. K., Lasko, M., Macklin, M. L., … Rauch, S. L. (2000). Activation of anterior paralimbic structures during guilt-related script-driven imagery. Biological Psychiatry, 48, 43–50.CrossRefGoogle ScholarPubMed
Simon-Thomas, E. R., Godzik, J., Castle, E., Antonenko, O., Ponz, A., Kogan, A., & Keltner, D. J. (2012). An fMRI study of caring vs self-focus during induced compassion and pride. Social Cognitive and Affective Neuroscience, 7, 635–648.CrossRefGoogle ScholarPubMed
Sollberger, M., Stanley, C. M., Wilson, S. M., Gyurak, A., Beckman, V., Growdon, M., … Rankin, K. P. (2009). Neural basis of interpersonal traits in neurodegenerative diseases. Neuropsychologia, 47, 2812–2827.CrossRefGoogle ScholarPubMed
Spitzer, M., Fischbacher, U., Herrnberger, B., Gron, G., & Fehr, E. (2007). The neural signature of social norm compliance. Neuron, 56, 185–196.CrossRefGoogle ScholarPubMed
Takahashi, H., Matsuura, M., Koeda, M., Yahata, N., Suhara, T., Kato, M., & Okubo, Y. (2008). Brain activations during judgments of positive self-conscious emotion and positive basic emotion: Pride and joy. Cerebral Cortex, 18, 898–903.CrossRefGoogle ScholarPubMed
Takahashi, H., Yahata, N., Koeda, M., Matsuda, T., Asai, K., & Okubo, Y. (2004). Brain activation associated with evaluative processes of guilt and embarrassment: An fMRI study. NeuroImage, 23, 967–974.CrossRefGoogle ScholarPubMed
Tangney, J. P., Stuewig, J., & Mashek, D. J. (2007). Moral emotions and moral behavior. Annual Review of Psychology, 58, 345–372.CrossRefGoogle ScholarPubMed
Tangney, J. P., Wagner, P., & Gramzow, R. (1992). Proneness to shame, proneness to guilt, and psychopathology. Journal of Abnormal Psychology, 101, 469–478.Google ScholarPubMed
Tononi, G., & Koch, C. (2008). The neural correlates of consciousness – An update. Year in Cognitive Neuroscience 2008, 1124, 239–261.Google ScholarPubMed
Tracy, J. L., & Robins, R. W. (2006). Appraisal antecedents of shame and guilt: Support for a theoretical model. Personality and Social Psychology Bulletin, 32, 1339–1351.CrossRefGoogle ScholarPubMed
Tracy, J. L., Shariff, A. F., & Cheng, J. T. (2010). A naturalist’s view of pride. Emotion Review, 2, 163–177.CrossRefGoogle Scholar
Weiner, B. (1985). An attributional theory of achievement-motivation and emotion. Psychological Review, 92, 548–573.CrossRefGoogle ScholarPubMed
Weiner, B. (1992). Human motivation: Metaphors, theories, and research. SAGE.Google Scholar
Welt, L. (1888). Ueber charakterveraenderungen des menschen. Deutsches Archiv für klinische Medizin, 42, 339–390.Google Scholar
Wiech, K., Kahane, G., Shackel, N., Farias, M., Savulescu, J., & Tracey, I. (2013). Cold or calculating? Reduced activity in the subgenual cingulate cortex reflects decreased emotional aversion to harming in counterintuitive utilitarian judgment. Cognition, 126, 364–372.CrossRefGoogle ScholarPubMed
Wood, J. N., & Grafman, J. (2003). Human prefrontal cortex: Processing and representational perspectives. Nature Reviews Neuroscience, 4, 139–147.Google ScholarPubMed
Zahn, R. (2009). The role of neuroimaging in translational cognitive neuroscience. Topics in Magnetic Resonance Imaging, 20, 279–289.CrossRefGoogle ScholarPubMed
Zahn, R., de Oliveira-Souza, R., Bramati, I., Garrido, G., & Moll, J. (2009). Subgenual cingulate activity reflects individual differences in empathic concern. Neuroscience Letters, 457, 107–110.CrossRefGoogle ScholarPubMed
Zahn, R., de Oliveira-Souza, R., & Moll, J. (2020). Moral motivation and the basal forebrain. Neuroscience & Biobehavioral Review, 108, 207–217.CrossRefGoogle ScholarPubMed
Zahn, R., Green, S., Beaumont, H., Burns, A., Moll, J., Caine, D., … Lambon Ralph, M. A. (2017). Frontotemporal lobar degeneration and social behaviour: Dissociation between the knowledge of its consequences and its conceptual meaning. Cortex, 93, 107–118.CrossRefGoogle ScholarPubMed
Zahn, R., Lythe, K. E., Gethin, J. A., Green, S., Deakin, J. F., Workman, C., & Moll, J. (2015). Negative emotions towards others are diminished in remitted major depression. European Psychiatry, 30, 448–453.CrossRefGoogle ScholarPubMed
Zahn, R., Moll, J., Iyengar, V., Huey, E. D., Tierney, M., Krueger, F., & Grafman, J. (2009). Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism. Brain, 132, 604–616.CrossRefGoogle ScholarPubMed
Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., & Grafman, J. (2007). Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 6430–6435.Google ScholarPubMed
Zahn, R., Moll, J., Paiva, M. M. F., Garrido, G., Krueger, F., Huey, E. D., & Grafman, J. (2009). The neural basis of human social values: Evidence from functional MRI. Cerebral Cortex, 19, 276–283.CrossRefGoogle ScholarPubMed
Zak, P. J., Kurzban, R., & Matzner, W. T. (2004). The neurobiology of trust. Annals of the New York Academy of Sciences, 1032, 224–227.CrossRefGoogle ScholarPubMed
Zaki, J., & Mitchell, J. P. (2011). Equitable decision making is associated with neural markers of intrinsic value. Proceedings of the National Academy of Sciences of the United States of America, 108, 19761–19766.Google ScholarPubMed

References

Tsai, J. L. (2007). Ideal affect: Cultural causes and behavioral consequences. Perspectives on Psychological Science, 2(3), 242–259.CrossRefGoogle ScholarPubMed
Tsai, J. L. (2017). Ideal affect in daily life: Implications for affective experience, health, and social behavior. Current Opinion in Psychology, 17, 118–128.CrossRefGoogle ScholarPubMed
Tsai, J. L. (2024). Investigating culture and emotion from responses to ideals. In , M. J. Gelfand, Chiu, C., & Hong, Y. (Eds.), Handbook of advances in culture and psychology (pp. 53–117). Oxford University Press.Google Scholar
Acevedo, A. M., Herrera, C., Shenhav, S., Yim, I. S., & Campos, B. (2020). Measurement of a Latino cultural value: The Simpatía scale. Cultural Diversity and Ethnic Minority Psychology, 26, 419–425.Google ScholarPubMed
Bencharit, L. Z., Ho, Y. W., Fung, H. H., Yeung, D. Y., Stephens, N. M., Romero-Canyas, R., & Tsai, J. L. (2019). Should job applicants be excited or calm? The role of culture and ideal affect in employment settings. Emotion, 19, 377–401.CrossRefGoogle ScholarPubMed
Blevins, E., Ko, M., Park, B., Qu, Y., Knutson, B., & Tsai, J.L. (2023). Cultural variation in neural responses to social but not monetary reward outcomes. Social Cognitive and Affective Neuroscience, 18, nsad068.CrossRefGoogle Scholar
Briggs, J. (1970). Never in anger: Portrait of an Eskimo family. Harvard University Press.Google Scholar
Butler, E. A., Lee, T. L., & Gross, J. J. (2007). Emotion regulation and culture: Are the social consequences of emotion suppression culture-specific? Emotion, 7, 30–48.CrossRefGoogle ScholarPubMed
Cachia, J. Y. A., Blevins, E., Chen, Y.-C., Ko, M., Yen, N.-S., Knutson, B., & Tsai, J. L. (2024). Cultural variation in the smiles we trust: The effects of reputation and ideal affect on resource sharing. Emotion, https://doi.org/10.1037/emo0001450.Google ScholarPubMed
Chen, P. H. A., Wagner, D. D., Kelley, W. M., & Heatherton, T. F. (2015). Activity in cortical midline structures is modulated by self-construal changes during acculturation. Culture and Brain, 3, 39–52.CrossRefGoogle ScholarPubMed
Chen, P. H. A., Wagner, D. D., Kelley, W. M., Powers, K. E., & Heatherton, T. F. (2013). Medial prefrontal cortex differentiates self from mother in Chinese: Evidence from self-motivated immigrants. Culture and Brain, 1, 3–15.CrossRefGoogle Scholar
Chentsova-Dutton, Y. E., & Tsai, J. L. (2010). Self-focused attention and emotional reactivity: The role of culture. Journal of Personality and Social Psychology, 98, 507–519.CrossRefGoogle ScholarPubMed
Chiao, J. Y., Harada, T., Komeda, H., Li, Z., Mano, Y., Saito, D., … Iidaka, T. (2009). Neural basis of individualistic and collectivistic views of self. Human Brain Mapping, 30, 2813–2820.CrossRefGoogle Scholar
Chiao, J. Y., Harada, T., Komeda, H., Li, Z., Mano, Y., Saito, D., … Iidaka, T. (2010). Dynamic cultural influences on neural representations of the self. Journal of Cognitive Neuroscience, 22, 1–11.CrossRefGoogle ScholarPubMed
Chim, L., Hogan, C. L., Fung, H. H. H., & Tsai, J. L. (2018). Valuing calm enhances enjoyment of calming (vs. exciting) amusement park rides and exercise. Emotion, 18, 805–818.CrossRefGoogle ScholarPubMed
Cohen, J. R., & Lieberman, M. D. (2010). The common neural basis of exerting self-control in multiple domains. In Hassin, R. R., Ochsner, K. N., & Trope, Y. (Eds.), Self control in society, mind, and brain (pp. 141–160). Oxford University Press.Google Scholar
Cousins, S. D. (1989). Culture and self-perception in Japan and the United States. Journal of Personality and Social Psychology, 56, 124–131.CrossRefGoogle Scholar
Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biological Psychology, 52, 95–111.CrossRefGoogle ScholarPubMed
Darwin, C. (1872). The expression of emotions in man and animals. John Murray.CrossRefGoogle Scholar
Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A meta-analysis of functional neuroimaging studies of self-and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. Journal of Cognitive Neuroscience, 24, 1742–1752.CrossRefGoogle ScholarPubMed
Ekman, P. (1971). Universals and cultural differences in facial expressions of emotion. Nebraska Symposium on Motivation, 19, 207–283.Google Scholar
Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biological Psychiatry, 63, 577–586.CrossRefGoogle ScholarPubMed
Goto, S. G., Ando, Y., Huang, C., Yee, A., & Lewis, R. S. (2010). Cultural differences in the visual processing of meaning: Detecting incongruities between background and foreground objects using the N400. Social Cognitive and Affective Neuroscience, 5, 242–253.CrossRefGoogle ScholarPubMed
Goto, S. G., Yee, A., Lowenberg, K., & Lewis, R. S. (2013). Cultural differences in sensitivity to social context: Detecting affective incongruity using the N400. Social Neuroscience, 8, 63–74.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves face perception, not generic within-category identification. Nature Neuroscience, 7, 555–562.CrossRefGoogle Scholar
Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4–26.CrossRefGoogle ScholarPubMed
Hajcak, G., & Nieuwenhuis, S. (2006). Reappraisal modulates the electrocortical response to unpleasant pictures. Cognitive, Affective, & Behavioral Neuroscience, 6, 291–297.CrossRefGoogle ScholarPubMed
Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005). On the ERN and the significance of errors. Psychophysiology, 42, 151–160.CrossRefGoogle ScholarPubMed
Hamedani, M. Y. G., & Markus, H. R. (2019). Understanding culture clashes and catalyzing change: A culture cycle approach. Frontiers in Psychology, 10, 700.CrossRefGoogle Scholar
Hampton, R. S., Kwon, J. Y., & Varnum, M. E. (2021). Variations in the regulation of affective neural responses across three cultures. Emotion, 21, 283–296.CrossRefGoogle ScholarPubMed
Han, S., Ma, Y., & Wang, G. (2016). Shared neural representations of self and conjugal family members in Chinese brain. Culture and Brain, 4, 72–86.CrossRefGoogle Scholar
Heatherton, T. F., Wyland, C. L., Macrae, C. N., Demos, K. E., Denny, B. T., & Kelley, W. M. (2006). Medial prefrontal activity differentiates self from close others. Social Cognitive and Affective Neuroscience, 1, 18–25.CrossRefGoogle ScholarPubMed
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world?. Behavioral and Brain Sciences, 33, 61–83.CrossRefGoogle ScholarPubMed
Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709.CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–4311.CrossRefGoogle Scholar
Kitayama, S., & Park, J. (2014). Error-related brain activity reveals self-centric motivation: Culture matters. Journal of Experimental Psychology: General, 143, 62–70.Google ScholarPubMed
Kitayama, S., & Salvador, C. E. (2017). Culture embrained: Going beyond the nature-nurture dichotomy. Perspectives on Psychological Science, 12, 841–854.CrossRefGoogle ScholarPubMed
Kitayama, S., & Salvador, C. E. (2023). Cultural psychology: Beyond east and west. Annual Review of Psychology, 75, 495–526.Google ScholarPubMed
Kitayama, S., Mesquita, B., & Karasawa, M. (2006). Cultural affordances and emotional experience: Socially engaging and disengaging emotions in Japan and the United States. Journal of Personality and Social Psychology, 91, 890–903.CrossRefGoogle ScholarPubMed
Kitayama, S., Park, H., Sevincer, A. T., Karasawa, M., & Uskul, A. K. (2009). A cultural task analysis of implicit independence: Comparing North America, Western Europe, and East Asia. Journal of Personality and Social Psychology, 97, 236–255.CrossRefGoogle ScholarPubMed
Kitayama, S., Varnum, M. E. W., & Salvador, C. E. (2019). Cultural neuroscience. In Cohen, D. & Kitayama, S. (Eds.), Handbook of cultural psychology, 2nd ed. (pp. 79–118). The Guilford Press.Google Scholar
Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21, RC159.CrossRefGoogle ScholarPubMed
Knutson, B., & Greer, S. M. (2008). Anticipatory affect: Neural correlates and consequences for choice. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 3771–3786.CrossRefGoogle ScholarPubMed
Kraus, B., & Kitayama, S. (2019). Interdependent self-construal predicts emotion suppression in Asian Americans: An electro-cortical investigation. Biological Psychology, 146, 107733.CrossRefGoogle ScholarPubMed
Kroeber, A. L., & Kluckhohn, C. (1952). Culture: A critical review of concepts and definitions. Peabody Museum Press.Google Scholar
Lieberman, M. D., Straccia, M. A., Meyer, M. L., Du, M., & Tan, K. M. (2019). Social, self, (situational), and affective processes in medial prefrontal cortex (MPFC): Causal, multivariate, and reverse inference evidence. Neuroscience & Biobehavioral Reviews, 99, 311–328.CrossRefGoogle ScholarPubMed
Lutz, C. (1988). Unnatural emotions: Everyday sentiments on a Micronesian atoll and their challenge to Western theory. University of Chicago Press.CrossRefGoogle Scholar
Ma, Y., Bang, D., Wang, C., Allen, M., Frith, C., Roepstorff, A., & Han, S. (2014). Sociocultural patterning of neural activity during self-reflection. Social Cognitive and Affective Neuroscience, 9, 73–80.CrossRefGoogle ScholarPubMed
Markus, H. R., & Conner, A. (2014). Clash! Hudson Street Press.Google Scholar
Markus, H. R., & Hamedani, M. G. (2007). Sociocultural psychology: The dynamic interdependence among self systems and social systems. In Kitayama, S. & Cohen, D. (Eds.), Handbook of cultural psychology (pp. 3–39). The Guilford Press.Google Scholar
Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98, 224–253.CrossRefGoogle Scholar
Markus, H. R., & Kitayama, S. (2003). Models of agency: Sociocultural diversity in the construction of action. In Murphy-Berman, V. & Berman, J. J. (Eds.), Cross-cultural differences in perspectives on the self (pp. 18–74). University of Nebraska Press.Google Scholar
Markus, H. R., & Kitayama, S. (2010). Cultures and selves: A cycle of mutual constitution. Perspectives on Psychological Science, 5, 420–430.CrossRefGoogle Scholar
Masuda, T., Ellsworth, P. C., Mesquita, B., Leu, J., Tanida, S., & Van de Veerdonk, E. (2008). Placing the face in context: Cultural differences in the perception of facial emotion. Journal of Personality and Social Psychology, 94, 365–381.CrossRefGoogle ScholarPubMed
Matsumoto, D., Yoo, S., Fontaine, J. (2008). Mapping expressive differences around the world: The relationship between emotional display rules and individualism and collectivism. Journal of Personality and Social Psychology, 39, 55–74.Google Scholar
Morling, B., Kitayama, S., & Miyamoto, Y. (2002). Cultural practices emphasize influence in the United States and adjustment in Japan. Personality and Social Psychology Bulletin, 28, 311–323.CrossRefGoogle Scholar
Moser, J. S., Krompinger, J. W., Dietz, J., & Simons, R. F. (2009). Electrophysiological correlates of decreasing and increasing emotional responses to unpleasant pictures. Psychophysiology, 46, 17–27.CrossRefGoogle ScholarPubMed
Murata, A., Moser, J. S., & Kitayama, S. (2013). Culture shapes electrocortical responses during emotion suppression. Social Cognitive and Affective Neuroscience, 8, 595–601.CrossRefGoogle ScholarPubMed
Murray, R. J., Kreibig, S. D., Pehrs, C., Vuilleumier, P., Gross, J. J., & Samson, A. C. (2023). Mixed emotions to social situations: An fMRI investigation. NeuroImage, 271, 119973.CrossRefGoogle ScholarPubMed
Ng, S. H., Han, S., Mao, L., & Lai, J. C. (2010). Dynamic bicultural brains: fMRI study of their flexible neural representation of self and significant others in response to culture primes. Asian Journal of Social Psychology, 13, 83–91.CrossRefGoogle Scholar
Ochsner, K. N., Knierim, K., Ludlow, D. H., Hanelin, J., Ramachandran, T., Glover, G., & Mackey, S. C. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of cognitive neuroscience, 16, 1746–1772.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., & Gross, J. J. (2004). For better or for worse: Neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage, 23, 483–499.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1–E24.CrossRefGoogle ScholarPubMed
Ohira, H., Nomura, M., Ichikawa, N., Isowa, T., Iidaka, T., Sato, A., … Yamada, J. (2006). Association of neural and physiological responses during voluntary emotion suppression. NeuroImage, 29, 721–733.CrossRefGoogle ScholarPubMed
Palminteri, S., Khamassi, M., Joffily, M., & Coricelli, G. (2015). Contextual modulation of value signals in reward and punishment learning. Nature Communications, 6, 8096.CrossRefGoogle ScholarPubMed
Park, B., Blevins, E., Knutson, B., & Tsai, J. L. (2017). Neurocultural evidence that ideal affect match promotes giving. Social Cognitive and Affective Neuroscience, 12, 1083–1096.CrossRefGoogle ScholarPubMed
Park, B., Genevsky, A., Knutson, B., & Tsai, J. L. (2020). Culturally valued facial expressions enhance loan request success. Emotion, 20, 1137–1153.CrossRefGoogle ScholarPubMed
Park, B., Qu, Y., Chim, L., Blevins, E., Knutson, B., & Tsai, J. L. (2018). Ventral striatal activity mediates cultural differences in affiliative judgments of smiles. Culture and Brain, 6, 102–117.CrossRefGoogle Scholar
Park, B., Tsai, J. L., Chim, L., Blevins, E., & Knutson, B. (2016). Neural evidence for cultural differences in the valuation of positive facial expressions. Social Cognitive and Affective Neuroscience, 11, 243–252.CrossRefGoogle ScholarPubMed
Pfeifer, J. H., Mahy, C. E., Merchant, J. S., Chen, C., Masten, C. L., Fuligni, A. J., … Chen, C. (2017). Neural systems for reflected and direct self-appraisals in Chinese young adults: Exploring the role of the temporal-parietal junction. Cultural Diversity and Ethnic Minority Psychology, 23, 45–58.Google ScholarPubMed
Qu, Y., & Telzer, E. H. (2017). Cultural differences and similarities in beliefs, practices, and neural mechanisms of emotion regulation. Cultural Diversity and Ethnic Minority Psychology, 23, 36–44.Google ScholarPubMed
Rademacher, L., Krach, S., Kohls, G., Irmak, A., Gründer, G., & Spreckelmeyer, K. N. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. NeuroImage, 49, 3276–3285.CrossRefGoogle ScholarPubMed
Rapp, A. M., Grammer, J. K., Tan, P. Z., Gehring, W. J., Chavira, D. A., & Miller, G. A. (2021). Collectivism is associated with enhanced neural response to socially salient errors among adolescents. Social Cognitive and Affective Neuroscience, 16(11), 1150–1159.CrossRefGoogle ScholarPubMed
Rhee, E., Uleman, J. S., Lee, H. K., & Roman, R. J. (1995). Spontaneous self-descriptions and ethnic identities in individualistic and collectivistic cultures. Journal of Personality and Social Psychology, 69, 142–152.CrossRefGoogle ScholarPubMed
Ruby, M. B., Falk, C. F., Heine, S. J., & Villa, C. (2012). Not all collectivisms are equal: Opposing preferences for ideal affect between East Asians and Mexicans. Emotion, 12, 1206–1209.CrossRefGoogle ScholarPubMed
Russell, M. J., Masuda, T., Hioki, K., & Singhal, A. (2015). Culture and social judgments: The importance of culture in Japanese and European Canadians’ N400 and LPC processing of face lineup emotion judgments. Culture and Brain, 3, 131–147.CrossRefGoogle Scholar
Salvador, C. E., Idrovo Carlier, S., Ishii, K., Torres Castillo, C., Nanakdewa, K., San Martin, A., … Kitayama, S. (2024). Emotionally expressive interdependence in Latin America: Triangulating through a comparison of three cultural zones. Emotion, 24, 820–835.CrossRefGoogle ScholarPubMed
Samanez-Larkin, G. R., & Knutson, B. (2015). Decision making in the ageing brain: Changes in affective and motivational circuits. Nature Reviews Neuroscience, 16, 278–289.CrossRefGoogle ScholarPubMed
Saxe, R., & Wexler, A. (2005). Making sense of another mind: The role of the right temporo-parietal junction. Neuropsychologia, 43, 1391–1399.CrossRefGoogle ScholarPubMed
Scherer, K, Summerfield, A. & Wallbott, (1983). Cross-national research on antecedents and components of emotion: A progress report. Social Science Information, 22, 355–385.CrossRefGoogle Scholar
Senft, N., Campos, B., Shiota, M. N., & Chentsova-Dutton, Y. E. (2021). Who emphasizes positivity? An exploration of emotion values in people of Latino, Asian, and European heritage living in the United States. Emotion, 21, 707–719.CrossRefGoogle ScholarPubMed
Shweder, R. A. (2003). Why do men barbecue?: Recipes for cultural psychology. Harvard University Press.Google Scholar
Sims, T. & Tsai, J. L. (2015). Patients respond more positively to physicians who focus on their ideal affect. Emotion, 15, 303–318.CrossRefGoogle ScholarPubMed
Sims, T., Tsai, J. L., Jiang, D., Wang, Y., Fung, H. H., & Zhang, X. (2015). Wanting to maximize the positive and minimize the negative: Implications for mixed affective experience in American and Chinese contexts. Journal of Personality and Social Psychology, 109, 292–315.CrossRefGoogle ScholarPubMed
Sims, T., Tsai, J. L., Koopmann-Holm, B., Thomas, E., & Goldstein, M. K. (2014). Choosing a physician depends on how you want to feel: The role of ideal affect in health-related decision making. Emotion, 14, 187–192.CrossRefGoogle ScholarPubMed
Soto, J. A., Perez, C. R., Kim, Y.-H., Lee, E. A., & Minnick, M. R. (2011). Is expressive suppression always associated with poorer psychological functioning? A cross-cultural comparison between European Americans and Hong Kong Chinese. Emotion, 11, 1450–1455.CrossRefGoogle ScholarPubMed
Spreckelmeyer, K. N., Krach, S., Kohls, G., Rademacher, L., Irmak, A., Konrad, K., … Gründer, G. (2009). Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women. Social Cognitive and Affective Neuroscience, 4, 158–165.CrossRefGoogle ScholarPubMed
Sul, S., Choi, I., & Kang, P. (2012). Cultural modulation of self-referential brain activity for personality traits and social identities. Social Neuroscience, 7, 280–291.CrossRefGoogle ScholarPubMed
Telzer, E. H., Masten, C. L., Berkman, E. T., Lieberman, M. D., & Fuligni, A. J. (2010). Gaining while giving: An fMRI study of the rewards of family assistance among White and Latino youth. Social Neuroscience, 5, 508–518.CrossRefGoogle ScholarPubMed
Tsai, J. L. (2007). Ideal affect: Cultural causes and behavioral consequences. Perspectives on Psychological Science, 2(3), 242–259.CrossRefGoogle Scholar
Tsai, J. L. (2017). Ideal affect in daily life: Implications for affective experience, health, and social behavior. Current Opinion in Psychology, 17, 118–128.CrossRefGoogle Scholar
Tsai, J. L. (2024). Investigating culture and emotion from responses to ideals. In M. J. Gelfand, C. Chiu, & Y. Hong (Eds.), Handbook of advances in culture and psychology (pp. 53–117). Oxford University Press.Google Scholar
Tsai, J. L., Blevins, E., Bencharit, L. Z., Chim, L., Fung, H. H., & Yeung, D. Y. (2019). Cultural variation in social judgments of smiles: The role of ideal affect. Journal of Personality and Social Psychology, 116, 966–988.CrossRefGoogle ScholarPubMed
Tsai, J. L., Chen, D., Yang, A., Cachia, J. A., Blevins, E. Ko, M., … Zhou, X. (2025). Two decades of ideal affect: Enduring cultural patterns and emerging associations. Manuscript under review.Google Scholar
Tsai, J. L., Chim, L., & Sims, T. (2015). Consumer behavior, culture, and emotion. In Ng, S. & Lee, A. Y. (Eds.). Handbook of culture and consumer behavior (pp. 68–98). Oxford University Press.Google Scholar
Tsai, J. L. & Clobert, M. (2019). Cultural influences on emotion: Established patterns and emerging trends. In Kitayama, S. & Cohen, D. (Eds.), Handbook of cultural psychology (pp. 292–318). The Guilford Press.Google Scholar
Tsai, J. L., Knutson, B., & Fung, H. H. (2006). Cultural variation in affect valuation. Journal of Personality and Social Psychology, 90, 288–307.CrossRefGoogle ScholarPubMed
Tsai, J. L., Miao, F. F., Seppala, E., Fung, H., & Yeung, D. (2007). Influence and adjustment goals: Sources of cultural differences in ideal affect. Journal of Personality and Social Psychology, 92, 1102–1117.CrossRefGoogle ScholarPubMed
Tsai, J. L. & Qu, Y. (2018). The promise of neuroscience for understanding the cultural shaping of emotion and other feelings. Culture and Brain, 6, 99–101.CrossRefGoogle Scholar
Varnum, M. E., & Hampton, R. S. (2017). Cultures differ in the ability to enhance affective neural responses. Social Neuroscience, 12, 594–603.CrossRefGoogle ScholarPubMed
Varnum, M. E., Shi, Z., Chen, A., Qiu, J., & Han, S. (2014). When “Your” reward is the same as “My” reward: Self-construal priming shifts neural responses to own vs. friends’ rewards. NeuroImage, 87, 164–169.CrossRefGoogle Scholar
Wang, H., Uricher, R., Huang, K., Knutson, B., & Tsai, J. L. (2024). Dare I trust you? Cultural expectations recruit distinct neural mechanisms to promote trust. Manuscript in preparation.Google Scholar
Wang, G., Mao, L., Ma, Y., Yang, X., Cao, J., Liu, X., … Han, S. (2012). Neural representations of close others in collectivistic brains. Social Cognitive and Affective Neuroscience, 7, 222–229.CrossRefGoogle ScholarPubMed
Wei, M., Su, J. C., Carrera, S., Lin, S.-P., & Yi, F. (2013). Suppression and interpersonal harmony: A cross-cultural comparison between Chinese and European Americans. Journal of Counseling Psychology, 60, 625–633.CrossRefGoogle Scholar
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670.CrossRefGoogle ScholarPubMed
Yuan, J., Long, Q., Ding, N., Lou, Y., Liu, Y., & Yang, J. (2015). Suppression dampens unpleasant emotion faster than reappraisal: Neural dynamics in a Chinese sample. Science China Life Sciences, 58, 480–491.CrossRefGoogle Scholar
Zhu, Y., Martin, A, Kane, H, & Park, J. (2023). Is daily emotion suppression associated with poor sleep? The moderating role of culture. Emotion, 23, 1829–1843.CrossRefGoogle ScholarPubMed
Zhu, Y., Zhang, L., Fan, J., & Han, S. (2007). Neural basis of cultural influence on self-representation. NeuroImage, 34, 1310–1316.CrossRefGoogle ScholarPubMed

References

Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191, 42–61.CrossRefGoogle ScholarPubMed
Amaral, D. G., & Adolphs, R. (2016). Living without an amygdala. Guilford Publications.Google Scholar
Atzil, S., Satpute, A. B., Zhang, J., Parrish, M. H., Shablack, H., MacCormack, J. K., … Lindquist, K. A. (2023). The impact of sociality and affective valence on brain activation: A meta-analysis. NeuroImage, 268, 119879.CrossRefGoogle ScholarPubMed
Azhari, A., Leck, W. Q., Gabrieli, G., Bizzego, A., Rigo, P., Setoh, P., … Esposito, G. (2019). Parenting stress undermines mother-child brain-to-brain synchrony: A hyperscanning study. Scientific Reports, 9, 11407.CrossRefGoogle ScholarPubMed
Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45, 2883–2901.CrossRefGoogle ScholarPubMed
Baek, E. C., Hyon, R., López, K., Finn, E. S., Porter, M. A., & Parkinson, C. (2022). In-degree centrality in a social network is linked to coordinated neural activity. Nature Communications, 13, 1118.CrossRefGoogle Scholar
Bailen, N. H., Green, L. M., & Thompson, R. J. (2019). Understanding emotion in adolescents: A review of emotional frequency, intensity, instability, and clarity. Emotion Review, 11, 63–73.CrossRefGoogle Scholar
Bandura, A. (1969). Social learning of moral judgments. Journal of Personality and Social Psychology, 11, 275–279.CrossRefGoogle ScholarPubMed
Barbas, H., Saha, S., Rempel-Clower, N., & Ghashghaei, T. (2003). Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neuroscience, 4, 25.CrossRefGoogle ScholarPubMed
Battaglini, A. M., Rnic, K., Jameson, T., Jopling, E., & LeMoult, J. (2022). Interpersonal emotion regulation flexibility: Effects on affect in daily life. Emotion, 23, 1048–1060.Google ScholarPubMed
Bickart, K. C., Dickerson, B. C., & Barrett, L. F. (2014). The amygdala as a hub in brain networks that support social life. Neuropsychologia, 63, 235–248.CrossRefGoogle ScholarPubMed
Bilek, E., Ruf, M., Schäfer, A., Akdeniz, C., Calhoun, V. D., Schmahl, C., … Meyer-Lindenberg, A. (2015). Information flow between interacting human brains: Identification, validation, and relationship to social expertise. Proceedings of the National Academy of Sciences, 112, 5207–5212.CrossRefGoogle ScholarPubMed
Blakemore, S.-J., & Mills, K. L. (2014). Is adolescence a sensitive period for sociocultural processing? Annual Review of Psychology, 65, 187–207.CrossRefGoogle ScholarPubMed
Block, P., & Burnett Heyes, S. (2022). Sharing the load: Contagion and tolerance of mood in social networks. Emotion, 22, 1193–1207.CrossRefGoogle ScholarPubMed
Bloom, P. A., VanTieghem, M., Gabard-Durnam, L., Gee, D. G., Flannery, J., Caldera, C., … Tottenham, N. (2022). Age-related change in task-evoked amygdala – prefrontal circuitry: A multiverse approach with an accelerated longitudinal cohort aged 4–22 years. Human Brain Mapping, 43, 3221–3244.CrossRefGoogle ScholarPubMed
Brechwald, W. A., & Prinstein, M. J. (2011). Beyond homophily: A decade of advances in understanding peer influence processes. Journal of Research on Adolescence, 21, 166–179.CrossRefGoogle ScholarPubMed
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 2981–2990.CrossRefGoogle ScholarPubMed
Callaghan, B. L., & Tottenham, N. (2016). The neuro-environmental loop of plasticity: A cross-species analysis of parental effects on emotion circuitry development following typical and adverse caregiving. Neuropsychopharmacology, 41, 163–176.CrossRefGoogle ScholarPubMed
Casement, M. D., Guyer, A. E., Hipwell, A. E., McAloon, R. L., Hoffmann, A. M., Keenan, K. E., & Forbes, E. E. (2014). Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms. Developmental Cognitive Neuroscience, 8, 18–27.CrossRefGoogle ScholarPubMed
Casey, B. J., Heller, A. S., Gee, D. G., & Cohen, A. O. (2019). Development of the emotional brain. Neuroscience Letters, 693, 29–34.CrossRefGoogle ScholarPubMed
Chen, X., McCormick, E. M., Ravindran, N., McElwain, N. L., & Telzer, E. H. (2020). Maternal emotion socialization in early childhood predicts adolescents’ amygdala-vmPFC functional connectivity to emotion faces. Developmental Psychology, 56, 503–515.CrossRefGoogle ScholarPubMed
Christakou, A., Brammer, M., & Rubia, K. (2011). Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting. NeuroImage, 54, 1344–1354.CrossRefGoogle ScholarPubMed
Cosgrove, K. T., Kerr, K. L., Aupperle, R. L., Ratliff, E. L., DeVille, D. C., Silk, J. S., … Morris, A. S. (2019). Always on my mind: Cross-brain associations of mental health symptoms during simultaneous parent-child scanning. Developmental Cognitive Neuroscience, 40, 100729.CrossRefGoogle ScholarPubMed
Cosgrove, K. T., Kerr, K. L., Ratliff, E. L., Moore, A. J., Misaki, M., DeVille, D. C., … Morris, A. S. (2022). Effects of parent emotion socialization on the neurobiology underlying adolescent emotion processing: A multimethod fMRI study. Research on Child and Adolescent Psychopathology, 50, 149–161.CrossRefGoogle ScholarPubMed
Criss, M. M., Houltberg, B. J., Cui, L., Bosler, C. D., Morris, A. S., & Silk, J. S. (2016). Direct and indirect links between peer factors and adolescent adjustment difficulties. Journal of Applied Developmental Psychology, 43, 83–90.CrossRefGoogle ScholarPubMed
Crone, E. A., Achterberg, M., Dobbelaar, S., Euser, S., van den Bulk, B., der Meulen, M. van, … van IJzendoorn, M. H. (2020). Neural and behavioral signatures of social evaluation and adaptation in childhood and adolescence: The Leiden Consortium on Individual Development (L-CID). Developmental Cognitive Neuroscience, 45, 100805.CrossRefGoogle Scholar
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636–650.CrossRefGoogle ScholarPubMed
Crowell, S. E., Skidmore, C. R., Rau, H. K., & Williams, P. G. (2013). Psychosocial stress, emotion regulation, and resilience in adolescence. In O’Donohue, W. T., Benuto, L. T., & Woodward Tolle, L. (Eds.), Handbook of Adolescent Health Psychology (pp. 129–141). Springer.Google Scholar
Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7, 415–423.CrossRefGoogle ScholarPubMed
Dennis, E. L., Jahanshad, N., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Hickie, I. B., … Thompson, P. M. (2014). Development of insula connectivity between ages 12 and 30 revealed by high angular resolution diffusion imaging. Human Brain Mapping, 35, 1790–1800.CrossRefGoogle ScholarPubMed
Dixon, M. L. (2015). Cognitive control, emotional value, and the lateral prefrontal cortex. Frontiers in Psychology, 6, 758.CrossRefGoogle ScholarPubMed
Do, K. T., McCormick, E. M., Prinstein, M. J., Lindquist, K. A., & Telzer, E. H. (2022). Intrinsic connectivity within the affective salience network moderates adolescent susceptibility to negative and positive peer norms. Scientific Reports, 12, 17463.CrossRefGoogle ScholarPubMed
Do, K. T., Prinstein, M. J., & Telzer, E. H. (2020). Neurobiological susceptibility to peer influence in adolescence. In Cohen Kadosh, K. (Ed.), The Oxford handbook of developmental cognitive neuroscience. Oxford University Press.Google Scholar
Eisenberg, N. (2020). Findings, issues, and new directions for research on emotion socialization. Developmental Psychology, 56, 664–670.CrossRefGoogle ScholarPubMed
Eisenberg, N., Cumberland, A., & Spinrad, T. L. (1998). Parental socialization of emotion. Psychological Inquiry, 9, 241–273.Google ScholarPubMed
Fareri, D. S., Gabard-Durnam, L., Goff, B., Flannery, J., Gee, D. G., Lumian, D. S., … Tottenham, N. (2015). Normative development of ventral striatal resting state connectivity in humans. NeuroImage, 118, 422–437.CrossRefGoogle ScholarPubMed
Feldman, M. J., Capella, J., Bonar, A., Dai, J., Field, N., Lewis, K., … Lindquist, K. A. (2024). Proximity within real world adolescent peer networks predicts neural similarity during affective experience. Social Cognitive and Affective Neuroscience, 19, nsae072.CrossRefGoogle ScholarPubMed
Ford, B. Q., & Gross, J. J. (2019). Why beliefs about emotion matter: An emotion-regulation perspective. Current Directions in Psychological Science, 28, 74–81.CrossRefGoogle Scholar
Gee, D. G. (2016). Sensitive periods of emotion regulation: Influences of parental care on frontoamygdala circuitry and plasticity. New Directions for Child and Adolescent Development, 2016, 87–110.CrossRefGoogle ScholarPubMed
Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., Shapiro, M., … Tottenham, N. (2014). Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. Psychological Science, 25, 2067–2078.CrossRefGoogle Scholar
Gee, D. G., Hanson, C., Caglar, L. R., Fareri, D. S., Gabard-Durnam, L. J., Mills-Finnerty, C., … Tottenham, N. (2022). Experimental evidence for a child-to-adolescent switch in human amygdala-prefrontal cortex communication: A cross-sectional pilot study. Developmental Science, 25, e13238.CrossRefGoogle Scholar
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., … Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala–prefrontal circuitry. Journal of Neuroscience, 33, 4584–4593.CrossRefGoogle Scholar
Ghaziri, J., Tucholka, A., Girard, G., Boucher, O., Houde, J.-C., Descoteaux, M., … Nguyen, D. K. (2018). Subcortical structural connectivity of insular subregions. Scientific Reports, 8, 8596.CrossRefGoogle ScholarPubMed
Giletta, M., Scholte, R. H. J., Burk, W. J., Engels, R. C. M. E., Larsen, J. K., Prinstein, M. J., & Ciairano, S. (2011). Similarity in depressive symptoms in adolescents’ friendship dyads: Selection or socialization? Developmental Psychology, 47, 1804–1814.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 8174–8179.Google ScholarPubMed
Gottman, J., Katz, L., & Hooven, C. (1996). Parental meta-emotion philosophy and the emotional life of families: Theoretical models and preliminary data. Journal of Family Psychology, 10, 243–268.CrossRefGoogle Scholar
Guassi Moreira, J. F., & Telzer, E. H. (2018). Mother still knows best: Maternal influence uniquely modulates adolescent reward sensitivity during risk taking. Developmental Science, 21, e12484.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Hostinar, C. E. (2015). The social buffering of the hypothalamic-pituitary-adrenocortical axis in humans: Developmental and experiential determinants. Social Neuroscience, 10, 479–488.CrossRefGoogle ScholarPubMed
Güroğlu, B. (2022). The power of friendship: The developmental significance of friendships from a neuroscience perspective. Child Development Perspectives, 16, 110–117.CrossRefGoogle Scholar
Haber, S., Kunishio, K., Mizobuchi, M., & Lynd-Balta, E. (1995). The orbital and medial prefrontal circuit through the primate basal ganglia. The Journal of Neuroscience, 15, 4851–4867.CrossRefGoogle ScholarPubMed
Hale, M. E., Price, N. N., Borowski, S. K., & Zeman, J. L. (2023). Adolescent emotion regulation trajectories: The influence of parent and friend emotion socialization. Journal of Research on Adolescence, 33, 735–749.CrossRefGoogle ScholarPubMed
Hale, M. E., & Zeman, J. L. (2023). Parent and friend emotion socialization in adolescence: The path to internalizing symptoms. Journal of Applied Developmental Psychology, 85, 101513.CrossRefGoogle Scholar
Heberlein, A. S., Padon, A. A., Gillihan, S. J., Farah, M. J., & Fellows, L. K. (2008). Ventromedial frontal lobe plays a critical role in facial emotion recognition. Journal of Cognitive Neuroscience, 20, 721–733.CrossRefGoogle Scholar
Heller, A. S., Cohen, A. O., Dreyfuss, M. F. W., & Casey, B. J. (2016). Changes in cortico-subcortical and subcortico-subcortical connectivity impact cognitive control to emotional cues across development. Social Cognitive and Affective Neuroscience, 11, 1910–1918.Google ScholarPubMed
Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83, 638–647.CrossRefGoogle ScholarPubMed
Hoyniak, C. P., Quiñones-Camacho, L. E., Camacho, M. C., Chin, J. H., Williams, E. M., Wakschlag, L. S., & Perlman, S. B. (2021). Adversity is linked with decreased parent-child behavioral and neural synchrony. Developmental Cognitive Neuroscience, 48, 100937.CrossRefGoogle ScholarPubMed
Hyon, R., Youm, Y., Kim, J., Chey, J., Kwak, S., & Parkinson, C. (2020). Similarity in functional brain connectivity at rest predicts interpersonal closeness in the social network of an entire village. Proceedings of the National Academy of Sciences of the United States of America, 117, 33149–33160.Google ScholarPubMed
Jiang, N., Xu, J., Li, X., Wang, Y., Zhuang, L., & Qin, S. (2021). Negative parenting affects adolescent internalizing symptoms through alterations in amygdala-prefrontal circuitry: A longitudinal twin study. Biological Psychiatry, 89, 560–569.CrossRefGoogle ScholarPubMed
Kerr, K. L., Ratliff, E. L., Cohen, Z. P., Fuller, S., Cosgrove, K. T., DeVille, D. C., … Bodurka, J. (2022). Real-time functional magnetic resonance imaging dyadic neurofeedback for emotion regulation: A proof-of-concept study. Frontiers in Human Neuroscience, 16, 910951.CrossRefGoogle ScholarPubMed
Kuczynski, L., & Parkin, C. M. (2007). Agency and bidirectionality in socialization: Interactions, transactions, and relational dialectics. In Grusec, J. E. & Hastings, P. D. (Eds.), Handbook of socialization: Theory and research (pp. 259–283). The Guilford Press.Google Scholar
Laursen, B., & Veenstra, R. (2021). Toward understanding the functions of peer influence: A summary and synthesis of recent empirical research. Journal of Research on Adolescence, 31, 889–907.CrossRefGoogle ScholarPubMed
Lee, T.-H., Miernicki, M. E., & Telzer, E. H. (2017). Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent-child dyads. NeuroImage, 152, 31–37.CrossRefGoogle ScholarPubMed
Lee, T.-H., Qu, Y., & Telzer, E. H. (2018). Dyadic neural similarity during stress in mother–child dyads. Journal of Research on Adolescence, 28, 121–133.CrossRefGoogle ScholarPubMed
Li, D., Zucker, N. L., Kragel, P. A., Covington, V. E., & LaBar, K. S. (2017). Adolescent development of insula-dependent interoceptive regulation. Developmental Science, 20, e12438.CrossRefGoogle ScholarPubMed
Lieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words. Psychological Science, 18, 421–428.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J., & Barrett, L. F. (2016). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex, 26, 1910–1922.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121–143.CrossRefGoogle ScholarPubMed
Liu, S., Oshri, A., Kogan, S. M., Wickrama, K. A. S., & Sweet, L. (2021). Amygdalar activation as a neurobiological marker of differential sensitivity in the effects of family rearing experiences on socioemotional adjustment in youths. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 1052–1062.Google ScholarPubMed
Meyer, S., Raikes, H. A., Virmani, E. A., Waters, S., & Thompson, R. A. (2014). Parent emotion representations and the socialization of emotion regulation in the family. International Journal of Behavioral Development, 38, 164–173.CrossRefGoogle Scholar
Miklikowska, M., Tilton-Weaver, L., & Burk, W. J. (2022). With a little help from my empathic friends: The role of peers in the development of empathy in adolescence. Developmental Psychology, 58, 1156–1162.CrossRefGoogle ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefGoogle ScholarPubMed
Miller-Slough, R. L., & Dunsmore, J. C. (2016). Parent and friend emotion socialization in adolescence: Associations with psychological adjustment. Adolescent Research Review, 1, 287–305.CrossRefGoogle Scholar
Misaki, M., Kerr, K. L., Ratliff, E. L., Cosgrove, K. T., Simmons, W. K., Morris, A. S., & Bodurka, J. (2021). Beyond synchrony: The capacity of fMRI hyperscanning for the study of human social interaction. Social Cognitive and Affective Neuroscience, 16, 84–92.CrossRefGoogle Scholar
Modi, H. H., Davis, M. M., Miernicki, M. E., Telzer, E. H., & Rudolph, K. D. (2020). Maternal antecedents to adolescent girls’ neural regulation of emotion. Journal of Research on Adolescence, 30, 581–598.CrossRefGoogle ScholarPubMed
Moody, J., Brynildsen, W. D., Osgood, D. W., Feinberg, M. E., & Gest, S. (2011). Popularity trajectories and substance use in early adolescence. Social Networks, 33, 101–112.CrossRefGoogle ScholarPubMed
Morawetz, C., Berboth, S., & Bode, S. (2021). With a little help from my friends: The effect of social proximity on emotion regulation-related brain activity. NeuroImage, 230, 117817.CrossRefGoogle ScholarPubMed
Morris, A. S., Silk, J. S., Steinberg, L., Myers, S. S., & Robinson, L. R. (2007). The role of the family context in the development of emotion regulation. Social Development, 16, 361–388.CrossRefGoogle ScholarPubMed
Nguyen, T., Schleihauf, H., Kayhan, E., Matthes, D., Vrtička, P., & Hoehl, S. (2020). The effects of interaction quality on neural synchrony during mother-child problem solving. Cortex, 124, 235–249.CrossRefGoogle ScholarPubMed
Parkinson, C., Kleinbaum, A. M., & Wheatley, T. (2018). Similar neural responses predict friendship. Nature Communications, 9, 332.CrossRefGoogle ScholarPubMed
Peper, J. S., Hulshoff Pol, H. E., Crone, E. A., & van Honk, J. (2011). Sex steroids and brain structure in pubertal boys and girls: A mini-review of neuroimaging studies. Neuroscience, 191, 28–37.CrossRefGoogle ScholarPubMed
Prinstein, M. J. (2007). Moderators of peer contagion: A longitudinal examination of depression socialization between adolescents and their best friends. Journal of Clinical Child & Adolescent Psychology, 36, 159–170.CrossRefGoogle ScholarPubMed
Qin, S., Young, C. B., Supekar, K., Uddin, L. Q., & Menon, V. (2012). Immature integration and segregation of emotion-related brain circuitry in young children. Proceedings of the National Academy of Sciences of the United States of America, 109, 7941–7946.Google ScholarPubMed
Qu, Y., Galvan, A., Fuligni, A. J., Lieberman, M. D., & Telzer, E. H. (2015). Longitudinal changes in prefrontal cortex activation underlie declines in adolescent risk taking. The Journal of Neuroscience, 35, 11308–11314.CrossRefGoogle ScholarPubMed
Ratliff, E. L., Kerr, K. L., Cosgrove, K. T., Simmons, W. K., & Morris, A. S. (2022). The role of neurobiological bases of dyadic emotion regulation in the development of psychopathology: Cross-brain associations between parents and children. Clinical Child and Family Psychology Review, 25, 5–18.CrossRefGoogle ScholarPubMed
Ratliff, E. L., Kerr, K. L., Misaki, M., Cosgrove, K. T., Moore, A. J., DeVille, D. C., … Morris, A. S. (2021). Into the unknown: Examining neural representations of parent–adolescent interactions. Child Development, 92, e1361–e1376.CrossRefGoogle ScholarPubMed
Reindl, M., Gniewosz, B., & Reinders, H. (2016). Socialization of emotion regulation strategies through friends. Journal of Adolescence, 49, 146–157.CrossRefGoogle ScholarPubMed
Reindl, V., Gerloff, C., Scharke, W., & Konrad, K. (2018). Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage, 178, 493–502.CrossRefGoogle ScholarPubMed
Ricciardi, C., Kornienko, O., & Garner, P. W. (2022). The role of cognitive emotion regulation for making and keeping friend and conflict networks. Frontiers in Psychology, 13, 802629.CrossRefGoogle ScholarPubMed
Rogers, C. R., Chen, X., Kwon, S.-J., McElwain, N. L., & Telzer, E. H. (2022). The role of early attachment and parental presence in adolescent behavioral and neurobiological regulation. Developmental Cognitive Neuroscience, 53, 101046.CrossRefGoogle ScholarPubMed
Rogers, C. R., Perino, M. T., & Telzer, E. H. (2020). Maternal buffering of adolescent dysregulation in socially appetitive contexts: From behavior to the brain. Journal of Research on Adolescence, 30, 41–52.CrossRefGoogle ScholarPubMed
Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16, 147–156.CrossRefGoogle ScholarPubMed
Rudolph, K. D., Davis, M. M., Modi, H. H., Fowler, C., Kim, Y., & Telzer, E. H. (2020). Differential susceptibility to parenting in adolescent girls: moderation by neural sensitivity to social cues. Journal of Research on Adolescence, 30, 177–191.CrossRefGoogle ScholarPubMed
Salamone, J. D., Correa, M., Mingote, S. M., & Weber, S. M. (2005). Beyond the reward hypothesis: Alternative functions of nucleus accumbens dopamine. Current Opinion in Pharmacology, 5, 34–41.CrossRefGoogle ScholarPubMed
Satpute, A. B., & Lindquist, K. A. (2019). The default mode network’s role in discrete emotion. Trends in Cognitive Sciences, 23, 851–864.CrossRefGoogle ScholarPubMed
Scherf, K. S., Smyth, J. M., & Delgado, M. R. (2013). The amygdala: An agent of change in adolescent neural networks. Hormones and Behavior, 64, 298–313.CrossRefGoogle ScholarPubMed
Schoeps, K., Villanueva, L., Prado-Gascó, V. J., & Montoya-Castilla, I. (2018). Development of emotional skills in adolescents to prevent cyberbullying and improve subjective well-being. Frontiers in Psychology, 9, 2050.CrossRefGoogle ScholarPubMed
Schreuders, E., Braams, B. R., Blankenstein, N. E., Peper, J. S., Güroğlu, B., & Crone, E. A. (2018). Contributions of reward sensitivity to ventral striatum activity across adolescence and early adulthood. Child Development, 89, 797–810.CrossRefGoogle ScholarPubMed
Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility to social context. Developmental Cognitive Neuroscience, 19, 1–18.CrossRefGoogle ScholarPubMed
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 9–34.CrossRefGoogle ScholarPubMed
Schwartz-Mette, R. A., & Rose, A. J. (2012). Co-rumination mediates contagion of internalizing symptoms within youths’ friendships. Developmental Psychology, 48, 1355–1365.CrossRefGoogle ScholarPubMed
Sebastian, C. L., Fontaine, N. M. G., Bird, G., Blakemore, S.-J., De Brito, S. A., McCrory, E. J. P., & Viding, E. (2012). Neural processing associated with cognitive and affective Theory of Mind in adolescents and adults. Social Cognitive and Affective Neuroscience, 7, 53–63.CrossRefGoogle ScholarPubMed
Sequeira, S. L., Butterfield, R. D., Silk, J. S., Forbes, E. E., & Ladouceur, C. D. (2019). Neural activation to parental praise interacts with social context to predict adolescent depressive symptoms. Frontiers in Behavioral Neuroscience, 13, 222.CrossRefGoogle ScholarPubMed
Shenhav, A., Barrett, L. F., & Bar, M. (2013). Affective value and associative processing share a cortical substrate. Cognitive, Affective & Behavioral Neuroscience, 13, 46–59.CrossRefGoogle Scholar
Silvers, J. A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R. E., … Ochsner, K. N. (2017). VlPFC–vmPFC–amygdala interactions underlie age-related differences in cognitive regulation of emotion. Cerebral Cortex, 27, 3502–3514.Google ScholarPubMed
Somerville, L. H., Jones, R. M., Ruberry, E. J., Dyke, J. P., Glover, G., & Casey, B. J. (2013). The medial prefrontal cortex and the emergence of self-conscious emotion in adolescence. Psychological Science, 24, 1554–1562.CrossRefGoogle ScholarPubMed
Sorrells, S. F., Paredes, M. F., Velmeshev, D., Herranz-Pérez, V., Sandoval, K., Mayer, S., … Alvarez-Buylla, A. (2019). Immature excitatory neurons develop during adolescence in the human amygdala. Nature Communications, 10, 2748.CrossRefGoogle ScholarPubMed
Stuber, G. D., Sparta, D. R., Stamatakis, A. M., van Leeuwen, W. A., Hardjoprajitno, J. E., Cho, S., … Bonci, A. (2011). Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 475, 377–380.CrossRefGoogle ScholarPubMed
Tan, P. Z., Oppenheimer, C. W., Ladouceur, C. D., Butterfield, R. D., & Silk, J. S. (2020). A Review of associations between parental emotion socialization behaviors and the neural substrates of emotional reactivity and regulation in youth. Developmental Psychology, 56, 516–527.CrossRefGoogle Scholar
Telzer, E. H., Ichien, N. T., & Qu, Y. (2015). Mothers know best: Redirecting adolescent reward sensitivity toward safe behavior during risk taking. Social Cognitive and Affective Neuroscience, 10, 1383–1391.CrossRefGoogle ScholarPubMed
Telzer, E. H., Jorgensen, N. A., Prinstein, M. J., & Lindquist, K. A. (2021). Neurobiological sensitivity to social rewards and punishments moderates link between peer norms and adolescent risk taking. Child Development, 92, 731–745.CrossRefGoogle ScholarPubMed
Telzer, E. H., Qu, Y., Goldenberg, D., Fuligni, A. J., Galván, A., & Lieberman, M. D. (2014). Adolescents’ emotional competence is associated with parents’ neural sensitivity to emotions. Frontiers in Human Neuroscience, 8, 558.CrossRefGoogle ScholarPubMed
Tottenham, N. (2015). Social scaffolding of human amygdala-mpfc circuit development. Social Neuroscience, 10, 489–499.CrossRefGoogle Scholar
Tottenham, N. (2020). Neural meaning making, prediction, and prefrontal–subcortical development following early adverse caregiving. Development and Psychopathology, 32, 1563–1578.CrossRefGoogle ScholarPubMed
Touroutoglou, A., Hollenbeck, M., Dickerson, B. C., & Barrett, L. F. (2012). Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention. NeuroImage, 60, 1947–1958.CrossRefGoogle ScholarPubMed
Turpyn, C. C., Jorgensen, N. A., Prinstein, M. J., Lindquist, K. A., & Telzer, E. H. (2021). Social neural sensitivity as a susceptibility marker to family context in predicting adolescent externalizing behavior. Developmental Cognitive Neuroscience, 51, 100993.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Nomi, J. S., Hebert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and function of the human insula. Journal of Clinical Neurophysiology, 34, 300–306.CrossRefGoogle ScholarPubMed
van Duijvenvoorde, A. C. K., Westhoff, B., de Vos, F., Wierenga, L. M., & Crone, E. A. (2019). A three‐wave longitudinal study of subcortical–cortical resting‐state connectivity in adolescence: Testing age‐ and puberty‐related changes. Human Brain Mapping, 40, 3769–3783.CrossRefGoogle ScholarPubMed
van Rooij, S. J. H., Cross, D., Stevens, J. S., Vance, L. A., Kim, Y. J., Bradley, B., … Jovanovic, T. (2017). Maternal buffering of fear-potentiated startle in children and adolescents with trauma exposure. Social Neuroscience, 12, 22–31.CrossRefGoogle ScholarPubMed
van Workum, N., Scholte, R. H. J., Cillessen, A. H. N., Lodder, G. M. A., & Giletta, M. (2013). Selection, deselection, and socialization processes of happiness in adolescent friendship networks. Journal of Research on Adolescence, 23, 563–573.CrossRefGoogle Scholar
Vink, M., Derks, J. M., Hoogendam, J. M., Hillegers, M., & Kahn, R. S. (2014). Functional differences in emotion processing during adolescence and early adulthood. NeuroImage, 91, 70–76.CrossRefGoogle ScholarPubMed
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59, 1037–1050.CrossRefGoogle ScholarPubMed
Wierenga, L. M., Bos, M. G. N., Schreuders, E., vd Kamp, F., Peper, J. S., Tamnes, C. K., & Crone, E. A. (2018). Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. Psychoneuroendocrinology, 91, 105–114.CrossRefGoogle ScholarPubMed
Yamagata, T., Nakayama, Y., Tanji, J., & Hoshi, E. (2012). Distinct information representation and processing for goal-directed behavior in the dorsolateral and ventrolateral prefrontal cortex and the dorsal premotor cortex. Journal of Neuroscience, 32, 12934–12949.CrossRefGoogle ScholarPubMed
Yang, Y., & Wang, Q. (2019). Culture in emotional development. In LoBue, V., Pérez-Edgar, K., & Buss, K. A. (Eds.), Handbook of Emotional Development (pp. 569–593). Springer International Publishing.Google Scholar
Yu, H., Zhou, Z., & Zhou, X. (2013). The amygdalostriatal and corticostriatal effective connectivity in anticipation and evaluation of facial attractiveness. Brain and Cognition, 82, 291–300.CrossRefGoogle ScholarPubMed
Zaki, J., & Williams, W. C. (2013). Interpersonal emotion regulation. Emotion, 13, 803–810.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Social Emotions
  • Edited by Jorge Armony, McGill University, Montréal, Patrik Vuilleumier, University of Geneva
  • Book: The Cambridge Handbook of Human Affective Neuroscience
  • Online publication: 16 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009342919.030
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Social Emotions
  • Edited by Jorge Armony, McGill University, Montréal, Patrik Vuilleumier, University of Geneva
  • Book: The Cambridge Handbook of Human Affective Neuroscience
  • Online publication: 16 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009342919.030
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Social Emotions
  • Edited by Jorge Armony, McGill University, Montréal, Patrik Vuilleumier, University of Geneva
  • Book: The Cambridge Handbook of Human Affective Neuroscience
  • Online publication: 16 September 2025
  • Chapter DOI: https://doi.org/10.1017/9781009342919.030
Available formats
×