Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-tfzs5 Total loading time: 0 Render date: 2025-10-02T07:21:47.289Z Has data issue: false hasContentIssue false

Chapter 31 - Preclinical Models of Emotional Dysregulations in Animals

from Section VII - Individual Differences

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

This chapter highlights the pivotal role of animal models in unraveling the intricate biological mechanisms and complex neural networks associated with emotional processing and psychiatric disorders, including anxiety, depression, and addiction. These models contribute significantly to understanding distinct brain circuits governing specific emotional behaviors and uncovering potential alterations in pathological conditions. Exploring inter-individual variability and sex differences in emotional behaviors using these models is crucial for advancing our knowledge of emotional processing and dysregulation. This chapter emphasizes the importance of extending the time window analyzed, as well as the importance of using computational tools such as machine learning. Integrating cutting-edge computational tools will enable a finer understanding of the neurobiology of emotions, fostering improved interpretability of both preclinical and clinical results. Ultimately, preclinical models play a vital role in comprehending the neurobiology underlying emotional dysregulation, contributing essential insights for the development of effective treatment strategies for mental disorders.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Ahmed, S. H., & Koob, G. F. (1998). Transition from moderate to excessive drug intake: Change in hedonic set point. Science, 282, 298–300.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, fifth edition (DSM-5). American Psychiatric Association Publishing.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders, fourth edition – text revision (DSM-IV-TR). American Psychiatric Association Publishing.Google Scholar
Anacker, C., O’Donnell, K. J., & Meaney, M. J. (2014). Early life adversity and the epigenetic programming of hypothalamic-pituitary-adrenal function. Dialogues in Clinical Neuroscience, 16, 321–333.CrossRefGoogle ScholarPubMed
Anagnostaras, S. G. (2010). Automated assessment of Pavlovian conditioned freezing and shock reactivity in mice using the VideoFreeze system. Frontiers in Behavioral Neuroscience, 4, 158.CrossRefGoogle Scholar
Anderson, D. J., & Adolphs, R. (2014). A framework for studying emotions across species. Cell, 157, 187–200.CrossRefGoogle ScholarPubMed
Andrews, N. A., Papakosta, M., & Barnes, N. M. (2014). Discovery of novel anxiolytic agents – the trials and tribulations of pre-clinical models of anxiety. Neurobiology of Disease, 61, 72–78.CrossRefGoogle ScholarPubMed
Arp, J. M., ter Horst, J. P., Loi, M., den Blaauwen, J., Bangert, E., Fernández, G., … Krugers, H. J. (2016). Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress. Neurobiology of Learning and Memory, 133, 30–38.CrossRefGoogle ScholarPubMed
Assaf, Y., Bouznach, A., Zomet, O., Marom, A., & Yovel, Y. (2020). Conservation of brain connectivity and wiring across the mammalian class. Nature Neuroscience, 23, 805–808.CrossRefGoogle ScholarPubMed
Augier, E., Barbier, E., Dulman, R. S., Licheri, V., Augier, G., Domi, E., … Heilig, M. (2018). A molecular mechanism for choosing alcohol over an alternative reward. Science, 360, 1321–1326.CrossRefGoogle ScholarPubMed
Baldwin, D., & Rudge, S. (1995). The role of serotonin in depression and anxiety. International Clinical Psychopharmacology, 9, 41–45.CrossRefGoogle ScholarPubMed
Barnes, N. M., & Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology, 38, 1083–1152.CrossRefGoogle ScholarPubMed
Bath, K. G., Manzano-Nieves, G., & Goodwill, H. (2016). Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Hormones and Behavior, 82, 64–71.CrossRefGoogle ScholarPubMed
Belzung, C., & Lemoine, M. (2011). Criteria of validity for animal models of psychiatric disorders: Focus on anxiety disorders and depression. Biology of Mood & Anxiety Disorders, 1, 9.CrossRefGoogle ScholarPubMed
Beyeler, A., Ju, A., Chagraoui, A., Cuvelle, L., Teixeira, M., Di Giovanni, G., & De Deurwaerdère, P. (2021). Multiple facets of serotonergic modulation. Progress in Brain Research, 261, 3–39.CrossRefGoogle ScholarPubMed
Bittar, T. P., & Labonté, B. (2021). Functional contribution of the medial prefrontal circuitry in major depressive disorder and stress-induced depressive-like behaviors. Frontiers in Behavioral Neuroscience, 15, 699592.CrossRefGoogle ScholarPubMed
Bittar, T. P., Pelaez, M. C., Hernandez Silva, J. C., Quessy, F., Lavigne, A.-A., Morency, D., … Labonté, B. (2021). Chronic stress induces sex-specific functional and morphological alterations in corticoaccumbal and corticotegmental pathways. Biological Psychiatry, 90, 194–205.CrossRefGoogle ScholarPubMed
Bölükbas, I., Mundorf, A., & Freund, N. (2020). Maternal separation in rats induces neurobiological and behavioral changes on the maternal side. Scientific Reports, 10, 22431.CrossRefGoogle ScholarPubMed
Bonne, O., Grillon, C., Vythilingam, M., Neumeister, A., & Charney, D. S. (2004). Adaptive and maladaptive psychobiological responses to severe psychological stress: Implications for the discovery of novel pharmacotherapy. Neuroscience & Biobehavioral Reviews, 28, 65–94.CrossRefGoogle ScholarPubMed
Bordes, J., Miranda, L., Müller-Myhsok, B., & Schmidt, M. V. (2023). Advancing social behavioral neuroscience by integrating ethology and comparative psychology methods through machine learning. Neuroscience & Biobehavioral Reviews, 151, 105243.CrossRefGoogle ScholarPubMed
Bordes, J., Miranda, L., Reinhardt, M., Narayan, S., Hartmann, J., Newman, E. L., … Schmidt, M. V. (2023). Automatically annotated motion tracking identifies a distinct social behavioral profile following chronic social defeat stress. Nature Communications, 14, 4319.CrossRefGoogle ScholarPubMed
Borroto-Escuela, D. O., Ambrogini, P., Chruścicka, B., Lindskog, M., Crespo-Ramirez, M., Hernández-Mondragón, J. C., … Fuxe, K. (2021). The role of central serotonin neurons and 5-HT heteroreceptor complexes in the pathophysiology of depression: A historical perspective and future prospects. International Journal of Molecular Sciences, 22, 1927.CrossRefGoogle ScholarPubMed
Bourin, M. (2015). Animal models for screening anxiolytic-like drugs: A perspective. Dialogues in Clinical Neuroscience, 17, 295–303.CrossRefGoogle ScholarPubMed
Calhoon, G. G., & Tye, K. M. (2015). Resolving the neural circuits of anxiety. Nature Neuroscience, 18, 1394–1404.CrossRefGoogle ScholarPubMed
Campos, A. C., Fogaca, M. V., Aguiar, D. C., Guimaraes, F. S., Campos, A. C., Fogaca, M. V., … Guimaraes, F. S. (2013). Animal models of anxiety disorders and stress. Revista Brasileira de Psiquiatria, 35, S101–S111.Google ScholarPubMed
Careaga, M. B. L., Girardi, C. E. N., & Suchecki, D. (2016). Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neuroscience & Biobehavioral Reviews, 71, 48–57.CrossRefGoogle ScholarPubMed
Carlén, M. (2017). What constitutes the prefrontal cortex? Science, 358, 478–482.CrossRefGoogle ScholarPubMed
Chauvet, C., Nicolas, C., Thiriet, N., Lardeux, M. V., Duranti, A., & Solinas, M. (2014). Chronic stimulation of the tone of endogenous anandamide reduces cue- and stress-induced relapse in rats. International Journal of Neuropsychopharmacology, 18, pyu025.Google ScholarPubMed
Commons, K. G., Cholanians, A. B., Babb, J. A., & Ehlinger, D. G. (2017). The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chemical Neuroscience, 8, 955–960.CrossRefGoogle Scholar
Cryan, J. F., & Holmes, A. (2005). The ascent of mouse: Advances in modelling human depression and anxiety. Nature Reviews Drug Discovery, 4, 775–790.CrossRefGoogle ScholarPubMed
Davis, M. T., Holmes, S. E., Pietrzak, R. H., & Esterlis, I. (2017). Neurobiology of chronic stress-related psychiatric disorders: Evidence from molecular imaging studies. Chronic Stress, 1, 2470547017710916.CrossRefGoogle ScholarPubMed
Daviu, N., Bruchas, M. R., Moghaddam, B., Sandi, C., & Beyeler, A. (2019). Neurobiological links between stress and anxiety. Neurobiology of Stress, 11, 100191.CrossRefGoogle ScholarPubMed
Deroche-Gamonet, V., Belin, D., & Piazza, P. V. (2004). Evidence for addiction-like behavior in the rat. Science, 305, 1014–1017.CrossRefGoogle ScholarPubMed
Desmedt, A., Marighetto, A., & Piazza, P.-V. (2015). Abnormal fear memory as a model for posttraumatic stress disorder. Biological Psychiatry, 78, 290–297.CrossRefGoogle Scholar
Duman, C. H., Schlesinger, L., Russell, D. S., & Duman, R. S. (2008). Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Research, 1199, 148–158.CrossRefGoogle ScholarPubMed
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 1476–1488.CrossRefGoogle ScholarPubMed
Finlay-Jones, R., & Brown, G. W. (1981). Types of stressful life event and the onset of anxiety and depressive disorders. Psychological Medicine, 11, 803–815.CrossRefGoogle ScholarPubMed
Forkosh, O., Karamihalev, S., Roeh, S., Alon, U., Anpilov, S., Touma, C., … Chen, A. (2019). Identity domains capture individual differences from across the behavioral repertoire. Nature Neuroscience, 22, 2023–2028.CrossRefGoogle ScholarPubMed
Fornari, C., Guerrero-Marquez, C., Namburi, P., Couderc, Y., Nicolas, C., & Beyeler, A. (2023). Sexual dimorphism of insular cortex function in persistent alcohol drinking despite aversion in mice. bioRxiv, https://doi.org/10.1101/2023.10.04.560817Google Scholar
Fox, E., Yates, A., & Ashwin, C. (2012). Trait anxiety and perceptual load as determinants of emotion processing in a fear conditioning paradigm. Emotion, 12, 236–249.CrossRefGoogle Scholar
Franceschelli, A., Herchick, S., Thelen, C., Papadopoulou-Daifoti, Z., & Pitychoutis, P. M. (2014). Sex differences in the chronic mild stress model of depression. Behavioural Pharmacology, 25, 372–383.CrossRefGoogle ScholarPubMed
Gabriel, C. J., Zeidler, Z., Jin, B., Guo, C., Goodpaster, C. M., Kashay, A. Q., … DeNardo, L. A. (2022). BehaviorDEPOT is a simple, flexible tool for automated behavioral detection based on markerless pose tracking. eLife, 11, e74314.CrossRefGoogle ScholarPubMed
Golden, S. A., Covington, H. E., Berton, O., & Russo, S. J. (2011). A standardized protocol for repeated social defeat stress in mice. Nature Protocols, 6, 1183–1191.CrossRefGoogle ScholarPubMed
Griebel, G., & Holmes, A. (2013). 50 years of hurdles and hope in anxiolytic drug discovery. Nature Reviews Drug Discovery, 12, 667–687.CrossRefGoogle ScholarPubMed
Groenewold, N. A., Opmeer, E. M., de Jonge, P., Aleman, A., & Costafreda, S. G. (2013). Emotional valence modulates brain functional abnormalities in depression: Evidence from a meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 37, 152–163.CrossRefGoogle ScholarPubMed
Gruene, T. M., Flick, K., Stefano, A., Shea, S. D., & Shansky, R. M. (2015). Sexually divergent expression of active and passive conditioned fear responses in rats. eLife, 4, e11352.CrossRefGoogle ScholarPubMed
Guadagno, A., Belliveau, C., Mechawar, N., & Walker, C.-D. (2021). Effects of early life stress on the developing basolateral amygdala-prefrontal cortex circuit: The emerging role of local inhibition and perineuronal nets. Frontiers in Human Neuroscience, 15, 669120.CrossRefGoogle ScholarPubMed
Harada, M., Pascoli, V., Hiver, A., Flakowski, J., & Lüscher, C. (2021). Corticostriatal activity driving compulsive reward seeking. Biological Psychiatry, 90, 808–818.CrossRefGoogle ScholarPubMed
Harris, A. Z., Atsak, P., Bretton, Z. H., Holt, E. S., Alam, R., Morton, M. P., … Gordon, J. A. (2017). A novel method for chronic social defeat stress in female mice. Neuropsychopharmacology, 43, 1276–1283.Google ScholarPubMed
Heisler, L. K., Chu, H. M., Brennan, T. J., Danao, J. A., Bajwa, P., Parsons, L. H., & Tecott, L. H. (1998). Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 95, 15049–15054.Google ScholarPubMed
Hodes, G. E., Pfau, M. L., Purushothaman, I., Ahn, H. F., Golden, S. A., Christoffel, D. J., … Russo, S. J. (2015). Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. Journal of Neuroscience, 35, 16362–16376.CrossRefGoogle ScholarPubMed
Hodos, W. (1961). Progressive ratio as a measure of reward strength. Science, 134, 943–944.CrossRefGoogle ScholarPubMed
Hyman, S. E., & Malenka, R. C. (2001). Addiction and the brain: The neurobiology of compulsion and its persistence. Nature Reviews Neuroscience, 2, 695–703.CrossRefGoogle ScholarPubMed
Iñiguez, S. D., Flores-Ramirez, F. J., Riggs, L. M., Alipio, J. B., Garcia-Carachure, I., Hernandez, M. A., … Castillo, S. A. (2018). Vicarious social defeat stress induces depression-related outcomes in female mice. Biological Psychiatry, 83, 9–17.CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748–751.CrossRefGoogle Scholar
Juruena, M. F., Eror, F., Cleare, A. J., & Young, A. H. (2020). The role of early life stress in HPA axis and anxiety. Advances in Experimental Medicine and Biology, 1191, 141–153.CrossRefGoogle ScholarPubMed
Kaouane, N., Porte, Y., Vallée, M., Brayda-Bruno, L., Mons, N., Calandreau, L., … Desmedt, A. (2012). Glucocorticoids can induce PTSD-like memory impairments in mice. Science, 335, 1510–1513.CrossRefGoogle ScholarPubMed
Karamihalev, S., Brivio, E., Flachskamm, C., Stoffel, R., Schmidt, M. V., & Chen, A. (2020). Social dominance mediates behavioral adaptation to chronic stress in a sex-specific manner. eLife, 9, e58723.CrossRefGoogle Scholar
Kasanetz, F., Lafourcade, M., Deroche-Gamonet, V., Revest, J.-M., Berson, N., Balado, E., … Manzoni, O. J. (2013). Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Molecular Psychiatry, 18, 729–737.CrossRefGoogle ScholarPubMed
Keller, J., Gomez, R., Williams, G., Lembke, A., Lazzeroni, L., Murphy, G. M., & Schatzberg, A. F. (2017). HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Molecular Psychiatry, 22, 527–536.CrossRefGoogle ScholarPubMed
Kos, A., Lopez, J. P., Bordes, J., de Donno, C., Dine, J., Brivio, E., … Chen, A. (2023). Early life adversity shapes social subordination and cell type–specific transcriptomic patterning in the ventral hippocampus. Science Advances, 9, eadj3793.CrossRefGoogle ScholarPubMed
Kreek, M. J., LaForge, K. S., & Butelman, E. (2002). Pharmacotherapy of addictions. Nature Reviews Drug Discovery, 1, 710–726.Google ScholarPubMed
Kundakovic, M., Lim, S., Gudsnuk, K., & Champagne, F. A. (2013). Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. Frontiers in Psychiatry, 4, 78.CrossRefGoogle ScholarPubMed
Lauer, J., Zhou, M., Ye, S., Menegas, W., Schneider, S., Nath, T., … Mathis, A. (2022). Multi-animal pose estimation, identification and tracking with DeepLabCut. Nature Methods, 19, 496–504.CrossRefGoogle ScholarPubMed
Leshner, A. I. (1997). Addiction is a brain disease, and it matters. Science, 278, 45–47.CrossRefGoogle Scholar
Lezak, K. R., Missig, G., & CarlezonJr, W. A. (2017). Behavioral methods to study anxiety in rodents. Dialogues in Clinical Neuroscience, 19, 181–191.CrossRefGoogle ScholarPubMed
Limpens, J. H. W., Schut, E. H. S., Voorn, P., & Vanderschuren, L. J. M. J. (2014). Using conditioned suppression to investigate compulsive drug seeking in rats. Drug and Alcohol Dependence, 142, 314–324.CrossRefGoogle ScholarPubMed
Lisieski, M. J., Eagle, A. L., Conti, A. C., Liberzon, I., & Perrine, S. A. (2018). Single-prolonged stress: A review of two decades of progress in a rodent model of post-traumatic stress disorder. Frontiers in Psychiatry, 9, 196.CrossRefGoogle Scholar
Mahan, A. L., & Ressler, K. J. (2012). Fear conditioning, synaptic plasticity and the amygdala: Implications for posttraumatic stress disorder. Trends in Neuroscience, 35, 24–35.CrossRefGoogle ScholarPubMed
Marchant, N. J., Khuc, T. N., Pickens, C. L., Bonci, A., & Shaham, Y. (2013). Context-induced relapse to alcohol seeking after punishment in a rat model. Biological Psychiatry, 73, 256–262.CrossRefGoogle ScholarPubMed
Martín-Sánchez, A., González-Pardo, H., Alegre-Zurano, L., Castro-Zavala, A., López-Taboada, I., Valverde, O., … Conejo, N. M. (2022). Early-life stress induces emotional and molecular alterations in female mice that are partially reversed by cannabidiol. Progress in Neuro-psychopharmacology & Biological Psychiatry, 115, 110508.CrossRefGoogle ScholarPubMed
McCormick, C. M., Kehoe, P., & Kovacs, S. (1998). Corticosterone release in response to repeated, short episodes of neonatal isolation: Evidence of sensitization. International Journal of Developmental Neuroscience, 16, 175–185.CrossRefGoogle ScholarPubMed
Ménard, C., Hodes, G. E., & Russo, S. J. (2016). Pathogenesis of depression: Insights from human and rodent studies. Neuroscience, 321, 138–162.CrossRefGoogle ScholarPubMed
Mineur, Y. S., Belzung, C., & Crusio, W. E. (2006). Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behavioural Brain Research, 175, 43–50.CrossRefGoogle ScholarPubMed
Miranda, L., Bordes, J., Gasperoni, S., & Lopez, J. P. (2023). Increasing resolution in stress neurobiology: From single cells to complex group behaviors. Stress, 26, 2186141.CrossRefGoogle ScholarPubMed
Miranda, L., Bordes, J., Pütz, B., Schmidt, M. V., & Müller-Myhsok, B. (2023). DeepOF: A Python package for supervised and unsupervised pattern recognition in mice motion tracking data. Journal of Open Source Software, 8, 5394.CrossRefGoogle Scholar
Mitchell, J. R., Trettel, S. G., Li, A. J., Wasielewski, S., Huckleberry, K. A., Fanikos, M., … Shansky, R. M. (2022). Darting across space and time: Parametric modulators of sex-biased conditioned fear responses. Learning & Memory, 29, 171–180.CrossRefGoogle ScholarPubMed
Montkowski, A., Barden, N., Wotjak, C., Stec, I., Ganster, J., Meaney, M., … Holsboer, F. (1995). Long-term antidepressant treatment reduces behavioural deficits in transgenic mice with impaired glucocorticoid receptor function. Journal of Neuroendocrinology, 7, 841–845.CrossRefGoogle ScholarPubMed
Müller, M. B., Zimmermann, S., Sillaber, I., Hagemeyer, T. P., Deussing, J. M., Timpl, P., … Wurst, W. (2003). Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neuroscience, 6, 1100–1107.CrossRefGoogle ScholarPubMed
Murthy, S., & Gould, E. (2018). Early life stress in rodents: Animal models of illness or resilience? Frontiers in Behavioral Neuroscience, 12, 157.CrossRefGoogle ScholarPubMed
Nicolas, C., Ju, A., Wu, Y., Eldirdiri, H., Delcasso, S., Couderc, Y., … Beyeler, A. (2023). Linking emotional valence and anxiety in a mouse insula-amygdala circuit. Nature Communications, 14, 5073.CrossRefGoogle Scholar
Nicolas, C., Lafay-Chebassier, C., & Solinas, M. (2016). Exposure to sucrose during periods of withdrawal does not reduce cocaine-seeking behavior in rats. Scientific Reports, 6, 23272.CrossRefGoogle Scholar
Nicolas, C., Russell, T. I., Pierce, A. F., Maldera, S., Holley, A., You, Z.-B., … Ikemoto, S. (2019). Incubation of cocaine craving after intermittent-access self-administration: Sex differences and estrous cycle. Biological Psychiatry, 85, 915–924.CrossRefGoogle ScholarPubMed
Nicolas, C., Russell, T. I., Shaham, Y., & Ikemoto, S. (2021). Dissociation between incubation of cocaine craving and anxiety-related behaviors after continuous and intermittent access self-administration. Frontiers in Neuroscience, 15, 824741.Google ScholarPubMed
Nicolas, C., Zlebnik, N. E., Farokhnia, M., Leggio, L., Ikemoto, S., & Shaham, Y. (2022). Sex differences in opioid and psychostimulant craving and relapse: A critical review. Pharmacological Reviews, 74, 119–140.CrossRefGoogle ScholarPubMed
Orso, R., Creutzberg, K. C., Wearick-Silva, L. E., Wendt Viola, T., Tractenberg, S. G., Benetti, F., & Grassi-Oliveira, R. (2019). How early life stress impact maternal care: A systematic review of rodent studies. Frontiers in Behavioral Neuroscience, 13, 197.CrossRefGoogle Scholar
Papp, M., Willner, P., & Muscat, R. (1991). An animal model of anhedonia: Attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology, 104, 255–259.CrossRefGoogle ScholarPubMed
Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., & Toth, M. (1998). Increased anxiety of mice lacking the serotonin1A receptor. Proceedings of the National Academy of Sciences of the United States of America, 95, 10734–10739.Google ScholarPubMed
Peña, C. J., Smith, M., Ramakrishnan, A., Cates, H. M., Bagot, R. C., Kronman, H. G., … Nestler, E. J. (2019). Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nature Communications, 10, 5098.CrossRefGoogle ScholarPubMed
Pignatelli, M., & Beyeler, A. (2019). Valence coding in amygdala circuits. Current Opinion in Behavioral Sciences, 26, 97–106.CrossRefGoogle ScholarPubMed
Qin, X., Liu, X.-X., Wang, Y., Wang, D., Song, Y., Zou, J.-X., … Zhang, W.-H. (2021). Early life stress induces anxiety-like behavior during adulthood through dysregulation of neuronal plasticity in the basolateral amygdala. Life Sciences, 285, 119959.CrossRefGoogle ScholarPubMed
Quessy, F., Bittar, T., Blanchette, L. J., Lévesque, M., & Labonté, B. (2021). Stress-induced alterations of mesocortical and mesolimbic dopaminergic pathways. Scientific Reports, 11, 11000.CrossRefGoogle ScholarPubMed
Reemst, K., Ruigrok, S. R., Bleker, L., Naninck, E. F. G., Ernst, T., Kotah, J. M., … Korosi, A. (2022). Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neuroscience & Biobehavioral Reviews, 138, 104627.CrossRefGoogle Scholar
Réus, G. Z., Stringari, R. B., Ribeiro, K. F., Cipriano, A. L., Panizzutti, B. S., Stertz, L., … Quevedo, J. (2011). Maternal deprivation induces depressive-like behaviour and alters neurotrophin levels in the rat brain. Neurochemical Research, 36, 460–466.CrossRefGoogle ScholarPubMed
Rice, C. J., Sandman, C. A., Lenjavi, M. R., & Baram, T. Z. (2008). A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology, 149, 4892–4900.CrossRefGoogle ScholarPubMed
Richter-Levin, G., Stork, O., & Schmidt, M. V. (2018). Animal models of PTSD: A challenge to be met. Molecular Psychiatry, 24, 1135–1156.Google ScholarPubMed
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.CrossRefGoogle Scholar
Safaie, M., Chang, J. C., Park, J., Miller, L. E., Dudman, J. T., Perich, M. G., & Gallego, J. A. (2023). Preserved neural dynamics across animals performing similar behaviour. Nature, 623, 765–771.CrossRefGoogle ScholarPubMed
Sailer, U., Robinson, S., Fischmeister, F. Ph. S., König, D., Oppenauer, C., Lueger-Schuster, B., … Bauer, H. (2008). Altered reward processing in the nucleus accumbens and mesial prefrontal cortex of patients with posttraumatic stress disorder. Neuropsychologia, 46, 2836–2844.CrossRefGoogle ScholarPubMed
Saleh, A., Potter, G. G., McQuoid, D. R., Boyd, B., Turner, R., MacFall, J. R., & Taylor, W. D. (2017). Effects of early life stress on depression, cognitive performance and brain morphology. PsychologicalMedicine, 47, 171–181.Google ScholarPubMed
Scarpa, J. R., Fatma, M., Loh, Y. H. E., Traore, S. R., Stefan, T., Chen, T. H., … Labonté, B. (2020). Shared transcriptional signatures in major depressive disorder and mouse chronic stress models. Biological Psychiatry, 88, 159–168.CrossRefGoogle ScholarPubMed
Selten, J.-P., van der Ven, E., Rutten, B. P. F., & Cantor-Graae, E. (2013). The social defeat hypothesis of schizophrenia: An update. Schizophrenia Bulletin, 39, 1180–1186.CrossRefGoogle ScholarPubMed
Siciliano, C. A., Noamany, H., Chang, C.-J., Brown, A. R., Chen, X., Leible, D., … Tye, K. M. (2019). A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science, 366, 1008–1012.CrossRefGoogle ScholarPubMed
Sikora, M., Nicolas, C., Istin, M., Jaafari, N., Thiriet, N., & Solinas, M. (2018). Generalization of effects of environmental enrichment on seeking for different classes of drugs of abuse. Behavioural Brain Research, 341, 109–113.CrossRefGoogle ScholarPubMed
Song, J., & Kim, Y.-K. (2021). Animal models for the study of depressive disorder. CNS Neuroscience & Therapeutics, 27, 633–642.CrossRefGoogle Scholar
Stellern, J., Xiao, K. B., Grennell, E., Sanches, M., Gowin, J. L., & Sloan, M. E. (2023). Emotion regulation in substance use disorders: A systematic review and meta-analysis. Addiction, 118, 30–47.CrossRefGoogle ScholarPubMed
Tillmann, J. F., Hsu, A., Schwarz, M. K., & Yttri, E. (2024). A-SOiD, an active-learning platform for expert-guided, data-efficient discovery of behavior. Nature Methods, 21, 703–711.CrossRefGoogle ScholarPubMed
van der Kolk, B. A., Hopper, J. W., & Osterman, J. E. (2001). Exploring the nature of traumatic memory: Combining clinical knowledge with laboratory methods. Journal of Aggression Maltreatment & Trauma, 4, 9–31.CrossRefGoogle Scholar
Vanderschuren, L. J. M. J., & Everitt, B. J. (2004). Drug seeking becomes compulsive after prolonged cocaine self-administration. Science, 305, 1017–1019.CrossRefGoogle ScholarPubMed
Veenema, A. H., Reber, S. O., Selch, S., Obermeier, F., & Neumann, I. D. (2008). Early life stress enhances the vulnerability to chronic psychosocial stress and experimental colitis in adult mice. Endocrinology, 149, 2727–2736.CrossRefGoogle ScholarPubMed
Verbitsky, A., Dopfel, D., & Zhang, N. (2020). Rodent models of post-traumatic stress disorder: Behavioral assessment. Translational Psychiatry, 10, 132.CrossRefGoogle ScholarPubMed
von Mücke-Heim, I.-A., Urbina-Treviño, L., Bordes, J., Ries, C., Schmidt, M. V., & Deussing, J. M. (2022). Introducing a depression-like syndrome for translational neuropsychiatry: A plea for taxonomical validity and improved comparability between humans and mice. Molecular Psychiatry, 28, 329–340.Google ScholarPubMed
Wang, H.-Q., Wang, Z.-Z., & Chen, N.-H. (2021). The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacological Research, 167, 105542.CrossRefGoogle ScholarPubMed
Willner, P. (1984). The validity of animal models of depression. Psychopharmacology, 83, 1–16.CrossRefGoogle ScholarPubMed
Wiltschko, A. B., Tsukahara, T., Zeine, A., Anyoha, R., Gillis, W. F., Markowitz, J. E., … Datta, S. R. (2020). Revealing the structure of pharmacobehavioral space through motion sequencing. Nature Neuroscience, 23, 1433–1443.CrossRefGoogle ScholarPubMed
Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B., … Steinhausen, H.-C. (2011). The size and burden of mental disorders and other disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21, 655–679.CrossRefGoogle ScholarPubMed
Wotjak, C. T. (2019). Sound check, stage design and screen plot – how to increase the comparability of fear conditioning and fear extinction experiments. Psychopharmacology, 236, 33–48.CrossRefGoogle ScholarPubMed
Yalcin, I., Belzung, C., & Surget, A. (2008). Mouse strain differences in the unpredictable chronic mild stress: A four-antidepressant survey. Behavioural Brain Research, 193, 140–143.CrossRefGoogle Scholar
Yehuda, R., & Antelman, S. M. (1993). Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biological Psychiatry, 33, 479–486.CrossRefGoogle ScholarPubMed
Yovell, Y., Bannett, Y., & Shalev, A. Y. (2003). Amnesia for traumatic events among recent survivors: A pilot study. CNS Spectrums, 8, 676–685.CrossRefGoogle ScholarPubMed
Zbozinek, T. D., Rose, R. D., Wolitzky-Taylor, K. B., Sherbourne, C., Sullivan, G., Stein, M. B., … Craske, M. G. (2012). Diagnostic overlap of generalized anxiety disorder and major depressive disorder in a primary care sample. Depression and Anxiety, 29, 1065–1071.CrossRefGoogle Scholar
Zuj, D. V., Palmer, M. A., Lommen, M. J. J., & Felmingham, K. L. (2016). The centrality of fear extinction in linking risk factors to PTSD: A narrative review. Neuroscience & Biobehavioral Reviews, 69, 15–35.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×