Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-42vt5 Total loading time: 0 Render date: 2025-10-01T07:24:07.259Z Has data issue: false hasContentIssue false

Chapter 27 - Neurodevelopment of Emotional Processes in Adolescent Social Contexts

from Section VI - Social Emotions

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

Adolescence is marked by both normative changes in neural systems associated with emotion and increased sensitivity to social influences, especially from peers. Whereas the influences of caregiver emotion socialization practices on the emotional development of youths are well-studied, less is understood about how socialization through peer contexts impacts adolescents’ emotions. In this chapter, we first describe the neurobiological shifts that influence emotional processing during this developmental stage. We then review a growing literature linking caregiver and peer socialization to the development of emotion and related neurocircuitry. To emphasize the role of individual differences in emotional development, we situate these literatures within the differential susceptibility framework, which recognizes that adolescents’ neural sensitivity to social information may alter the degree to which caregiver and peer influences modulate emotional behaviors, skills, and experiences. We conclude by describing several perspectives for this emerging area of research, bridging developmental, social, and affective neuroscience.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191, 42–61.CrossRefGoogle ScholarPubMed
Amaral, D. G., & Adolphs, R. (2016). Living without an amygdala. Guilford Publications.Google Scholar
Atzil, S., Satpute, A. B., Zhang, J., Parrish, M. H., Shablack, H., MacCormack, J. K., … Lindquist, K. A. (2023). The impact of sociality and affective valence on brain activation: A meta-analysis. NeuroImage, 268, 119879.CrossRefGoogle ScholarPubMed
Azhari, A., Leck, W. Q., Gabrieli, G., Bizzego, A., Rigo, P., Setoh, P., … Esposito, G. (2019). Parenting stress undermines mother-child brain-to-brain synchrony: A hyperscanning study. Scientific Reports, 9, 11407.CrossRefGoogle ScholarPubMed
Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45, 2883–2901.CrossRefGoogle ScholarPubMed
Baek, E. C., Hyon, R., López, K., Finn, E. S., Porter, M. A., & Parkinson, C. (2022). In-degree centrality in a social network is linked to coordinated neural activity. Nature Communications, 13, 1118.CrossRefGoogle Scholar
Bailen, N. H., Green, L. M., & Thompson, R. J. (2019). Understanding emotion in adolescents: A review of emotional frequency, intensity, instability, and clarity. Emotion Review, 11, 63–73.CrossRefGoogle Scholar
Bandura, A. (1969). Social learning of moral judgments. Journal of Personality and Social Psychology, 11, 275–279.CrossRefGoogle ScholarPubMed
Barbas, H., Saha, S., Rempel-Clower, N., & Ghashghaei, T. (2003). Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neuroscience, 4, 25.CrossRefGoogle ScholarPubMed
Battaglini, A. M., Rnic, K., Jameson, T., Jopling, E., & LeMoult, J. (2022). Interpersonal emotion regulation flexibility: Effects on affect in daily life. Emotion, 23, 1048–1060.Google ScholarPubMed
Bickart, K. C., Dickerson, B. C., & Barrett, L. F. (2014). The amygdala as a hub in brain networks that support social life. Neuropsychologia, 63, 235–248.CrossRefGoogle ScholarPubMed
Bilek, E., Ruf, M., Schäfer, A., Akdeniz, C., Calhoun, V. D., Schmahl, C., … Meyer-Lindenberg, A. (2015). Information flow between interacting human brains: Identification, validation, and relationship to social expertise. Proceedings of the National Academy of Sciences, 112, 5207–5212.CrossRefGoogle ScholarPubMed
Blakemore, S.-J., & Mills, K. L. (2014). Is adolescence a sensitive period for sociocultural processing? Annual Review of Psychology, 65, 187–207.CrossRefGoogle ScholarPubMed
Block, P., & Burnett Heyes, S. (2022). Sharing the load: Contagion and tolerance of mood in social networks. Emotion, 22, 1193–1207.CrossRefGoogle ScholarPubMed
Bloom, P. A., VanTieghem, M., Gabard-Durnam, L., Gee, D. G., Flannery, J., Caldera, C., … Tottenham, N. (2022). Age-related change in task-evoked amygdala – prefrontal circuitry: A multiverse approach with an accelerated longitudinal cohort aged 4–22 years. Human Brain Mapping, 43, 3221–3244.CrossRefGoogle ScholarPubMed
Brechwald, W. A., & Prinstein, M. J. (2011). Beyond homophily: A decade of advances in understanding peer influence processes. Journal of Research on Adolescence, 21, 166–179.CrossRefGoogle ScholarPubMed
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 2981–2990.CrossRefGoogle ScholarPubMed
Callaghan, B. L., & Tottenham, N. (2016). The neuro-environmental loop of plasticity: A cross-species analysis of parental effects on emotion circuitry development following typical and adverse caregiving. Neuropsychopharmacology, 41, 163–176.CrossRefGoogle ScholarPubMed
Casement, M. D., Guyer, A. E., Hipwell, A. E., McAloon, R. L., Hoffmann, A. M., Keenan, K. E., & Forbes, E. E. (2014). Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms. Developmental Cognitive Neuroscience, 8, 18–27.CrossRefGoogle ScholarPubMed
Casey, B. J., Heller, A. S., Gee, D. G., & Cohen, A. O. (2019). Development of the emotional brain. Neuroscience Letters, 693, 29–34.CrossRefGoogle ScholarPubMed
Chen, X., McCormick, E. M., Ravindran, N., McElwain, N. L., & Telzer, E. H. (2020). Maternal emotion socialization in early childhood predicts adolescents’ amygdala-vmPFC functional connectivity to emotion faces. Developmental Psychology, 56, 503–515.CrossRefGoogle ScholarPubMed
Christakou, A., Brammer, M., & Rubia, K. (2011). Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting. NeuroImage, 54, 1344–1354.CrossRefGoogle ScholarPubMed
Cosgrove, K. T., Kerr, K. L., Aupperle, R. L., Ratliff, E. L., DeVille, D. C., Silk, J. S., … Morris, A. S. (2019). Always on my mind: Cross-brain associations of mental health symptoms during simultaneous parent-child scanning. Developmental Cognitive Neuroscience, 40, 100729.CrossRefGoogle ScholarPubMed
Cosgrove, K. T., Kerr, K. L., Ratliff, E. L., Moore, A. J., Misaki, M., DeVille, D. C., … Morris, A. S. (2022). Effects of parent emotion socialization on the neurobiology underlying adolescent emotion processing: A multimethod fMRI study. Research on Child and Adolescent Psychopathology, 50, 149–161.CrossRefGoogle ScholarPubMed
Criss, M. M., Houltberg, B. J., Cui, L., Bosler, C. D., Morris, A. S., & Silk, J. S. (2016). Direct and indirect links between peer factors and adolescent adjustment difficulties. Journal of Applied Developmental Psychology, 43, 83–90.CrossRefGoogle ScholarPubMed
Crone, E. A., Achterberg, M., Dobbelaar, S., Euser, S., van den Bulk, B., der Meulen, M. van, … van IJzendoorn, M. H. (2020). Neural and behavioral signatures of social evaluation and adaptation in childhood and adolescence: The Leiden Consortium on Individual Development (L-CID). Developmental Cognitive Neuroscience, 45, 100805.CrossRefGoogle Scholar
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636–650.CrossRefGoogle ScholarPubMed
Crowell, S. E., Skidmore, C. R., Rau, H. K., & Williams, P. G. (2013). Psychosocial stress, emotion regulation, and resilience in adolescence. In O’Donohue, W. T., Benuto, L. T., & Woodward Tolle, L. (Eds.), Handbook of Adolescent Health Psychology (pp. 129–141). Springer.Google Scholar
Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7, 415–423.CrossRefGoogle ScholarPubMed
Dennis, E. L., Jahanshad, N., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Hickie, I. B., … Thompson, P. M. (2014). Development of insula connectivity between ages 12 and 30 revealed by high angular resolution diffusion imaging. Human Brain Mapping, 35, 1790–1800.CrossRefGoogle ScholarPubMed
Dixon, M. L. (2015). Cognitive control, emotional value, and the lateral prefrontal cortex. Frontiers in Psychology, 6, 758.CrossRefGoogle ScholarPubMed
Do, K. T., McCormick, E. M., Prinstein, M. J., Lindquist, K. A., & Telzer, E. H. (2022). Intrinsic connectivity within the affective salience network moderates adolescent susceptibility to negative and positive peer norms. Scientific Reports, 12, 17463.CrossRefGoogle ScholarPubMed
Do, K. T., Prinstein, M. J., & Telzer, E. H. (2020). Neurobiological susceptibility to peer influence in adolescence. In Cohen Kadosh, K. (Ed.), The Oxford handbook of developmental cognitive neuroscience. Oxford University Press.Google Scholar
Eisenberg, N. (2020). Findings, issues, and new directions for research on emotion socialization. Developmental Psychology, 56, 664–670.CrossRefGoogle ScholarPubMed
Eisenberg, N., Cumberland, A., & Spinrad, T. L. (1998). Parental socialization of emotion. Psychological Inquiry, 9, 241–273.Google ScholarPubMed
Fareri, D. S., Gabard-Durnam, L., Goff, B., Flannery, J., Gee, D. G., Lumian, D. S., … Tottenham, N. (2015). Normative development of ventral striatal resting state connectivity in humans. NeuroImage, 118, 422–437.CrossRefGoogle ScholarPubMed
Feldman, M. J., Capella, J., Bonar, A., Dai, J., Field, N., Lewis, K., … Lindquist, K. A. (2024). Proximity within real world adolescent peer networks predicts neural similarity during affective experience. Social Cognitive and Affective Neuroscience, 19, nsae072.CrossRefGoogle ScholarPubMed
Ford, B. Q., & Gross, J. J. (2019). Why beliefs about emotion matter: An emotion-regulation perspective. Current Directions in Psychological Science, 28, 74–81.CrossRefGoogle Scholar
Gee, D. G. (2016). Sensitive periods of emotion regulation: Influences of parental care on frontoamygdala circuitry and plasticity. New Directions for Child and Adolescent Development, 2016, 87–110.CrossRefGoogle ScholarPubMed
Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., Shapiro, M., … Tottenham, N. (2014). Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. Psychological Science, 25, 2067–2078.CrossRefGoogle Scholar
Gee, D. G., Hanson, C., Caglar, L. R., Fareri, D. S., Gabard-Durnam, L. J., Mills-Finnerty, C., … Tottenham, N. (2022). Experimental evidence for a child-to-adolescent switch in human amygdala-prefrontal cortex communication: A cross-sectional pilot study. Developmental Science, 25, e13238.CrossRefGoogle Scholar
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., … Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala–prefrontal circuitry. Journal of Neuroscience, 33, 4584–4593.CrossRefGoogle Scholar
Ghaziri, J., Tucholka, A., Girard, G., Boucher, O., Houde, J.-C., Descoteaux, M., … Nguyen, D. K. (2018). Subcortical structural connectivity of insular subregions. Scientific Reports, 8, 8596.CrossRefGoogle ScholarPubMed
Giletta, M., Scholte, R. H. J., Burk, W. J., Engels, R. C. M. E., Larsen, J. K., Prinstein, M. J., & Ciairano, S. (2011). Similarity in depressive symptoms in adolescents’ friendship dyads: Selection or socialization? Developmental Psychology, 47, 1804–1814.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 8174–8179.Google ScholarPubMed
Gottman, J., Katz, L., & Hooven, C. (1996). Parental meta-emotion philosophy and the emotional life of families: Theoretical models and preliminary data. Journal of Family Psychology, 10, 243–268.CrossRefGoogle Scholar
Guassi Moreira, J. F., & Telzer, E. H. (2018). Mother still knows best: Maternal influence uniquely modulates adolescent reward sensitivity during risk taking. Developmental Science, 21, e12484.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Hostinar, C. E. (2015). The social buffering of the hypothalamic-pituitary-adrenocortical axis in humans: Developmental and experiential determinants. Social Neuroscience, 10, 479–488.CrossRefGoogle ScholarPubMed
Güroğlu, B. (2022). The power of friendship: The developmental significance of friendships from a neuroscience perspective. Child Development Perspectives, 16, 110–117.CrossRefGoogle Scholar
Haber, S., Kunishio, K., Mizobuchi, M., & Lynd-Balta, E. (1995). The orbital and medial prefrontal circuit through the primate basal ganglia. The Journal of Neuroscience, 15, 4851–4867.CrossRefGoogle ScholarPubMed
Hale, M. E., Price, N. N., Borowski, S. K., & Zeman, J. L. (2023). Adolescent emotion regulation trajectories: The influence of parent and friend emotion socialization. Journal of Research on Adolescence, 33, 735–749.CrossRefGoogle ScholarPubMed
Hale, M. E., & Zeman, J. L. (2023). Parent and friend emotion socialization in adolescence: The path to internalizing symptoms. Journal of Applied Developmental Psychology, 85, 101513.CrossRefGoogle Scholar
Heberlein, A. S., Padon, A. A., Gillihan, S. J., Farah, M. J., & Fellows, L. K. (2008). Ventromedial frontal lobe plays a critical role in facial emotion recognition. Journal of Cognitive Neuroscience, 20, 721–733.CrossRefGoogle Scholar
Heller, A. S., Cohen, A. O., Dreyfuss, M. F. W., & Casey, B. J. (2016). Changes in cortico-subcortical and subcortico-subcortical connectivity impact cognitive control to emotional cues across development. Social Cognitive and Affective Neuroscience, 11, 1910–1918.Google ScholarPubMed
Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83, 638–647.CrossRefGoogle ScholarPubMed
Hoyniak, C. P., Quiñones-Camacho, L. E., Camacho, M. C., Chin, J. H., Williams, E. M., Wakschlag, L. S., & Perlman, S. B. (2021). Adversity is linked with decreased parent-child behavioral and neural synchrony. Developmental Cognitive Neuroscience, 48, 100937.CrossRefGoogle ScholarPubMed
Hyon, R., Youm, Y., Kim, J., Chey, J., Kwak, S., & Parkinson, C. (2020). Similarity in functional brain connectivity at rest predicts interpersonal closeness in the social network of an entire village. Proceedings of the National Academy of Sciences of the United States of America, 117, 33149–33160.Google ScholarPubMed
Jiang, N., Xu, J., Li, X., Wang, Y., Zhuang, L., & Qin, S. (2021). Negative parenting affects adolescent internalizing symptoms through alterations in amygdala-prefrontal circuitry: A longitudinal twin study. Biological Psychiatry, 89, 560–569.CrossRefGoogle ScholarPubMed
Kerr, K. L., Ratliff, E. L., Cohen, Z. P., Fuller, S., Cosgrove, K. T., DeVille, D. C., … Bodurka, J. (2022). Real-time functional magnetic resonance imaging dyadic neurofeedback for emotion regulation: A proof-of-concept study. Frontiers in Human Neuroscience, 16, 910951.CrossRefGoogle ScholarPubMed
Kuczynski, L., & Parkin, C. M. (2007). Agency and bidirectionality in socialization: Interactions, transactions, and relational dialectics. In Grusec, J. E. & Hastings, P. D. (Eds.), Handbook of socialization: Theory and research (pp. 259–283). The Guilford Press.Google Scholar
Laursen, B., & Veenstra, R. (2021). Toward understanding the functions of peer influence: A summary and synthesis of recent empirical research. Journal of Research on Adolescence, 31, 889–907.CrossRefGoogle ScholarPubMed
Lee, T.-H., Miernicki, M. E., & Telzer, E. H. (2017). Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent-child dyads. NeuroImage, 152, 31–37.CrossRefGoogle ScholarPubMed
Lee, T.-H., Qu, Y., & Telzer, E. H. (2018). Dyadic neural similarity during stress in mother–child dyads. Journal of Research on Adolescence, 28, 121–133.CrossRefGoogle ScholarPubMed
Li, D., Zucker, N. L., Kragel, P. A., Covington, V. E., & LaBar, K. S. (2017). Adolescent development of insula-dependent interoceptive regulation. Developmental Science, 20, e12438.CrossRefGoogle ScholarPubMed
Lieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words. Psychological Science, 18, 421–428.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J., & Barrett, L. F. (2016). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex, 26, 1910–1922.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121–143.CrossRefGoogle ScholarPubMed
Liu, S., Oshri, A., Kogan, S. M., Wickrama, K. A. S., & Sweet, L. (2021). Amygdalar activation as a neurobiological marker of differential sensitivity in the effects of family rearing experiences on socioemotional adjustment in youths. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 1052–1062.Google ScholarPubMed
Meyer, S., Raikes, H. A., Virmani, E. A., Waters, S., & Thompson, R. A. (2014). Parent emotion representations and the socialization of emotion regulation in the family. International Journal of Behavioral Development, 38, 164–173.CrossRefGoogle Scholar
Miklikowska, M., Tilton-Weaver, L., & Burk, W. J. (2022). With a little help from my empathic friends: The role of peers in the development of empathy in adolescence. Developmental Psychology, 58, 1156–1162.CrossRefGoogle ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefGoogle ScholarPubMed
Miller-Slough, R. L., & Dunsmore, J. C. (2016). Parent and friend emotion socialization in adolescence: Associations with psychological adjustment. Adolescent Research Review, 1, 287–305.CrossRefGoogle Scholar
Misaki, M., Kerr, K. L., Ratliff, E. L., Cosgrove, K. T., Simmons, W. K., Morris, A. S., & Bodurka, J. (2021). Beyond synchrony: The capacity of fMRI hyperscanning for the study of human social interaction. Social Cognitive and Affective Neuroscience, 16, 84–92.CrossRefGoogle Scholar
Modi, H. H., Davis, M. M., Miernicki, M. E., Telzer, E. H., & Rudolph, K. D. (2020). Maternal antecedents to adolescent girls’ neural regulation of emotion. Journal of Research on Adolescence, 30, 581–598.CrossRefGoogle ScholarPubMed
Moody, J., Brynildsen, W. D., Osgood, D. W., Feinberg, M. E., & Gest, S. (2011). Popularity trajectories and substance use in early adolescence. Social Networks, 33, 101–112.CrossRefGoogle ScholarPubMed
Morawetz, C., Berboth, S., & Bode, S. (2021). With a little help from my friends: The effect of social proximity on emotion regulation-related brain activity. NeuroImage, 230, 117817.CrossRefGoogle ScholarPubMed
Morris, A. S., Silk, J. S., Steinberg, L., Myers, S. S., & Robinson, L. R. (2007). The role of the family context in the development of emotion regulation. Social Development, 16, 361–388.CrossRefGoogle ScholarPubMed
Nguyen, T., Schleihauf, H., Kayhan, E., Matthes, D., Vrtička, P., & Hoehl, S. (2020). The effects of interaction quality on neural synchrony during mother-child problem solving. Cortex, 124, 235–249.CrossRefGoogle ScholarPubMed
Parkinson, C., Kleinbaum, A. M., & Wheatley, T. (2018). Similar neural responses predict friendship. Nature Communications, 9, 332.CrossRefGoogle ScholarPubMed
Peper, J. S., Hulshoff Pol, H. E., Crone, E. A., & van Honk, J. (2011). Sex steroids and brain structure in pubertal boys and girls: A mini-review of neuroimaging studies. Neuroscience, 191, 28–37.CrossRefGoogle ScholarPubMed
Prinstein, M. J. (2007). Moderators of peer contagion: A longitudinal examination of depression socialization between adolescents and their best friends. Journal of Clinical Child & Adolescent Psychology, 36, 159–170.CrossRefGoogle ScholarPubMed
Qin, S., Young, C. B., Supekar, K., Uddin, L. Q., & Menon, V. (2012). Immature integration and segregation of emotion-related brain circuitry in young children. Proceedings of the National Academy of Sciences of the United States of America, 109, 7941–7946.Google ScholarPubMed
Qu, Y., Galvan, A., Fuligni, A. J., Lieberman, M. D., & Telzer, E. H. (2015). Longitudinal changes in prefrontal cortex activation underlie declines in adolescent risk taking. The Journal of Neuroscience, 35, 11308–11314.CrossRefGoogle ScholarPubMed
Ratliff, E. L., Kerr, K. L., Cosgrove, K. T., Simmons, W. K., & Morris, A. S. (2022). The role of neurobiological bases of dyadic emotion regulation in the development of psychopathology: Cross-brain associations between parents and children. Clinical Child and Family Psychology Review, 25, 5–18.CrossRefGoogle ScholarPubMed
Ratliff, E. L., Kerr, K. L., Misaki, M., Cosgrove, K. T., Moore, A. J., DeVille, D. C., … Morris, A. S. (2021). Into the unknown: Examining neural representations of parent–adolescent interactions. Child Development, 92, e1361–e1376.CrossRefGoogle ScholarPubMed
Reindl, M., Gniewosz, B., & Reinders, H. (2016). Socialization of emotion regulation strategies through friends. Journal of Adolescence, 49, 146–157.CrossRefGoogle ScholarPubMed
Reindl, V., Gerloff, C., Scharke, W., & Konrad, K. (2018). Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage, 178, 493–502.CrossRefGoogle ScholarPubMed
Ricciardi, C., Kornienko, O., & Garner, P. W. (2022). The role of cognitive emotion regulation for making and keeping friend and conflict networks. Frontiers in Psychology, 13, 802629.CrossRefGoogle ScholarPubMed
Rogers, C. R., Chen, X., Kwon, S.-J., McElwain, N. L., & Telzer, E. H. (2022). The role of early attachment and parental presence in adolescent behavioral and neurobiological regulation. Developmental Cognitive Neuroscience, 53, 101046.CrossRefGoogle ScholarPubMed
Rogers, C. R., Perino, M. T., & Telzer, E. H. (2020). Maternal buffering of adolescent dysregulation in socially appetitive contexts: From behavior to the brain. Journal of Research on Adolescence, 30, 41–52.CrossRefGoogle ScholarPubMed
Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16, 147–156.CrossRefGoogle ScholarPubMed
Rudolph, K. D., Davis, M. M., Modi, H. H., Fowler, C., Kim, Y., & Telzer, E. H. (2020). Differential susceptibility to parenting in adolescent girls: moderation by neural sensitivity to social cues. Journal of Research on Adolescence, 30, 177–191.CrossRefGoogle ScholarPubMed
Salamone, J. D., Correa, M., Mingote, S. M., & Weber, S. M. (2005). Beyond the reward hypothesis: Alternative functions of nucleus accumbens dopamine. Current Opinion in Pharmacology, 5, 34–41.CrossRefGoogle ScholarPubMed
Satpute, A. B., & Lindquist, K. A. (2019). The default mode network’s role in discrete emotion. Trends in Cognitive Sciences, 23, 851–864.CrossRefGoogle ScholarPubMed
Scherf, K. S., Smyth, J. M., & Delgado, M. R. (2013). The amygdala: An agent of change in adolescent neural networks. Hormones and Behavior, 64, 298–313.CrossRefGoogle ScholarPubMed
Schoeps, K., Villanueva, L., Prado-Gascó, V. J., & Montoya-Castilla, I. (2018). Development of emotional skills in adolescents to prevent cyberbullying and improve subjective well-being. Frontiers in Psychology, 9, 2050.CrossRefGoogle ScholarPubMed
Schreuders, E., Braams, B. R., Blankenstein, N. E., Peper, J. S., Güroğlu, B., & Crone, E. A. (2018). Contributions of reward sensitivity to ventral striatum activity across adolescence and early adulthood. Child Development, 89, 797–810.CrossRefGoogle ScholarPubMed
Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility to social context. Developmental Cognitive Neuroscience, 19, 1–18.CrossRefGoogle ScholarPubMed
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 9–34.CrossRefGoogle ScholarPubMed
Schwartz-Mette, R. A., & Rose, A. J. (2012). Co-rumination mediates contagion of internalizing symptoms within youths’ friendships. Developmental Psychology, 48, 1355–1365.CrossRefGoogle ScholarPubMed
Sebastian, C. L., Fontaine, N. M. G., Bird, G., Blakemore, S.-J., De Brito, S. A., McCrory, E. J. P., & Viding, E. (2012). Neural processing associated with cognitive and affective Theory of Mind in adolescents and adults. Social Cognitive and Affective Neuroscience, 7, 53–63.CrossRefGoogle ScholarPubMed
Sequeira, S. L., Butterfield, R. D., Silk, J. S., Forbes, E. E., & Ladouceur, C. D. (2019). Neural activation to parental praise interacts with social context to predict adolescent depressive symptoms. Frontiers in Behavioral Neuroscience, 13, 222.CrossRefGoogle ScholarPubMed
Shenhav, A., Barrett, L. F., & Bar, M. (2013). Affective value and associative processing share a cortical substrate. Cognitive, Affective & Behavioral Neuroscience, 13, 46–59.CrossRefGoogle Scholar
Silvers, J. A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R. E., … Ochsner, K. N. (2017). VlPFC–vmPFC–amygdala interactions underlie age-related differences in cognitive regulation of emotion. Cerebral Cortex, 27, 3502–3514.Google ScholarPubMed
Somerville, L. H., Jones, R. M., Ruberry, E. J., Dyke, J. P., Glover, G., & Casey, B. J. (2013). The medial prefrontal cortex and the emergence of self-conscious emotion in adolescence. Psychological Science, 24, 1554–1562.CrossRefGoogle ScholarPubMed
Sorrells, S. F., Paredes, M. F., Velmeshev, D., Herranz-Pérez, V., Sandoval, K., Mayer, S., … Alvarez-Buylla, A. (2019). Immature excitatory neurons develop during adolescence in the human amygdala. Nature Communications, 10, 2748.CrossRefGoogle ScholarPubMed
Stuber, G. D., Sparta, D. R., Stamatakis, A. M., van Leeuwen, W. A., Hardjoprajitno, J. E., Cho, S., … Bonci, A. (2011). Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 475, 377–380.CrossRefGoogle ScholarPubMed
Tan, P. Z., Oppenheimer, C. W., Ladouceur, C. D., Butterfield, R. D., & Silk, J. S. (2020). A Review of associations between parental emotion socialization behaviors and the neural substrates of emotional reactivity and regulation in youth. Developmental Psychology, 56, 516–527.CrossRefGoogle Scholar
Telzer, E. H., Ichien, N. T., & Qu, Y. (2015). Mothers know best: Redirecting adolescent reward sensitivity toward safe behavior during risk taking. Social Cognitive and Affective Neuroscience, 10, 1383–1391.CrossRefGoogle ScholarPubMed
Telzer, E. H., Jorgensen, N. A., Prinstein, M. J., & Lindquist, K. A. (2021). Neurobiological sensitivity to social rewards and punishments moderates link between peer norms and adolescent risk taking. Child Development, 92, 731–745.CrossRefGoogle ScholarPubMed
Telzer, E. H., Qu, Y., Goldenberg, D., Fuligni, A. J., Galván, A., & Lieberman, M. D. (2014). Adolescents’ emotional competence is associated with parents’ neural sensitivity to emotions. Frontiers in Human Neuroscience, 8, 558.CrossRefGoogle ScholarPubMed
Tottenham, N. (2015). Social scaffolding of human amygdala-mpfc circuit development. Social Neuroscience, 10, 489–499.CrossRefGoogle Scholar
Tottenham, N. (2020). Neural meaning making, prediction, and prefrontal–subcortical development following early adverse caregiving. Development and Psychopathology, 32, 1563–1578.CrossRefGoogle ScholarPubMed
Touroutoglou, A., Hollenbeck, M., Dickerson, B. C., & Barrett, L. F. (2012). Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention. NeuroImage, 60, 1947–1958.CrossRefGoogle ScholarPubMed
Turpyn, C. C., Jorgensen, N. A., Prinstein, M. J., Lindquist, K. A., & Telzer, E. H. (2021). Social neural sensitivity as a susceptibility marker to family context in predicting adolescent externalizing behavior. Developmental Cognitive Neuroscience, 51, 100993.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Nomi, J. S., Hebert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and function of the human insula. Journal of Clinical Neurophysiology, 34, 300–306.CrossRefGoogle ScholarPubMed
van Duijvenvoorde, A. C. K., Westhoff, B., de Vos, F., Wierenga, L. M., & Crone, E. A. (2019). A three‐wave longitudinal study of subcortical–cortical resting‐state connectivity in adolescence: Testing age‐ and puberty‐related changes. Human Brain Mapping, 40, 3769–3783.CrossRefGoogle ScholarPubMed
van Rooij, S. J. H., Cross, D., Stevens, J. S., Vance, L. A., Kim, Y. J., Bradley, B., … Jovanovic, T. (2017). Maternal buffering of fear-potentiated startle in children and adolescents with trauma exposure. Social Neuroscience, 12, 22–31.CrossRefGoogle ScholarPubMed
van Workum, N., Scholte, R. H. J., Cillessen, A. H. N., Lodder, G. M. A., & Giletta, M. (2013). Selection, deselection, and socialization processes of happiness in adolescent friendship networks. Journal of Research on Adolescence, 23, 563–573.CrossRefGoogle Scholar
Vink, M., Derks, J. M., Hoogendam, J. M., Hillegers, M., & Kahn, R. S. (2014). Functional differences in emotion processing during adolescence and early adulthood. NeuroImage, 91, 70–76.CrossRefGoogle ScholarPubMed
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59, 1037–1050.CrossRefGoogle ScholarPubMed
Wierenga, L. M., Bos, M. G. N., Schreuders, E., vd Kamp, F., Peper, J. S., Tamnes, C. K., & Crone, E. A. (2018). Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. Psychoneuroendocrinology, 91, 105–114.CrossRefGoogle ScholarPubMed
Yamagata, T., Nakayama, Y., Tanji, J., & Hoshi, E. (2012). Distinct information representation and processing for goal-directed behavior in the dorsolateral and ventrolateral prefrontal cortex and the dorsal premotor cortex. Journal of Neuroscience, 32, 12934–12949.CrossRefGoogle ScholarPubMed
Yang, Y., & Wang, Q. (2019). Culture in emotional development. In LoBue, V., Pérez-Edgar, K., & Buss, K. A. (Eds.), Handbook of Emotional Development (pp. 569–593). Springer International Publishing.Google Scholar
Yu, H., Zhou, Z., & Zhou, X. (2013). The amygdalostriatal and corticostriatal effective connectivity in anticipation and evaluation of facial attractiveness. Brain and Cognition, 82, 291–300.CrossRefGoogle ScholarPubMed
Zaki, J., & Williams, W. C. (2013). Interpersonal emotion regulation. Emotion, 13, 803–810.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×