Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-br6xx Total loading time: 0 Render date: 2025-10-01T01:59:56.274Z Has data issue: false hasContentIssue false

Chapter 14 - Music, Emotion, and Reward

from Section III - Emotion Perception and Elicitation

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

What makes music an enduring art that has withstood the test of time across so many cultural contexts? Here we review the literature on emotion and reward as it relates to music, grounding our review on multiple methodological traditions in neuroscience, as well as newer work that combines these tools with music technology and sound design. Key to these disparate lines of research is the idea that the reward system is functionally and structurally connected to the auditory system, giving rise to individual differences in the sensitivity and felt emotion for music. We conclude with implications of this research for the design and implementation of music-based interventions for improving cognitive and brain health, especially for those with neurodegenerative diseases.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adolphs, R., Tranel, D., & Damasio, H. (2001). Emotion recognition from faces and prosody following temporal lobectomy. Neuropsychology, 15, 396–404.CrossRefGoogle ScholarPubMed
Atzil, S., Touroutoglou, A., Rudy, T., Salcedo, S., Feldman, R., Hooker, J. M., … Barrett, L. F. (2017). Dopamine in the medial amygdala network mediates human bonding. Proceedings of the National Academy of Sciences of the United States of America, 114, 2361–2366.Google ScholarPubMed
Belden, A., Quinci, M. A., Geddes, M., Donovan, N. J., Hanser, S. B., & Loui, P. (2023). Functional organization of auditory and reward systems in aging. Journal of Cognitive Neuroscience, 35, 1570–1592.CrossRefGoogle ScholarPubMed
Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: Current advances and a proposed model. Annals of the New York Academy of Sciences, 1464, 99–114.CrossRefGoogle Scholar
Belfi, A. M., Moreno, G. L., Gugliano, M., & Neill, C. (2022). Musical reward across the lifespan. Aging & Mental Health, 26, 932–939.CrossRefGoogle ScholarPubMed
Bohlen, H. (1978). 13 Tonstufen in der Duodezine. Acustica, 37, 76–86.Google Scholar
Cardona, G., Ferreri, L., Lorenzo-Seva, U., Russo, F. A., & Rodriguez-Fornells, A. (2022). The forgotten role of absorption in music reward. Annals of the New York Academy of Sciences, 1514, 142–154.CrossRefGoogle ScholarPubMed
Chapman, L. J., Chapman, J. P., & Raulin, M. L. (1976). Scales for physical and social anhedonia. Journal of Abnormal Psychology, 85, 374–382.CrossRefGoogle ScholarPubMed
Chen, W. G., Iversen, J. R., Kao, M. H., Loui, P., Patel, A. D., Zatorre, R. J., & Edwards, E. (2022). Music and brain circuitry: Strategies for strengthening evidence-based research for music-based interventions. The Journal of Neuroscience, 42, 8498–8507.CrossRefGoogle ScholarPubMed
Cheung, V. K. M., Harrison, P. M. C., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29, 4084–4092.e4.CrossRefGoogle ScholarPubMed
Chmiel, A., & Schubert, E. (2017). Back to the inverted-U for music preference: A review of the literature. Psychology of Music, 45, 886–909.CrossRefGoogle Scholar
Cowen, A. S., Fang, X., Sauter, D., & Keltner, D. (2020). What music makes us feel: At least 13 dimensions organize subjective experiences associated with music across different cultures. Proceedings of the National Academy of Sciences of the United States of America, 117, 1924–1934.Google ScholarPubMed
Cowen, A. S., & Keltner, D. (2017). Self-report captures 27 distinct categories of emotion bridged by continuous gradients. Proceedings of the National Academy of Sciences of the United States of America, 114, E7900–E7909.Google ScholarPubMed
Di Liberto, G. M., Pelofi, C., Bianco, R., Patel, P., Mehta, A. D., Herrero, J. L., … Mesgarani, N. (2020). Cortical encoding of melodic expectations in human temporal cortex. eLife, 9, e51784.CrossRefGoogle ScholarPubMed
Drapeau, J., Gosselin, N., Peretz, I., & McKerral, M. (2017). Emotional recognition from dynamic facial, vocal and musical expressions following traumatic brain injury. Brain Injury, 31, 221–229.CrossRefGoogle ScholarPubMed
Edwards, E., Hillaire-Clarke, C. S., Frankowski, D. W., Finkelstein, R., Cheever, T., Chen, W. G., … Collins, F. S. (2023). NIH music-based intervention toolkit. Neurology, 100, 868–878.CrossRefGoogle ScholarPubMed
Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17, 124–129.CrossRefGoogle ScholarPubMed
Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221, 1208–1210.CrossRefGoogle ScholarPubMed
Gagnon, L., Peretz, I., & Fülöp, T. (2011). Musical structural determinants of emotional judgments in dementia of the Alzheimer type. Psychology of Popular Media Culture, 1, 96–107.CrossRefGoogle Scholar
Gebauer, L., Skewes, J., Westphael, G., Heaton, P., & Vuust, P. (2014). Intact brain processing of musical emotions in autism spectrum disorder, but more cognitive load and arousal in happy vs. sad music. Frontiers in Neuroscience, 8, 192.CrossRefGoogle ScholarPubMed
Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: A reward for learning? The Journal of Neuroscience, 39, 9397–9409.CrossRefGoogle Scholar
Gosselin, N., Peretz, I., Hasboun, D., Baulac, M., & Samson, S. (2011). Impaired recognition of musical emotions and facial expressions following anteromedial temporal lobe excision. Cortex, 47, 1116–1125.CrossRefGoogle ScholarPubMed
Gosselin, N., Peretz, I., Johnsen, E., & Adolphs, R. (2007). Amygdala damage impairs emotion recognition from music. Neuropsychologia, 45, 236–244.CrossRefGoogle ScholarPubMed
Gosselin, N., Peretz, I., Noulhiane, M., Hasboun, D., Beckett, C., Baulac, M., & Samson, S. (2005). Impaired recognition of scary music following unilateral temporal lobe excision. Brain, 128, 628–640.CrossRefGoogle ScholarPubMed
Gosselin, N., Samson, S., Adolphs, R., Noulhiane, M., Roy, M., Hasboun, D., Baulac, M., & Peretz, I. (2006). Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain, 129, 2585–2592.CrossRefGoogle Scholar
Grady, C., Sarraf, S., Saverino, C., & Campbell, K. (2016). Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiology of Aging, 41, 159–172.CrossRefGoogle ScholarPubMed
Honda, S., Herrero, E. M., Isoda, M., Muraki, M., Lorenzo-Seva, U., Kitayama, Y., … Fujii, S. (2023). The Japanese version of the Barcelona Music Reward Questionnaire (J-BMRQ) Confirms the cross-cultural generalizability of the “five-factor” model. PsyArXiv, https://doi.org/10.31234/osf.io/7qp45.Google Scholar
Hsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia, 50, 1814–1822.CrossRefGoogle ScholarPubMed
Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. MIT Press.CrossRefGoogle Scholar
Ilie, G., & Thompson, W. F. (2006). A comparison of acoustic cues in music and speech for three dimensions of affect. Music Perception, 23, 319–330.CrossRefGoogle Scholar
Janata, P., Tomic, S. T., & Haberman, J. M. (2012). Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology: General, 141, 54–75.Google ScholarPubMed
Johnsen, E. L., Tranel, D., Lutgendorf, S., & Adolphs, R. (2009). A neuroanatomical dissociation for emotion induced by music. Central and Peripheral Nervous System Interactions: From Mind to Brain to Body, 72, 24–33.Google ScholarPubMed
Juslin, P. N. (2013). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of Life Reviews, 10, 235–266.CrossRefGoogle ScholarPubMed
Juslin, P. N., & Västfjäll, D. (2008). Emotional responses to music: The need to consider underlying mechanisms. Behavioral and Brain Sciences, 31, 559–575.CrossRefGoogle ScholarPubMed
Kathios, N., & Loui, P. (2022). Musical enculturation in the social coevolution of emotions. Evolutionary Studies in Imaginative Culture, 6, 33–38.CrossRefGoogle Scholar
Kathios, N., Patel, A. D., & Loui, P. (2024). Musical anhedonia, timbre, and the rewards of music listening. Cognition, 243, 105672.CrossRefGoogle ScholarPubMed
Kathios, N., Sachs, M. E., Zhang, E., Ou, Y., & Loui, P. (2023). Generating new musical preferences from multilevel mapping of predictions to reward. Psychological Science, 35, 34–54.Google ScholarPubMed
Keltner, D., & Oatley, K. (2022). Social functions of emotions in life and imaginative culture. Evolutionary Studies in Imaginative Culture, 6, 1–20.CrossRefGoogle Scholar
Khalfa, S., Guye, M., Peretz, I., Chapon, F., Girard, N., Chauvel, P., & Liégeois-Chauvel, C. (2008). Evidence of lateralized anteromedial temporal structures involvement in musical emotion processing. Neuropsychologia, 46, 2485–2493.CrossRefGoogle ScholarPubMed
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308, 78–83.CrossRefGoogle Scholar
Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15, 170–180.CrossRefGoogle ScholarPubMed
Lima, C. F., Garrett, C., & Castro, S. L. (2013). Not all sounds sound the same: Parkinson’s disease affects differently emotion processing in music and in speech prosody. Journal of Clinical and Experimental Neuropsychology, 35, 373–392.CrossRefGoogle ScholarPubMed
Loui, P., Patterson, S., Sachs, M. E., Leung, Y., Zeng, T., & Przysinda, E. (2017). White matter correlates of musical anhedonia: Implications for evolution of music. Frontiers in Psychology, 8, 1664.CrossRefGoogle ScholarPubMed
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2016). Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences of the United States of America, 113, E7337–E7345.Google ScholarPubMed
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2019). White matter microstructure reflects individual differences in music reward sensitivity. The Journal of Neuroscience, 39, 5018–5027.CrossRefGoogle ScholarPubMed
Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2018). Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behaviour, 2, 27–32.Google ScholarPubMed
Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J., & Rodriguez-Fornells, A. (2013). Individual differences in music reward experiences. Music Perception, 31, 118–138.CrossRefGoogle Scholar
Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24, 699–704.CrossRefGoogle ScholarPubMed
Mather, M. (2016). The affective neuroscience of aging. Annual Review of Psychology, 67, 213–238.CrossRefGoogle ScholarPubMed
Matthews, T. E., Witek, M. A. G., Lund, T., Vuust, P., & Penhune, V. B. (2020). The sensation of groove engages motor and reward networks. NeuroImage, 214, 116768.CrossRefGoogle ScholarPubMed
McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 62, 22–26.CrossRefGoogle ScholarPubMed
Meyer, L. B. (1956). Emotion and meaning in music. University of Chicago Press.Google Scholar
Molnar-Szakacs, I., & Heaton, P. (2012). Music: A unique window into the world of autism. Annals of the New York Academy of Sciences, 1252, 318–324.CrossRefGoogle Scholar
Omar, R., Henley, S. M. D., Bartlett, J. W., Hailstone, J. C., Gordon, E., Sauter, D. A., … Warren, J. D. (2011). The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. NeuroImage, 56, 1814–1821.CrossRefGoogle ScholarPubMed
Park, K. S., Hass, C. J., Patel, B., & Janelle, C. M. (2020). Musical pleasure beneficially alters stride and arm swing amplitude during rhythmically-cued walking in people with Parkinson’s disease. Human Movement Science, 74, 102718.CrossRefGoogle ScholarPubMed
Patel, A. D. (2023). Human musicality and gene-culture coevolution: Ten concepts to guide productive exploration. In Margulis, E. H., Loui, P., & Loughridge, D. (Eds.), The science-music borderlands: Reckoning with the past and imagining the future (pp. 15–38). MIT Press.Google Scholar
Pearce, M. T., & Wiggins, G. A. (2006). Expectation in melody: The influence of context and learning. Music Perception, 23, 377–405.CrossRefGoogle Scholar
Pralus, A., Belfi, A., Hirel, C., Lévêque, Y., Fornoni, L., Bigand, E., … Caclin, A. (2020). Recognition of musical emotions and their perceived intensity after unilateral brain damage. Cortex, 130, 78–93.CrossRefGoogle ScholarPubMed
Quinci, M. A., Belden, A., Goutama, V., Gong, D., Hanser, S., Donovan, N. J., … Loui, P. (2022). Longitudinal changes in auditory and reward systems following receptive music-based intervention in older adults. Scientific Reports, 12, 11517.CrossRefGoogle ScholarPubMed
Quintin, E.-M., Bhatara, A., Poissant, H., Fombonne, E., & Levitin, D. J. (2011). Emotion perception in music in high-functioning adolescents with autism spectrum disorders. Journal of Autism and Developmental Disorders, 41, 1240–1255.CrossRefGoogle ScholarPubMed
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.CrossRefGoogle Scholar
Saarikallio, S. (2019). Access-Awareness-Agency (AAA) Model of Music-Based Social-Emotional Competence (MuSEC). Music & Science, 2, 2059204318815421.CrossRefGoogle Scholar
Sachs, M. E., Ellis, R. J., Schlaug, G., & Loui, P. (2016). Brain connectivity reflects human aesthetic responses to music. Social Cognitive and Affective Neuroscience, 11, 884–891.CrossRefGoogle ScholarPubMed
Saenz, A., Doé de Maindreville, A., Henry, A., de Labbey, S., Bakchine, S., & Ehrlé, N. (2013). Recognition of facial and musical emotions in Parkinson’s disease. European Journal of Neurology, 20, 571–577.CrossRefGoogle ScholarPubMed
Saliba, J., Lorenzo-Seva, U., Marco-Pallares, J., Tillmann, B., Zeitouni, A., & Lehmann, A. (2016). French validation of the Barcelona music reward questionnaire. PeerJ, 4, e1760.CrossRefGoogle ScholarPubMed
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14, 257–262.CrossRefGoogle Scholar
Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340, 216–219.CrossRefGoogle ScholarPubMed
Sandstrom, G. M., & Russo, F. A. (2013). Absorption in music: Development of a scale to identify individuals with strong emotional responses to music. Psychology of Music, 41, 216–228.CrossRefGoogle Scholar
Satoh, M., Nakase, T., Nagata, K., & Tomimoto, H. (2011). Musical anhedonia: Selective loss of emotional experience in listening to music. Neurocase, 17, 410–417.CrossRefGoogle ScholarPubMed
Savage, P. E., Loui, P., Tarr, B., Schachner, A., Glowacki, L., Mithen, S., & Fitch, W. T. (2021). Music as a coevolved system for social bonding. Behavioral and Brain Sciences, 44, e59.CrossRefGoogle Scholar
Schubert, E. (2004). Modeling perceived emotion with continuous musical features. Music Perception, 21, 561–585.CrossRefGoogle Scholar
Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95, 853–951.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.CrossRefGoogle ScholarPubMed
Silvia, P. J., & Nusbaum, E. C. (2011). On personality and piloerection: Individual differences in aesthetic chills and other unusual aesthetic experiences. Psychology of Aesthetics, Creativity, and the Arts, 5, 208–214.CrossRefGoogle Scholar
Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: A TMS investigation. Brain and Cognition, 82, 127–136.CrossRefGoogle ScholarPubMed
Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Arousal in Anxiety, 61, 201–216.Google Scholar
Ustohal, L., Prikryl, R., Prikrylova Kucerova, H., Sisrova, M., Stehnova, I., Venclikova, S., … Ceskova, E. (2012). Emotional side effects after high-frequency rTMS of the right dorsolateral prefrontal cortex in an adult patient with ADHD and comorbid depression. Psychiatria Danubina, 24, 102–103.Google Scholar
van Tricht, M. J., Smeding, H. M. M., Speelman, J. D., & Schmand, B. A. (2010). Impaired emotion recognition in music in Parkinson’s disease. Brain and Cognition, 74, 58–65.CrossRefGoogle ScholarPubMed
Vuust, P., Heggli, O. A., Friston, K. J., & Kringelbach, M. L. (2022). Music in the brain. Nature Reviews Neuroscience, 23, 287–305.CrossRefGoogle ScholarPubMed
Wagener, G. L., Berning, M., Costa, A. P., Steffgen, G., & Melzer, A. (2021). Effects of emotional music on facial emotion recognition in children with autism spectrum disorder (ASD). Journal of Autism and Developmental Disorders, 51, 3256–3265.CrossRefGoogle ScholarPubMed
Wang, J., Xu, M., Jin, Z., Xia, L., Lian, Q., Huyang, S., & Wu, D. (2021). The Chinese version of the Barcelona Music Reward Questionnaire (BMRQ): Associations with personality traits and gender. Musicae Scientiae, 27, 218–232.Google Scholar
Wei, Y., Zhu, J., Pan, S., Su, H., Li, H., & Wang, J. (2017). Meta-analysis of the efficacy and safety of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. Shanghai Archives of Psychiatry, 29, 328–342.Google ScholarPubMed
Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L., & Vuust, P. (2014). Syncopation, body-movement and pleasure in groove music. PLoS ONE, 9, e94446.CrossRefGoogle ScholarPubMed
Wu, D.-D., Li, S.-H., He, J., Su, W., & Chen, H.-B. (2019). Emotion recognition in patients with Parkinson disease. Cognitive and Behavioral Neurology, 32, 247–255.CrossRefGoogle Scholar
Zentner, M., Grandjean, D., & Scherer, K. R. (2008). Emotions evoked by the sound of music: Characterization, classification, and measurement. Emotion, 8, 494–521.CrossRefGoogle ScholarPubMed
Zhou, S.-S., Gao, X., Hu, Y.-J., Zhu, Y.-M., Tian, Y.-H., Wang, K., & Chen, X. (2019). Selective impairment of musical emotion recognition in patients with amnestic mild cognitive impairment and mild to moderate Alzheimer disease. Chinese Medical Journal, 132, 2308–2314.CrossRefGoogle Scholar

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×