Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-2bdfx Total loading time: 0 Render date: 2025-09-28T05:10:57.157Z Has data issue: false hasContentIssue false

Chapter 4 - Peripheral Physiological Measures of Emotion

from Section II - Measuring Emotional Processes

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

This chapter introduces peripheral physiological measures of emotion as important tools for studying emotion in affective neuroscience. It examines responses across three systems: skeletal muscle activity, autonomic nervous system (cardiovascular and electrodermal), and respiration. It surveys measurement modalities, derived metrics, their neural control, timescales of expected response, and prominent findings in recent literature, linking them to central nervous system activity throughout. The chapter concludes by highlighting outstanding questions and future challenges in the field of peripheral physiological measures of emotion.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Andreassi, J. L. (2006). Psychophysiology: Human behavior and physiological response. Routledge.Google Scholar
Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10, 229–240.CrossRefGoogle Scholar
Ayala, E. S., Meuret, A. E., & Ritz, T. (2010). Confrontation with blood and disgust stimuli precipitates respiratory dysregulation in blood–injection–injury phobia. Biological Psychology, 84, 88–97.CrossRefGoogle ScholarPubMed
Benning, S. D., Patrick, C. J., & Lang, A. R. (2004). Emotional modulation of the post-auricular reflex. Psychophysiology, 41, 426–432.CrossRefGoogle ScholarPubMed
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., … Van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretative caveats. Psychophysiology, 34, 623–648.CrossRefGoogle Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: The modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98, 459–487.CrossRefGoogle ScholarPubMed
Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & van Boxtel, A. (2005). Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42, 1–15.CrossRefGoogle ScholarPubMed
Boucsein, W. (2012). Electrodermal activity. Springer Science & Business Media.CrossRefGoogle Scholar
Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1, 276–298.Google ScholarPubMed
Bradley, M. M., Codispoti, M., & Lang, P. J. (2006). A multi-process account of startle modulation during affective perception. Psychophysiology, 43, 486–497.CrossRefGoogle ScholarPubMed
Brosschot, J. F., & Thayer, J. F. (2003). Heart rate response is longer after negative emotions than after positive emotions. International Journal of Psychophysiology, 50, 181–187.CrossRefGoogle ScholarPubMed
Burgdorf, C., Rinn, C., & Stemmler, G. (2016). Effects of personality on the opioidergic modulation of the emotion warmth-liking. Journal of Comparative Neurology, 524, 1712–1726.Google ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (2017). Handbook of psychophysiology, 4th ed. Cambridge University Press.Google Scholar
Cieslak, M., Ryan, W. S., Babenko, V., Erro, H., Rathbun, Z. M., Meiring, W., … Grafton, S. T. (2018). Quantifying rapid changes in cardiovascular state with a moving ensemble average. Psychophysiology, 55, e13018.CrossRefGoogle ScholarPubMed
Cieslak, M., Ryan, W. S., Macy, A., Kelsey, R. M., Cornick, J. E., Verket, M., … Grafton, S. (2015). Simultaneous acquisition of functional magnetic resonance images and impedance cardiography. Psychophysiology, 52, 481–488.CrossRefGoogle ScholarPubMed
Cohen, A. S., Barlow, D. H., & Blanchard, E. B. (1985). Psychophysiology of relaxation-associated panic attacks. Journal of Abnormal Psychology, 94, 96–101.CrossRefGoogle ScholarPubMed
Cuthbert, B. N. (2022). Research domain criteria (RDoC): Progress and potential. Current Directions in Psychological Science, 31, 107–114.CrossRefGoogle ScholarPubMed
Cutmore, T. R., & James, D. A. (2007). Sensors and sensor systems for psychophysiological monitoring: A review of current trends. Journal of Psychophysiology, 21, 51–71.CrossRefGoogle Scholar
Davis, K. L., & Montag, C. (2019). Selected principles of Pankseppian affective neuroscience. Frontiers in Neuroscience, 12, 1025.CrossRefGoogle ScholarPubMed
Dawson, M. E., Schell, A. M., & Böhmelt, A. H. (Eds.), (1999). Startle modification: Implications for neuroscience, cognitive science, and clinical science. Cambridge University Press.CrossRefGoogle Scholar
Dawson, M. E., Schell, A. M., & Filion, D. L. (2017). The electrodermal system. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (Eds.), Handbook of psychophysiology (pp. 217–243). Cambridge University Press.Google Scholar
Dimberg, U., & Thunberg, M. (1998). Rapid facial reactions to emotional facial expressions. Scandinavian Journal of Psychology, 39, 39–45.Google ScholarPubMed
Doberenz, S., Roth, W. T., Wollburg, E., Maslowski, N. I., & Kim, S. (2011). Methodological considerations in ambulatory skin conductance monitoring. International Journal of Psychophysiology, 80, 87–95.CrossRefGoogle ScholarPubMed
Eisenbarth, H., Chang, L. J., & Wager, T. D. (2016). Multivariate brain prediction of heart rate and skin conductance responses to social threat. Journal of Neuroscience, 36, 11987–11998.CrossRefGoogle ScholarPubMed
Ekman, P. (2003). Darwin, deception and facial expression. Annals New York Academy of Sciences, 1000, 205–221.CrossRefGoogle ScholarPubMed
Ekman, P., Davidson, R. J., & Friesen, W. V. (1990). The Duchenne smile: Emotional expression and brain physiology II. Journal of Personality and Social Psychology, 58, 342–353.CrossRefGoogle Scholar
Feleky, A. (1916). The influence of the emotions on respiration. Journal of Experimental Psychology, 1, 218–241.CrossRefGoogle Scholar
Frazier, T. W., Strauss, M. E., & Steinhauer, S. (2004). Respiratory sinus arrhythmia as an index of emotional response. Psychophysiology, 41, 75–83.CrossRefGoogle Scholar
Fridlund, A., & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23, 567–589.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Zorab, E., Navaratnam, N., Engels, M., Mallorquí-Bagué, N., Minati, L., … Critchley, H. D. (2016). Anger in brain and body: The neural and physiological perturbation of decision-making by emotion. Social Cognitive and Affective Neuroscience, 11, 150–158.CrossRefGoogle ScholarPubMed
Gavrilova, L., & Zawadzki, M. J. (2023). Testing the associations between state and trait anxiety, anger, sadness, and ambulatory blood pressure and whether race impacts these relationships. Annals of Behavioral Medicine, 57, 38–49.CrossRefGoogle ScholarPubMed
Gerpheide, K., Unterschemmann, S. L., Panitz, C., Bierwirth, P., Gross, J. J., & Mueller, E. M. (2024). Unpredictable threat increases early event-related potential amplitudes and cardiac acceleration: A brain–heart coupling study. Psychophysiology, 61, e14563.CrossRefGoogle ScholarPubMed
Gomez, P., Shafy, S., & Danuser, B. (2008). Respiration, metabolic balance, and attention in affective picture processing. Biological Psychology, 78, 138–149.CrossRefGoogle ScholarPubMed
Gomez, P., Zimmermann, P., Guttormsen-Schär, S., & Danuser, B. (2005). Respiratory responses associated with affective processing of film stimuli. Biological Psychology, 68, 223–235.CrossRefGoogle ScholarPubMed
Gordan, R., Gwathmey, J. K., & Xie, L. H. (2015). Autonomic and endocrine control of cardiovascular function. World Journal of Cardiology, 7, 204–214.CrossRefGoogle ScholarPubMed
Gravenstein, J. S., Jaffe, M. B., Gravenstein, N., & Paulus, D. A. (2011). Capnography. Cambridge University Press.CrossRefGoogle Scholar
Hartman, M. E., Ladwig, M. A., & Ekkekakis, P. (2021). Contactless differentiation of pleasant and unpleasant valence: Assessment of the acoustic startle eyeblink response with infrared reflectance oculography. Behavior Research Methods, 53, 2092–2104.CrossRefGoogle ScholarPubMed
Heller, A. S., Lapate, R. C., Mayer, K. E., & Davidson, R. J. (2014). The face of negative affect: Trial-by-trial corrugator responses to negative pictures are positively associated with amygdala and negatively associated with ventromedial prefrontal cortex activity. Journal of Cognitive Neuroscience, 26, 2102–2110.CrossRefGoogle ScholarPubMed
Hess, U., Sabourin, G., & Kleck, R. E. (2007). Postauricular and eyeblink startle responses to facial expression. Psychophysiology, 44, 431–435.CrossRefGoogle Scholar
Jänig, W., & Häbler, H. J. (2000). Specificity in the organization of the autonomic nervous system: A basis for precise neural regulation of homeostatic and protective body functions. Progress in Brain Research, 122, 351–367.CrossRefGoogle ScholarPubMed
Jennings, J. R. (2003). Autoregulation of blood pressure and thought: Preliminary results of an application of brain imaging to psychosomatic medicine. Psychosomatic Medicine, 65, 384–395.CrossRefGoogle ScholarPubMed
Jennings, J. R., Berg, W., Hutcheson, J., Obrist, P., Porges, S., & Turpin, G. (1981). Committee report. Publication guidelines for heart rate studies in man. Psychophysiology, 18, 226–231.CrossRefGoogle ScholarPubMed
Kelsey, R. M., Reiff, S., Wiens, S., Schneider, T. R., Mezzcappa, E. S., & Guethlein, W. (1998). The ensemble-averaged impedance cardiogram: An evaluation of scoring methods and interrater reliability. Psychophysiology, 35, 337–340.CrossRefGoogle ScholarPubMed
Kim, S., Wollburg, E., & Roth, W. T. (2012). Opposing breathing therapies for panic disorder: A randomized controlled trial of lowering vs raising end-tidal pCO2. The Journal of Clinical Psychiatry, 73, 13479.CrossRefGoogle Scholar
Klumpp, H., & Shankman, S. A. (2018). Using event-related potentials and startle to evaluate time course in anxiety and depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 10–18.Google ScholarPubMed
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84, 394–421.CrossRefGoogle ScholarPubMed
Kreibig, S. D., Gendolla, G. H. E., & Scherer, K. R. (2012). Goal relevance and goal conduciveness appraisals lead to differential autonomic reactivity in emotional responding to performance feedback. Biological Psychology, 91, 365–375.CrossRefGoogle ScholarPubMed
Kreibig, S. D., Schaefer, G., & Brosch, T. (2010). Psychophysiological response patterning in emotion: Implications for affective computing. In Scherer, K. R., Baenziger, T., & Roesch, E. (Eds.), Blueprint for affective computing: A sourcebook (pp. 105–130). Oxford University Press.Google Scholar
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology, 44, 787–806.CrossRefGoogle ScholarPubMed
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2011). Affective modulation of the acoustic startle: Does sadness engage the defensive system? Biological Psychology, 87, 161–163.CrossRefGoogle ScholarPubMed
Kuhn, M., Wendt, J., Sjouwerman, R., Büchel, C., Hamm, A., & Lonsdorf, T. B. (2020). The neurofunctional basis of affective startle modulation in humans: Evidence from combined facial electromyography and functional magnetic resonance imaging. Biological Psychiatry, 87, 548–558.CrossRefGoogle ScholarPubMed
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213.CrossRefGoogle ScholarPubMed
Lane, R. D., McRae, K., Reiman, E. M., Chen, K., Ahern, G. L., & Thayer, J. F. (2009). Neural correlates of heart rate variability during emotion. NeuroImage, 44, 213–222.CrossRefGoogle ScholarPubMed
Langewouters, G., Settels, J., Roelandt, R., & Wesseling, K. (1998). Why use Finapres or Portapres rather than intraarterial or intermittent non-invasive techniques of blood pressure measurement? Journal of Medical Engineering & Technology, 22, 37–43.CrossRefGoogle ScholarPubMed
Larsen, J. T., Norris, C. J., & Cacioppo, J. T. (2003). Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. Psychophysiology, 40, 776–785.CrossRefGoogle ScholarPubMed
Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6, 100–112.Google Scholar
Levenson, R. W. (2019). Stress and illness: A role for specific emotions. Psychosomatic Medicine, 81, 720–730.CrossRefGoogle Scholar
Lindström, B. R., Mattsson-Mårn, I. B., Golkar, A., & Olsson, A. (2013). In your face: Risk of punishment enhances cognitive control and error-related activity in the corrugator supercilii muscle. PLoS ONE, 8, e65692.CrossRefGoogle ScholarPubMed
Lozano, D. L., Norman, G., Knox, D., Wood, B. L., Miller, B. D., Emery, C. F., & Berntson, G. G. (2007). Where to B in dZ/dt. Psychophysiology, 44, 113–119.CrossRefGoogle Scholar
Marsh, P., Beauchaine, T. P., & Williams, B. (2008). Dissociation of sad facial expressions and autonomic nervous system responding in boys with disruptive behavior disorders. Psychophysiology, 45, 100–110.CrossRefGoogle Scholar
Matsumoto, D., & Lee, M. (1993). Consciousness, volition, and the neuropsychology of facial expressions of emotion. Consciousness and Cognition, 2, 237–254.CrossRefGoogle Scholar
Matsumura, K., Shimizu, K., Rolfe, P., Kakimoto, M., & Yamakoshi, T. (2017). Inter-method reliability of pulse volume related measures derived using finger-photoplethysmography. Journal of Psychophysiology, 32, 182–190.Google Scholar
Miller, A. D., Bianchi, A. L., & Bishop, B. P. (2019). Neural control of the respiratory muscles. CRC Press.CrossRefGoogle Scholar
Nikula, R. (1991). Psychological correlates of nonspecific skin conductance responses. Psychophysiology, 28, 86–90.CrossRefGoogle ScholarPubMed
O’Beirne, G. A., & Patuzzi, R. B. (1999). Basic properties of the sound-evoked post-auricular muscle response (PAMR). Hearing Research, 138, 115–132.CrossRefGoogle ScholarPubMed
Palomba, D., Sarlo, M., Angrilli, A., Mini, A., & Stegagno, L. (2000). Cardiac responses associated with affective processing of unpleasant film stimuli. International Journal of Psychophysiology, 36, 45–57.CrossRefGoogle ScholarPubMed
Pauls, C. A., & Stemmler, G. (2003). Repressive and defensive coping during fear and anger. Emotion, 3, 284–302.CrossRefGoogle ScholarPubMed
Peira, N., Fredrikson, M., & Pourtois, G. (2014). Controlling the emotional heart: Heart rate biofeedback improves cardiac control during emotional reactions. International Journal of Psychophysiology, 91, 225–231.CrossRefGoogle ScholarPubMed
Pickering, T. G., Hall, J. E., Appel, L. J., Falkner, B. E., Graves, J., Hill, M. N., … Roccella, E. J. (2005). Recommendations for blood pressure measurement in humans and experimental animals: part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension, 45, 142–161.CrossRefGoogle Scholar
Porges, S. W., & Byrne, E. A. (1992). Research methods for measurement of heart rate and respiration. Biological Psychology, 34, 93–130.CrossRefGoogle ScholarPubMed
Posada-Quintero, H. F., & Chon, K. H. (2020). Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors, 20, 479.CrossRefGoogle ScholarPubMed
Quigley, K. S., & Barrett, L. F. (2014). Is there consistency and specificity of autonomic changes during emotional episodes? Guidance from the conceptual act theory and psychophysiology. Biological Psychology, 98, 82–94.CrossRefGoogle ScholarPubMed
Quintana, D., Alvares, G. A., & Heathers, J. (2016). Guidelines for reporting articles on psychiatry and heart rate variability (graph): Recommendations to advance research communication. Translational Psychiatry, 6, e803–e803.CrossRefGoogle ScholarPubMed
Rastegar, S., GholamHosseini, H., & Lowe, A. (2020). Non-invasive continuous blood pressure monitoring systems: Current and proposed technology issues and challenges. Physical and Engineering Sciences in Medicine, 43, 11–28.CrossRefGoogle Scholar
Ritz, T., & Dahme, B. (2006). Implementation and interpretation of respiratory sinus arrhythmia measures in psychosomatic medicine: Practice against better evidence? Psychosomatic Medicine, 68, 617–627.CrossRefGoogle ScholarPubMed
Ritz, T., Dahme, B., Dubois, A. B., Folgering, H., Fritz, G. K., Harver, A., … Van de Woestijne, K. P. (2002). Guidelines for mechanical lung function measurements in psychophysiology. Psychophysiology, 39, 546–567.CrossRefGoogle ScholarPubMed
Rymarczyk, K., Zurawski, L., Jankowiak-Siuda, K., & Szatkowska, I. (2019). Empathy in facial mimicry of fear and disgust: Simultaneous EMG-fMRI recordings during observation of static and dynamic facial expressions. Frontiers in Psychology, 10, 701.CrossRefGoogle ScholarPubMed
Shaffer, F., Meehan, Z. M., & Zerr, C. L. (2020). A critical review of ultra-short-term heart rate variability norms research. Frontiers in Neuroscience, 14, 594880.CrossRefGoogle ScholarPubMed
Shapiro, D., Jamner, L. D., & Goldstein, I. B. (1997). Daily mood states and ambulatory blood pressure. Psychophysiology, 34, 399–405.CrossRefGoogle ScholarPubMed
Shapiro, D., Jamner, L., Lane, J., Light, K., Myrtek, M., Sawada, Y., & Steptoe, A. (1996). Blood pressure publication guidelines. Society for Psychophysical Research. Psychophysiology, 33, 1–12.CrossRefGoogle ScholarPubMed
Shastri, D., Merla, A., Tsiamyrtzis, P., & Pavlidis, I. (2008). Imaging facial signs of neurophysiological responses. IEEE Transactions on Biomedical Engineering, 56, 477–484.Google ScholarPubMed
Shearn, D., Bergman, E., Hill, K., Abel, A., & Hinds, L. (1990). Facial coloration and temperature responses in blushing. Psychophysiology, 27, 687–693.CrossRefGoogle ScholarPubMed
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27, 1–23.Google ScholarPubMed
Shokri-Kojori, E., Tomasi, D., & Volkow, N. D. (2018). An autonomic network: Synchrony between slow rhythms of pulse and brain resting state is associated with personality and emotions. Cerebral Cortex, 28, 3356–3371.CrossRefGoogle ScholarPubMed
Sloan, D. M., & Sandt, A. R. (2010). Depressed mood and emotional responding. Biological Psychology, 84, 368–374.CrossRefGoogle ScholarPubMed
Society for Psychophysiological Research (SPR) Ad Hoc Committee on Electrodermal Measures, Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E., & Filion, D. L. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49, 1017–1034.Google ScholarPubMed
Sparks, J., & Lang, A. (2010). An initial examination of the post-auricular reflex as a physiological indicator of appetitive activation during television viewing. Communication Methods and Measures, 4, 311–330.CrossRefGoogle Scholar
Stemmler, G., Aue, T., & Wacker, J. (2007). Anger and fear: Separable effects of emotion and motivational direction on somatovisceral responses. International Journal of Psychophysiology, 66, 141–153.CrossRefGoogle ScholarPubMed
Stern, R. M., Ray, W. J., & Quigley, K. S. (2001). Psychophysiological recording. Oxford University Press.Google Scholar
Sturm, V. E., Sollberger, M., Seeley, W. W., Rankin, K. P., Ascher, E. A., Rosen, H. J., … Levenson, R. W. (2013). Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity. Social Cognitive and Affective Neuroscience, 8, 468–474.CrossRefGoogle ScholarPubMed
Stussi, Y., Delplanque, S., & Sander, D. (2023). Measuring the postauricular reflex as an indicator of appetitive processing. In Bensafi, M. (Ed.), Basic protocols on emotions, senses, and foods (pp. 203–222). Springer.Google Scholar
Stussi, Y., Ferrero, A., Pourtois, G., & Sander, D. (2019). Achievement motivation modulates Pavlovian aversive conditioning to goal-relevant stimuli. npj Science of Learning, 4, 4.CrossRefGoogle ScholarPubMed
Sze, J. A., Gyurak, A., Goodkind, M. S., & Levenson, R. W. (2012). Greater emotional empathy and prosocial behavior in late life. Emotion, 12, 1129–1140.CrossRefGoogle ScholarPubMed
Task Force of the European Society of Cardiology (ESC) and the North American Society of Pacing Electrophysiology (NASPE) (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065.Google Scholar
Tolin, D. F., Lee, E., Levy, H. C., Das, A., Mammo, L., Katz, B. W., & Diefenbach, G. J. (2021). Psychophysiological assessment of stress reactivity and recovery in anxiety disorders. Journal of Anxiety Disorders, 82, 102426.CrossRefGoogle ScholarPubMed
Trost, W. J., Labbé, C., & Grandjean, D. (2017). Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia, 96, 96–110.CrossRefGoogle Scholar
Van Boxtel, A. (2001). Optimal signal bandwidth for the recording of surface EMG activity of facial, jaw, oral, and neck muscles. Psychophysiology, 38, 22–34.CrossRefGoogle ScholarPubMed
van Boxtel, A., Boelhouwer, A. J., & Bos, A. R. (1998). Optimal EMG signal bandwidth and interelectrode distance for the recording of acoustic, electrocutaneous, and photic blink reflexes. Psychophysiology, 35, 690–697.CrossRefGoogle ScholarPubMed
Van Der Mee, D., Gevonden, M., Westerink, J. H., & De Geus, E. (2021). Validity of electrodermal activity-based measures of sympathetic nervous system activity from a wrist-worn device. International Journal of Psychophysiology, 168, 52–64.CrossRefGoogle ScholarPubMed
Van Reekum, C. M., Johnstone, T., Banse, R., Etter, A., Wehrle, T., & Scherer, K. R. (2004). Psychophysiological responses to appraisal dimensions in a computer game. Cognition and Emotion, 18, 663–688.CrossRefGoogle Scholar
Vergara, R. C., Möenne-Loccoz, C., Ávalos, C., Egaña, J., & Maldonado, P. E. (2019). Finger temperature: A psychophysiological assessment of the attentional state. Frontiers in Human Neuroscience, 13, 66.CrossRefGoogle ScholarPubMed
Vlemincx, E., Severs, L., & Ramirez, J. M. (2022). The psychophysiology of the sigh: II: The sigh from the psychological perspective. Biological Psychology, 170, 108386.Google Scholar
Wattendorf, E., Westermann, B., Fiedler, K., Ritz, S., Redmann, A., Pfannmöller, J., … Celio, M. R. (2019). Laughter is in the air: Involvement of key nodes of the emotional motor system in the anticipation of tickling. Social Cognitive and Affective Neuroscience, 14, 837–847.CrossRefGoogle ScholarPubMed
Wientjes, C. J. E. (1992). Respiration in psychophysiology: Measurement issues and applications. Biological Psychology, 34, 179–203.CrossRefGoogle Scholar
Yoshihara, K., Tanabe, H. C., Kawamichi, H., Koike, T., Yamazaki, M., Sudo, N., & Sadato, N. (2016). Neural correlates of fear-induced sympathetic response associated with the peripheral temperature change rate. NeuroImage, 134, 522–531.CrossRefGoogle ScholarPubMed
Zarei, S. A., Yahyavi, S. S., Salehi, I., Kazemiha, M., Kamali, A. M., & Nami, M. (2022). Toward reanimating the laughter-involved large-scale brain networks to alleviate affective symptoms. Brain and Behavior, 12, e2640.CrossRefGoogle ScholarPubMed
Zerwas, F. K., Springstein, T., Karnilowicz, H. R., Lam, P., Butler, E. A., John, O. P., & Mauss, I. B. (2021). “I feel you”: Greater linkage between friends’ physiological responses and emotional experience is associated with greater empathic accuracy. Biological Psychology, 161, 108079.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×