Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-ff9ft Total loading time: 0 Render date: 2025-10-01T11:41:28.605Z Has data issue: false hasContentIssue false

Chapter 13 - Olfaction and Emotion

from Section III - Emotion Perception and Elicitation

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

The connection between olfaction and emotions has been established across many subjects. Considering the anatomy of the olfactory system, the canonical targets of olfactory projection neurons are part of and associated with nonolfactory neural circuits, widely summarized as the limbic system. Presumably, partly due to this strong connection between olfaction and the limbic system, odors can directly evoke emotions and result in emotional autobiographical memories. Accordingly, odors have been used to modify emotions via nocturnal exposure, active inhalation, and olfactory training. Odor pleasantness impacts these beneficial effects. The valence of odors changes resting state functional connectivity in regions associated with emotions, memory, motivation, and action control. Considering all the above, olfactory loss negatively influences human behaviors in various life domains, including ingestion, hazard avoidance, and social communication, often resulting in a reduced quality of life and well-being, which in turn may be associated with depressive disorders.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adolph, D., Schlösser, S., Hawighorst, M., & Pause, B. M. (2010). Chemosensory signals of competition increase the skin conductance response in humans. Physiology & Behavior, 101, 666–671.CrossRefGoogle ScholarPubMed
Aggleton, J. P., & Saunders, R. C. (2000). The amygdala – what’s happened in the last decade? 1.4 The amygdala and olfactory processing. In Aggleton, J. P. (Ed.), The amygdala (pp. 8–15). Oxford University Press.CrossRefGoogle Scholar
Alaoui-Ismaïli, O., Vernet-Maury, E., Dittmar, A., Delhomme, G., & Chanel, J. (1997). Odor hedonics: Connection with emotional response estimated by autonomic parameters. Chemical Senses, 22, 237–248.CrossRefGoogle ScholarPubMed
Albrecht, J., Wiesmann, M., & Witt, M. (2014). Functional anatomy of the olfactory system II: Central relays, pathways, and their function. In Welge-Luessen, A. & Hummel, T. (Eds.), Management of smell and taste disorders (pp. 27–38). Thieme.Google Scholar
Anderson, A. K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D. G., Glover, G., … Sobel, N. (2003). Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience, 6, 196–202.CrossRefGoogle ScholarPubMed
Arshamian, A., Gerkin, R. C., Kruspe, N., Wnuk, E., Floyd, S., O’Meara, C., … Majid, A. (2022). The perception of odor pleasantness is shared across cultures. Current Biology, 32, 2061–2066.CrossRefGoogle ScholarPubMed
Atanasova, B., El-Hage, W., Chabanet, C., Gaillard, P., Belzung, C., & Camus, V. (2010). Olfactory anhedonia and negative olfactory alliesthesia in depressed patients. Psychiatry Research, 176, 190–196.CrossRefGoogle ScholarPubMed
Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research. Brain Research Reviews, 22, 229–244.CrossRefGoogle ScholarPubMed
Bahadori, H., Hosseini Amiri, M., Sharafi, H., & Entezari, A. (2022). The effect of aromatherapy with damask rose on anxiety, accuracy and job stress in operating room nurses. Evidence Based Care, 12, 56–62.Google Scholar
Barkat, S., Poncelet, J., Landis, B. N., Rouby, C., & Bensafi, M. (2008). Improved smell pleasantness after odor-taste associative learning in humans. Neuroscience Letters, 434, 108–112.CrossRefGoogle ScholarPubMed
Bensafi, M., Rinck, F., Schaal, B., & Rouby, C. (2007). Verbal cues modulate hedonic perception of odors in 5-year-old children as well as in adults. Chemical Senses, 32, 855–862.CrossRefGoogle ScholarPubMed
Bensafi, M., Rouby, C., Farget, V., Bertrand, B., Vigouroux, M., & Holley, A. (2002a). Influence of affective and cognitive judgments on autonomic parameters during inhalation of pleasant and unpleasant odors in humans. Neuroscience Letters, 319, 162–166.CrossRefGoogle Scholar
Bensafi, M., Rouby, C., Farget, V., Bertrand, B., Vigouroux, M., & Holley, A. (2002b). Autonomic nervous system responses to odours: The role of pleasantness and arousal. Chemical Senses, 27, 703–709.CrossRefGoogle Scholar
Bensafi, M., Rouby, C., Farget, V., Vigouroux, M., & Holley, A. (2001). Are pleasant and unpleasant odors processed in the same way. Chemical Senses, 26, 786.Google Scholar
Bergmann, O., Liebl, J., Bernard, S., Alkass, K., Yeung, M. S. Y., Steier, P., … Frisén, J. (2012). The age of olfactory bulb neurons in humans. Neuron, 74, 634–639.CrossRefGoogle ScholarPubMed
Boulton, M., Flessner, M., Armstrong, D., Hay, J., & Johnston, M. (1997). Lymphatic drainage of the CNS: Effects of lymphatic diversion/ligation on CSF protein transport to plasma. American Journal of Physiology, 272, R1613–R1619.Google ScholarPubMed
Brunjes, P. C., Kay, R. B., & Arrivillaga, J. P. (2011). The mouse olfactory peduncle. The Journal of Comparative Neurology, 519, 2870–2886.CrossRefGoogle ScholarPubMed
Buschhüter, D., Smitka, M., Puschmann, S., Gerber, J. C., Witt, M., Abolmaali, N. D., & Hummel, T. (2008). Correlation between olfactory bulb volume and olfactory function. Neuroimage, 42, 498–502.CrossRefGoogle ScholarPubMed
Cain, W. S., & Johnson, F., Jr. (1978). Lability of odor pleasantness: Influence of mere exposure. Perception, 7, 459–465.CrossRefGoogle ScholarPubMed
Calvi, E., Quassolo, U., Massaia, M., Scandurra, A., D’Aniello, B., & D’Amelio, P. (2020). The scent of emotions: A systematic review of human intra- and interspecific chemical communication of emotions. Brain and Behavior, 10, e01585.CrossRefGoogle ScholarPubMed
Cardello, A. V. (2017). Hedonic scaling: Assumptions, contexts, and frames of reference. Current Opinion in Food Science, 15, 14–21.CrossRefGoogle Scholar
Carlson, H., Leitão, J., Delplanque, S., Cayeux, I., Sander, D., & Vuilleumier, P. (2020). Sustained effects of pleasant and unpleasant smells on resting state brain activity. Cortex, 132, 386–403.CrossRefGoogle ScholarPubMed
Carmichael, S. T., Clugnet, M. C., & Price, J. L. (1994). Central olfactory connections in the macaque monkey. Journal of Comparative Neurology, 346, 403–434.Google ScholarPubMed
Carmichael, S. T., & Price, J. L. (1995a). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. The Journal of Comparative Neurology, 363, 615–641.Google Scholar
Carmichael, S. T., & Price, J. L. (1995b). Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. The Journal of Comparative Neurology, 363, 642–664.Google Scholar
Carmichael, S. T., & Price, J. L. (1996). Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. The Journal of Comparative Neurology, 371, 179–207.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Cecchetto, C., Lancini, E., Bueti, D., Rumiati, R. I., & Parma, V. (2019). Body odors (even when masked) make you more emotional: Behavioral and neural insights. Scientific Reports, 9, 5489.CrossRefGoogle ScholarPubMed
Cecchetto, C., Rumiati, R. I., & Aiello, M. (2017). Alexithymia and emotional reactions to odors. Scientific Reports, 7, 14097.CrossRefGoogle ScholarPubMed
Chalençon, L., Thevenet, M., Noury, N., Bensafi, M., & Mandairon, N. (2022). Identification of new behavioral parameters to assess odorant hedonic value in humans: A naturalistic approach. Journal of Neuroscience Methods, 366, 109422.CrossRefGoogle ScholarPubMed
Chu, S., & Downes, J. J. (2000). Odour-evoked autobiographical memories: Psychological investigations of Proustian phenomena. Chemical Senses, 25, 111–116.CrossRefGoogle ScholarPubMed
Cleland, T. A., & Linster, C. (2019). Central olfactory structures. In Doty, R. L. (Ed.), Handbook of clinical neurology. Smell and taste, vol. 164 (pp. 79–96). Elsevier.Google Scholar
Croy, I., & Hummel, T. (2017). Olfaction as a marker for depression. Journal of Neurology, 264, 631–638.CrossRefGoogle ScholarPubMed
Croy, I., Negoias, S., Novakova, L., Landis, B. N., & Hummel, T. (2012). Learning about the functions of the olfactory system from people without a sense of smell. PLoS ONE, 7, e33365.CrossRefGoogle ScholarPubMed
Croy, I., Nordin, S., & Hummel, T. (2014). Olfactory disorders and quality of life – An updated review. Chemical Senses, 39, 185–194.CrossRefGoogle ScholarPubMed
Croy, I., Olgun, S., & Joraschky, P. (2011). Basic emotions elicited by odors and pictures. Emotion, 11, 1331.CrossRefGoogle ScholarPubMed
Croy, I., Symmank, A., Schellong, J., Hummel, C., Gerber, J., Joraschky, P., & Hummel, T. (2014). Olfaction as a marker for depression in humans. Journal of Affective Disorders, 160, 80–86.CrossRefGoogle ScholarPubMed
Curtis, M. A., Kam, M., Nannmark, U., Anderson, M. F., Axell, M. Z., Wikkelso, C., … Eriksson, P. S. (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 315, 1243–1249.CrossRefGoogle Scholar
de Groot, J. H. B., Smeets, M. A. M., Kaldewaij, A., Duijndam, M. J. A., & Semin, G. R. (2012). Chemosignals communicate human emotions. Psychological Science, 23, 1417–1424.CrossRefGoogle ScholarPubMed
de Groot, J. H. B., Smeets, M. A. M., Rowson, M. J., Bulsing, P. J., Blonk, C. G., Wilkinson, J. E., & Semin, G. R. (2015). A sniff of happiness. Psychological Science, 26, 684–700.CrossRefGoogle ScholarPubMed
de Groot, J. H. B., Smeets, M. A. M., & Semin, G. R. (2015). Rapid stress system drives chemical transfer of fear from sender to receiver. PLoS ONE, 10, e0118211.CrossRefGoogle ScholarPubMed
de Olmos, J., Hardy, H., & Heimer, L. (1978). The afferent connections of the main and the accessory olfactory bulb formations in the rat: An experimental HRP-study. The Journal of Comparative Neurology, 181, 213–244.CrossRefGoogle ScholarPubMed
Desiato, V. M., Levy, D. A., Byun, Y. J., Nguyen, S. A., Soler, Z. M., & Schlosser, R. J. (2021). The prevalence of olfactory dysfunction in the general population: A systematic review and meta-analysis. American Journal of Rhinology & Allergy, 35, 195–205.CrossRefGoogle ScholarPubMed
Doucette, W., Gire, D. H., Whitesell, J., Carmean, V., Lucero, M. T., & Restrepo, D. (2011). Associative cortex features in the first olfactory brain relay station. Neuron, 69, 1176–1187.CrossRefGoogle ScholarPubMed
Dravnieks, A., Masurat, T., & Lamm, R. A. (1984). Hedonics of odors and odor descriptors. Journal of the Air Pollution Control Association, 34, 752–755.CrossRefGoogle Scholar
Ebrahimi, H., Mardani, A., Basirinezhad, M.H., Hamidzadeh, A., & Eskandari, F. (2021). The effects of lavender and chamomile essential oil inhalation aromatherapy on depression, anxiety and stress in older community-dwelling people: A randomized controlled trial. Explore, 18, 272–278.Google ScholarPubMed
Echevarria-Cooper, S. L., Zhou, G., Zelano, C., Pestilli, F., Parrish, T. B., & Kahnt, T. (2022). Mapping the microstructure and striae of the human olfactory tract with diffusion MRI. The Journal of Neuroscience, 42, 58–68.CrossRefGoogle ScholarPubMed
Ekman, P. (1982). Emotion in the human face. Cambridge University Press.Google Scholar
Fayazi, S., Babashahi, M., & Rezaei, M. (2011). The effect of inhalation aromatherapy on anxiety level of the patients in preoperative period. Iranian Journal of Nursing and Midwifery Research, 16, 278–283.Google Scholar
Feng, G., & Lei, J. (2022). The effect of odor valence on facial attractiveness judgment: A preliminary experiment. Brain Sciences, 12, 665.CrossRefGoogle ScholarPubMed
Ferdenzi, C., Poncelet, J., Rouby, C., & Bensafi, M. (2014). Repeated exposure to odors induces affective habituation of perception and sniffing. Frontiers in Behavioral Neuroscience, 8, 119.CrossRefGoogle ScholarPubMed
Fournel, A., Ferdenzi, C., Sezille, C., Rouby, C., & Bensafi, M. (2016). Multidimensional representation of odors in the human olfactory cortex. Human Brain Mapping, 37, 2161–2172.CrossRefGoogle ScholarPubMed
García-Cabezas, M. Á., & Barbas, H. (2014). A direct anterior cingulate pathway to the primate primary olfactory cortex may control attention to olfaction. Brain Structure & Function, 219, 1735–1754.CrossRefGoogle Scholar
Garcia-Falgueras, A., Junque, C., Giménez, M., Caldú, X., Segovia, S., & Guillamon, A. (2006). Sex differences in the human olfactory system. Brain Research, 1116, 103–111.CrossRefGoogle ScholarPubMed
Gelstein, S., Yeshurun, Y., Rozenkrantz, L., Shushan, S., Frumin, I., Roth, Y., & Sobel, N. (2011). Human tears contain a chemosignal. Science, 331, 226–230.CrossRefGoogle ScholarPubMed
Glass, S. T., Lingg, E., & Heuberger, E. (2014). Do ambient urban odors evoke basic emotions? Frontiers in Psychology, 5, 340.CrossRefGoogle ScholarPubMed
Gossrau, G., Baum, D., Koch, T., Sabatowski, R., Hummel, T., & Haehner, A. (2020). Exposure to odors increases pain threshold in chronic low back pain patients. Pain Medicine, 21, 2546–2551.CrossRefGoogle ScholarPubMed
Gossrau, G., Zaranek, L., Klimova, A., Sabatowski, R., Koch, T., Richter, M., & Haehner, A. (2023). Olfactory training reduces pain sensitivity in children and adolescents with primary headaches. Frontiers in Pain Research, 4, 1091984.CrossRefGoogle ScholarPubMed
Gottfried, J. A. (2010). Central mechanisms of odour object perception. Nature Reviews Neuroscience, 11, 628–641.CrossRefGoogle ScholarPubMed
Gottfried, J. A. (2015). Structural and functional imaging of the human olfactory system. In Doty, R. L. (Ed.), Handbook of olfaction and gustation (pp. 279–304). John Wiley & Sons, Inc.Google Scholar
Gottfried, J. A., O’Doherty, J., & Dolan, R. J. (2002). Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. The Journal of Neuroscience, 22, 10829–10837.Google ScholarPubMed
Gottfried, J. A., Winston, J. S., & Dolan, R. J. (2006). Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron, 49, 467–479.CrossRefGoogle ScholarPubMed
Grabenhorst, F., Rolls, E. T., Margot, C., da Silva, M. A. A. P., & Velazco, M. I. (2007). How pleasant and unpleasant stimuli combine in different brain regions: Odor mixtures. The Journal of Neuroscience, 27, 13532–13540.CrossRefGoogle ScholarPubMed
Haber, S. N., Adler, A., & Bergman, H. (2012). The basal ganglia. In Mai, J. K. & Paxinos, G. (Eds.), The human nervous system (pp. 678–738). Elsevier.Google Scholar
Haddad, R., Medhanie, A., Roth, Y., Harel, D., & Sobel, N. (2010). Predicting odor pleasantness with an electronic nose. PLoS Computational Biology, 6, e1000740.CrossRefGoogle ScholarPubMed
Haehner, A., Maass, H., Croy, I., & Hummel, T. (2017). Influence of room fragrance on attention, anxiety and mood. Flavour and Fragrance Journal, 32, 24–28.CrossRefGoogle Scholar
Han, P., Hummel, T., Raue, C., & Croy, I. (2019). Olfactory loss is associated with reduced hippocampal activation in response to emotional pictures. NeuroImage, 188, 84–91.CrossRefGoogle ScholarPubMed
Han, P., Winkler, N., Hummel, C., Hähner, A., Gerber, J., & Hummel, T. (2018). Impaired brain response to odors in patients with varied severity of olfactory loss after traumatic brain injury. Journal of Neurology, 265, 2322–2332.CrossRefGoogle ScholarPubMed
Hawkes, C. H., Del Tredici, K., & Braak, H. (2007). Parkinson’s disease: A dual‐hit hypothesis. Neuropathology and Applied Neurobiology, 33, 599–614.CrossRefGoogle ScholarPubMed
He, W., de Wijk, R. A., de Graaf, C., & Boesveldt, S. (2016). Implicit and explicit measurements of affective responses to food odors. Chemical Senses, 41, 661–668.CrossRefGoogle ScholarPubMed
Heimer, L. (2003). A new anatomical framework for neuropsychiatric disorders and drug abuse. American Journal of Psychiatry, 160, 1726–1739.CrossRefGoogle ScholarPubMed
Herz, R. S. (2009). Aromatherapy facts and fictions: A scientific analysis of olfactory effects on mood, physiology and behavior. International Journal of Neuroscience, 119, 263–90.CrossRefGoogle ScholarPubMed
Herz, R. S., & Cupchik, G. C. (1995). The emotional distinctiveness of odor-evoked memories. Chemical Senses, 20, 517–528.CrossRefGoogle ScholarPubMed
Herz, R. S., & Schooler, J. W. (2002). A naturalistic study of autobiographical memories evoked by olfactory and visual cues: Testing the Proustian hypothesis. American Journal of Psychology, 115, 21–32.Google ScholarPubMed
Hoenen, M., Müller, K., Pause, B.M., & Lübke, K.T. (2016). Fancy citrus, feel good: Positive judgment of citrus odor, but not the odor itself, is associated with elevated mood during experienced helplessness. Frontiers in Psychology, 7, 74.CrossRefGoogle Scholar
Hummel, T., Whitcroft, K. L., Andrews, P., Altundags, A., Cinghi, C., Costanzo, R. M., … & Welge-Luessen, A. (2017). Position paper on olfactory dysfunction. Rhinology, 54, 1–30.Google ScholarPubMed
Iravani, B., Schaefer, M., Wilson, D. A., Arshamian, A., & Lundström, J. N. (2021). The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proceedings of the National Academy of Sciences of the United States of America, 118, e2101209118.Google ScholarPubMed
Kamath, V., Turetsky, B. I, Moberg, P. J. (2011). Identification of pleasant, neutral, and unpleasant odors in schizophrenia. Psychiatry Research, 187, 30–35.CrossRefGoogle ScholarPubMed
Keller, A., & Malaspina, D. (2013). Hidden consequences of olfactory dysfunction: A patient report series. BMC Ear, Nose, and Throat Disorders, 13, 8.CrossRefGoogle ScholarPubMed
Keller, A., & Vosshall, L. B. (2016). Olfactory perception of chemically diverse molecules. BMC Neuroscience, 17, 55.CrossRefGoogle ScholarPubMed
Kermen, F., Mandairon, N., & Chalençon, L. (2021). Odor hedonics coding in the vertebrate olfactory bulb. Cell and Tissue Research, 383, 485–493.CrossRefGoogle ScholarPubMed
Kerr, K. M., Agster, K. L., Furtak, S. C., & Burwell, R. D. (2007). Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas. Hippocampus, 17, 697–708.CrossRefGoogle ScholarPubMed
Khan, R. M., Luk, C. H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R., & Sobel, N. (2007). Predicting odor pleasantness from odorant structure: Pleasantness as a reflection of the physical world. Journal of Neuroscience, 27, 10015–10023.CrossRefGoogle ScholarPubMed
Kim, B. Y., & Bae, J. H. (2022). Olfactory function and depression: A meta-analysis. Ear, Nose and Throat Journal, 104, 39–46.Google ScholarPubMed
Kinomura, S., Kawashima, R., Yamada, K., Ono, S., Itoh, M., Yoshioka, S., … Itoh, H. (1994). Functional anatomy of taste perception in the human brain studied with positron emission tomography. Brain Research, 659, 263–266.CrossRefGoogle ScholarPubMed
Knaden, M., Strutz, A., Ahsan, J., Sachse, S., & Hansson, B. S. (2012). Spatial representation of odorant valence in an insect brain. Cell Reports, 1, 392–399.CrossRefGoogle Scholar
Kobal, G., Hummel, T., & Van Toller, S. (1992). Differences in human chemosensory evoked potentials to olfactory and somatosensory chemical stimuli presented to left and right nostrils. Chemical Senses, 17, 233–244.CrossRefGoogle Scholar
Kohli, P., Soler, Z. M., Nguyen, S. A., Muus, J. S., & Schlosser, R. J. (2016). The association between olfaction and depression: A systematic review. Chemical Senses, 41, 479.CrossRefGoogle ScholarPubMed
Kollndorfer, K., Kowalczyk, K., Hoche, E., Mueller, C. A., Pollak, M., Trattnig, S., & Schöpf, V. (2014). Recovery of olfactory function induces neuroplasticity effects in patients with smell loss. Neural Plasticity, 2014, 140419.CrossRefGoogle ScholarPubMed
Komori, T., Fujiwara, R., Tanida, M., Nomura, J., & Yokoyama, M.M. (1995). Effects of citrus fragrance on immune function and depressive states. Neuroimmunomodulation, 2, 174–180.CrossRefGoogle ScholarPubMed
Kontaris, I., East, B. S., & Wilson, D. A. (2020). Behavioral and neurobiological convergence of odor, mood and emotion: A review. Frontiers in Behavioral Neuroscience, 14, 35.CrossRefGoogle ScholarPubMed
Lapid, H., Shushan, S., Plotkin, A., Voet, H., Roth, Y., Hummel, T., … Sobel, N. (2011). Neural activity at the human olfactory epithelium reflects olfactory perception. Nature Neuroscience, 14, 1455–1461.CrossRefGoogle ScholarPubMed
Larsson, M., & Willander, J. (2009). Autobiographical odor memory. Annals of the New York Academy of Sciences, 1170, 318–323.CrossRefGoogle ScholarPubMed
Lehrner, J., Eckersberger, C., Walla, P., Pötsch, G., & Deecke, L. (2000). Ambient odor of orange in a dental office reduces anxiety and improves mood in female patients. Physiology & Behavior, 71, 83–86.CrossRefGoogle Scholar
Lehrner, J., Marwinski, G., Lehr, S., Johren, P., & Deecke, L. (2005). Ambient odors of orange and lavender reduce anxiety and improve mood in a dental office. Physiology & Behavior, 86, 92–95.CrossRefGoogle Scholar
Lemogne, C., Smadja, J., Zerdazi, E. H., Soudry, Y., Robin, M., Berthoz, S., … Bonfils, P. (2015). Congenital anosmia and emotion recognition: A case-control study. Neuropsychologia, 72, 52–58.CrossRefGoogle ScholarPubMed
Lim, J. (2011). Hedonic scaling: A review of methods and theory. Food Quality and Preference, 22, 733–747.Google Scholar
Lledo, P. M., Alonso, M., & Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews Neuroscience, 7, 179–193.CrossRefGoogle ScholarPubMed
Lomidze, N., Zhvania, M. G., Tizabi, Y., Japaridze, N., Pochkhidze, N., Rzayev, F., & Gasimov, E. (2020). Age‐related behavioral and ultrastructural changes in the rat amygdala. Developmental Neurobiology, 80, 433–442.CrossRefGoogle ScholarPubMed
Lötsch, J., Schaeffeler, E., Mittelbronn, M., Winter, S., Gudziol, V., Schwarzacher, S. W., … & Ultsch, A. (2014). Functional genomics suggest neurogenesis in the adult human olfactory bulb. Brain Structure and Function, 219, 1991–2000.CrossRefGoogle ScholarPubMed
Mai, Y., Menzel, S., Cuevas, M., Haehner, A., & Hummel, T. (2022). Well-being in patients with olfactory dysfunction. Physiology & Behavior, 254, 113899.CrossRefGoogle ScholarPubMed
Matsumoto, T., Asakura, H., & Hayashi, T. (2014). Effects of olfactory stimulation from the fragrance of the Japanese citrus fruit yuzu (Citrus junos Sieb. ex Tanaka) on mood states and salivary chromogranin A as an endocrinologic stress marker. Journal of Alternative and Complementary Medicine, 20, 500–506.CrossRefGoogle Scholar
Miwa, T., Furukawa, M., Tsuhatani, T., Costanzo, R. M., DiNardo, L. J., & Reiter, E. R. (2001). Impact of olfactory impairment on quality of life and disability. Archives of Otolaryngology–Head & Neck Surgery, 127, 497–503.CrossRefGoogle ScholarPubMed
Mohanty, A., & Gottfried, J. A. (2013). Examining emotion perception and elicitation via olfaction. In Armony, J. & Vuilleumier, P. (Eds.), The Cambridge handbook of human affective neuroscience (pp. 241–264). Cambridge University Press.Google Scholar
Nieuwenhuys, R., Voogd, J., & van Huijzen, C. (2008). The human central nervous system. Springer.CrossRefGoogle Scholar
Nordin, S., Blomqvist, H. E., Olsson, P., Stjårne, P., & Ehnhage, A. (2011). Effects of smell loss on daily life and adopted coping strategies in patients with nasal polyposis with asthma. Acta Oto-Laryngologica, 131, 826–832.CrossRefGoogle ScholarPubMed
Oleszkiewicz, A., Kunkel, F., Larsson, M., & Hummel, T. (2020). Consequences of undetected olfactory loss for human chemosensory communication and well-being. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190265.CrossRefGoogle ScholarPubMed
Oleszkiewicz, A., Schriever, V. A., Valder, C., Agosin, E., Altundag, A., Avni, H., … Gellrich, J. (2022). Hedonic perception of odors in children aged 5–8 years is similar across 18 countries: Preliminary data. International Journal of Pediatric Otorhinolaryngology, 157, 111129.CrossRefGoogle ScholarPubMed
Öngür, D., Ferry, A. T., & Price, J. L. (2003). Architectonic subdivision of the human orbital and medial prefrontal cortex. Journal of Comparative Neurology, 460, 425–449.Google ScholarPubMed
Pabel, L. D., Hummel, T., Weidner, K., & Croy, I. (2018). The impact of severity, course and duration of depression on olfactory function. Journal of Affective Disorders, 238, 194–203.CrossRefGoogle ScholarPubMed
Pabel, L. D., Murr, J., Weidner, K., Hummel, T., & Croy, I. (2020). Null effect of olfactory training with patients suffering from depressive disorders – An exploratory randomized controlled clinical trial. Frontiers in Psychiatry, 11, 593.CrossRefGoogle ScholarPubMed
Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology & Psychiatry, 38, 725–743.CrossRefGoogle Scholar
Patin, A., & Pause, B. M. (2015). Human amygdala activations during nasal chemoreception. Neuropsychologia, 78, 171–194.CrossRefGoogle ScholarPubMed
Pause, B. M., Miranda, A., Göder, R., Aldenhoff, J. B., & Ferstl, R. (2001). Reduced olfactory performance in patients with major depression. Journal of Psychiatric Research, 35, 271–277.CrossRefGoogle ScholarPubMed
Pence, T. S., Reiter, E. R., DiNardo, L. J., & Costanzo, R. M. (2014). Risk factors for hazardous events in olfactory-impaired patients. JAMA Otolaryngology–Head & Neck Surgery, 140, 951–955.CrossRefGoogle ScholarPubMed
Peng, M., Potterton, H., Chu, J. T. W., & Glue, P. (2021). Olfactory shifts linked to postpartum depression. Scientific Reports, 11, 14947.CrossRefGoogle ScholarPubMed
Pritchard, T. C. (2012). Gustatory system. In Mai, J. K. & Paxinos, G. (Eds.), The human nervous system (pp. 1187–1218). Elsevier.Google Scholar
Pritchard, T. C., & Di Lorenzo, P. M. (2015). Central taste anatomy and physiology of rodents and primates. In Doty, R. L. (Ed.), Handbook of olfaction and gustation (pp. 701–726). John Wiley & Sons, Inc.Google Scholar
Rétiveau, A. N., Iv, E. C., & Milliken, G. A. (2004). Common and specific effects of fine fragrances on the mood of women. Journal of Sensory Studies, 19, 373–394.CrossRefGoogle Scholar
Robin, O., Alaoui-Ismaïli, O., Dittmar, A., & Vernet-Maury, E. (1998). Emotional responses evoked by dental odors: An evaluation from autonomic parameters. Journal of Dental Research, 77, 1638–1646.CrossRefGoogle ScholarPubMed
Rocha, M., Parma, V., Lundström, J. N., & Soares, S. C. (2018). Anxiety body odors as context for dynamic faces: Categorization and psychophysiological biases. Perception, 47, 1054–1069.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2012). The emotional systems. In Mai, J. and Paxinos, G. (Eds.), The human nervous system (pp. 1328–1350). Elsevier.Google Scholar
Rolls, E. T., Grabenhorst, F., & Parris, B. A. (2010). Neural systems underlying decisions about affective odors. Journal of Cognitive Neuroscience, 22, 1069–1082.CrossRefGoogle ScholarPubMed
Royet, J.-P., Plailly, J., Delon-Martin, C., Kareken, D. A., & Segebarth, C. (2003). fMRI of emotional responses to odors: Influence of hedonic valence and judgment, handedness, and gender. NeuroImage, 20, 713–728.CrossRefGoogle ScholarPubMed
Ruser, P., Koeppel, C. J., Kitzler, H. H., Hummel, T., & Croy, I. (2021). Individual odor hedonic perception is coded in temporal joint network activity. NeuroImage, 229, 117782.CrossRefGoogle ScholarPubMed
Saive, A. L., Royet, J. P., Ravel, N., Thévenet, M., Garcia, S., & Plailly, J. (2014). A unique memory process modulated by emotion underpins successful odor recognition and episodic retrieval in humans. Frontiers in Behavioural Neuroscience, 8, 203.CrossRefGoogle ScholarPubMed
Santos, D. v., Reiter, E. R., DiNardo, L. J., & Costanzo, R. M. (2004). Hazardous events associated with impaired olfactory function. Archives of Otolaryngology–Head & Neck Surgery, 130, 317–319.CrossRefGoogle ScholarPubMed
Savic, I. (2005). Brain imaging studies of the functional organization of human olfaction. Chemical Senses, 30, i222–i223.CrossRefGoogle ScholarPubMed
Schäfer, L., Schellong, J., Hähner, A., Weidner, K., Hüttenbrink, K.B., Trautmann, S., Hummel, T., & Croy, I. (2019). Nocturnal olfactory stimulation for improvement of sleep quality in patients with posttraumatic stress disorder: A randomized exploratory intervention trial. Journal of Traumatic Stress, 32, 130–140.CrossRefGoogle ScholarPubMed
Schäfer, L., Schriever, V. A., & Croy, I. (2021). Human olfactory dysfunction: Causes and consequences. Cell and Tissue Research, 383, 569–579.CrossRefGoogle ScholarPubMed
Schiffman, S. S. (1974). Physicochemical correlates of olfactory quality. Science, 185, 112–117.CrossRefGoogle ScholarPubMed
Seki, Y., Dweck, H. K. M., Rybak, J., Wicher, D., Sachse, S., & Hansson, B. S. (2017). Olfactory coding from the periphery to higher brain centers in the Drosophila brain. BMC Biology, 15, 56.CrossRefGoogle ScholarPubMed
Seubert, J., Freiherr, J., Frasnelli, J., Hummel, T., & Lundström, J. N. (2013). Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cerebral Cortex, 23, 2448–2456.CrossRefGoogle ScholarPubMed
Sobel, N., Prabhakaran, V., Zhao, Z. U. O., Desmond, J. E., Glover, G. H., Sullivan, E. V., & Gabrieli, J. D. (2000). Time course of odorant-induced activation in the human primary olfactory cortex. Journal of Neurophysiology, 83, 537–551.CrossRefGoogle ScholarPubMed
Sorokowski, P., Karwowski, M., Misiak, M., Marczak, M. K., Dziekan, M., Hummel, T., & Sorokowska, A. (2019). Sex differences in human olfaction: A meta-analysis. Frontiers in Psychology, 10, 242.CrossRefGoogle Scholar
Stevenson, R. J. (2010). An initial evaluation of the functions of human olfaction. Chemical Senses, 35, 3–20.CrossRefGoogle ScholarPubMed
Toet, A., Eijsman, S., Liu, Y. X., Donker, S., Kaneko, D., Brouwer, A. M., & van Erp, J. B. F. (2020). The relation between valence and arousal in subjective odor experience. Chemosensory Perception, 13, 141–151.CrossRefGoogle Scholar
van den Bosch, I., van Delft, J. M., de Wijk, R. A., de Graaf, C., & Boesveldt, S. (2015). Learning to (dis)like: The effect of evaluative conditioning with tastes and faces on odor valence assessed by implicit and explicit measurements. Physiology Behavioural, 151, 478–484.CrossRefGoogle ScholarPubMed
van Hartevelt, T. J., & Kringelbach, M. L. (2012). The olfactory system. In Mai, J. & Paxinos, G. (Eds.), The human nervous system (pp. 1219–1238). Elsevier.Google Scholar
van Riel, D., Verdijk, R., & Kuiken, T. (2015). The olfactory nerve: A shortcut for influenza and other viral diseases into the central nervous system. Journal of Pathology, 235, 277–287.CrossRefGoogle ScholarPubMed
Vernet-Maury, E., Alaoui-Ismaı̈li, O., Dittmar, A., Delhomme, G., & Chanel, J. (1999). Basic emotions induced by odorants: A new approach based on autonomic pattern results. Journal of the Autonomic Nervous System, 75, 176–183.CrossRefGoogle ScholarPubMed
Villemure, C., Slotnick, B. M., & Bushnell, M. C. (2003). Effects of odors on pain perception: Deciphering the roles of emotion and attention. Pain, 106, 101–108.CrossRefGoogle ScholarPubMed
Wegener, B.A., Croy, I., Haehner, A., & Hummel, T. (2018). Olfactory training with older people. International Journal of Geriatric Psychiatry, 33, 212–220.Google Scholar
Wicker, B., Keysers, C., Plailly, J., Royet, J. P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron, 40, 655–664.CrossRefGoogle Scholar
Xu, W., & Wilson, D. A. (2012). Odor-evoked activity in the mouse lateral entorhinal cortex. Neuroscience, 223, 12–20.CrossRefGoogle ScholarPubMed
Yan, Z., Tan, J., Qin, C., Lu, Y., Ding, C., & Luo, M. (2008). Precise circuitry links bilaterally symmetric olfactory maps. Neuron, 58, 613–624.CrossRefGoogle ScholarPubMed
Zald, D. H., & Pardo, J. V. (1997). Emotion, olfaction, and the human amygdala: Amygdala activation during aversive olfactory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 94, 4119–4124.Google ScholarPubMed
Zald, D. H., & Pardo, J. V. (2000). Functional neuroimaging of the olfactory system in humans. International Journal of Psychophysiology, 36, 165–181.CrossRefGoogle ScholarPubMed
Zang, Y., Han, P., Burghardt, S., Knaapila, A., Schriever, V., & Hummel, T. (2019). Influence of olfactory dysfunction on the perception of food. European Archives of Oto-Rhino-Laryngology, 276, 2811–2817.CrossRefGoogle ScholarPubMed
Zhang, Z., Liu, X., Jing, B., Hu, B., Ai, Z., Xing, B., … Peng, P. (2021). Cerebellar involvement in olfaction: An fMRI Study. Journal of Neuroimaging, 31, 517–523.CrossRefGoogle ScholarPubMed
Zou, L. Q., Hummel, T., Otte, M. S., Bitter, T., Besser, G., Mueller, C. A., … Haehner, A. (2021). Association between olfactory function and quality of life in patients with olfactory disorders: A multicenter study in over 760 participants. Rhinology, 59, 164–172.Google ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×