Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-42vt5 Total loading time: 0 Render date: 2025-10-02T13:58:09.103Z Has data issue: false hasContentIssue false

Section II - Measuring Emotional Processes

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Adolphs, R. (2008). Fear, faces, and the human amygdala. Current Opinion in Neurobiology, 18, 166–172.CrossRefGoogle ScholarPubMed
Adolphs, R., Gosselin, F., Buchanan, T. W., Tranel, D., Schyns, P., & Damasio, A. R. (2005). A mechanism for impaired fear recognition after amygdala damage. Nature, 433, 68–72.CrossRefGoogle ScholarPubMed
Adolphs, R., Russell, J. A., & Tranel, D. (1999). A role for the human amygdala in recognizing emotional arousal from unpleasant stimuli. Psychological Science, 10, 167–171.CrossRefGoogle Scholar
Adolphs, R., Tranel, D., & Damasio, A. R. (1998). The human amygdala in social judgment. Nature, 393, 470–474.CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.CrossRefGoogle Scholar
Adolphs, R., Tranel, D., Koenigs, M., & Damasio, A. R. (2005). Preferring one taste over another without recognizing either. Nature Neuroscience, 8, 860–861.CrossRefGoogle Scholar
Anderson, S. W., Damasio, H., & Tranel, D. (1990). Neuropsychological impairments associated with lesions caused by tumor or stroke. Archives of Neurology, 47, 397–405.CrossRefGoogle ScholarPubMed
Angrilli, A., Mauri, A., Palomba, D., Flor, H., Birbaumer, N., Sartori, G., & di Paola, F. (1996). Startle reflex and emotion modulation impairment after a right amygdala lesion. Brain, 119, 1991–2000.CrossRefGoogle ScholarPubMed
Bar-On, R., Tranel, D., Denburg, N., & Bechara, A. (2003). Exploring the neurological substrate of emotional and social intelligence. Brain, 126, 1790–800.CrossRefGoogle ScholarPubMed
Battaglia, S., Garofalo, S., di Pellegrino, G., & Starita, F. (2020). Revaluing the role of vmPFC in the acquisition of Pavlovian threat conditioning in humans. The Journal of Neuroscience, 40, 8491–8500.CrossRefGoogle ScholarPubMed
Bechara, A., & Damasio, A. R. (2005). The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior, 52, 336–372.CrossRefGoogle Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 1115–1118.CrossRefGoogle Scholar
Beer, J. S., Heerey, E. H., Keltner, D., Scabini, D., & Knight, R. T. (2003). The regulatory function of self-conscious emotion: Insights from patients with orbitofrontal damage. Journal of Personality and Social Psychology, 85, 594–604.CrossRefGoogle ScholarPubMed
Benoit, R. G., Gilbert, S. J., Volle, E., & Burgess, P. W. (2010). When I think about me and simulate you: Medial rostral prefrontal cortex and self-referential processes. Neuroimaging, 50, 1340–1349.CrossRefGoogle ScholarPubMed
Berti, A., Bottini, G., Gandola, M., Pia, L., Smania, N., Stracciari, A., … Paulesu, E. (2005). Shared cortical anatomy for motor awareness and motor control. Science, 309, 488–491.CrossRefGoogle ScholarPubMed
Bertossi, E., Aleo, F., Braghittoni, D., & Ciaramelli, E. (2016). Stuck in the here and now: Construction of fictitious and future experiences following ventromedial prefrontal damage. Neuropsychology, 81, 107–116.Google ScholarPubMed
Bertossi, E., & Ciaramelli, E. (2016). Ventromedial prefrontal damage reduces mind-wandering and biases its temporal focus. Social Cognitive and Affective Neuroscience, 11, 1783–1791.CrossRefGoogle ScholarPubMed
Bertossi, E., Tesini, C., Cappelli, A., & Ciaramelli, E. (2016). Ventromedial prefrontal damage causes a pervasive impairment of episodic memory and future thinking. Neuropsychology, 90, 12–24.Google ScholarPubMed
Bird, C. M., Castelli, F., Malik, O., Frith, U., & Husain, M. (2004). The impact of extensive medial frontal lobe damage on “theory of mind” and cognition. Brain, 127, 914–928.CrossRefGoogle ScholarPubMed
Calder, A. J., Keane, J., Manes, F., Antoun, N., & Young, A. W. (2000). Impaired recognition and experience of disgust following brain injury. Nature Neuroscience, 3, 1077–1078.CrossRefGoogle ScholarPubMed
Calder, A. J., Lawrence, A. D., & Young, A. W. (2001). Neuropsychology of fear and loathing. Nature Reviews Neuroscience, 2, 352–363.CrossRefGoogle Scholar
Calder, A. J., Young, A. W., Rowland, D., & Perrett, D. I. (1996). Facial emotion recognition after bilateral amygdala damage: Differentially severe impairment of fear. Cognitive Neuropsychology, 13, 699–745.CrossRefGoogle Scholar
Camille, N., Coricelli, G., Sallet, J., Pradat-Diehl, P., Duhamel, J. R., & Sirigu, A. (2004). The involvement of the orbitofrontal cortex in the experience of regret. Science, 304, 1167–1170.CrossRefGoogle ScholarPubMed
Cannon, W. B., & Britton, S. W. (1925). Pseudoaffective medulliadrenal secretion. American Journal of Psychology, 72, 283–294.Google Scholar
Cereda, C., Ghika, J., Maeder, P., & Bogousslavsky, J. (2002). Strokes restricted to the insular cortex. Neurology, 59, 1950–1905.CrossRefGoogle Scholar
Ciaramelli, E., De Luca, F., Kwan, D., Mok, J., Bianconi, F., Knyagnytska, V., … Rosenbaum, R. S. (2021). The role of ventromedial prefrontal cortex in reward valuation and future thinking during intertemporal choice, eLife, 10, e67387.CrossRefGoogle ScholarPubMed
Ciaramelli, E., & di Pellegrino, G. (2011). Ventromedial prefrontal cortex and the future of morality. Emotion Review, 3, 308–309.CrossRefGoogle Scholar
Ciaramelli, E., Muccioli, M., Làdavas, E., & di Pellegrino, G. (2007). Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex. Social Cognitive and Affective Neuroscience, 2, 84–92.CrossRefGoogle ScholarPubMed
Ciaramelli, E., Sperotto, R. G., Mattioli, F., & di Pellegrino, G., (2013). Damage to the ventromedial prefrontal cortex reduces interpersonal disgust. Social Cognitive and Affective Neuroscience, 8, 171–180.CrossRefGoogle Scholar
Clark, L., Bechara, A., Damasio, H., Aitken, M. R. F., Shahakian, B. J., & Robbins, T. W. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131, 1311–1322.CrossRefGoogle ScholarPubMed
Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3, 655–666.CrossRefGoogle Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.Google Scholar
Damasio, A. (1994). Descartes error: Emotion, reason and the human brain. Putnam Publishing.Google Scholar
Damasio, A., Damasio, H., & Tranel, D. (2013). Persistence of feelings and sentience after bilateral damage of the insula. Cerebral Cortex, 23, 833–846.CrossRefGoogle ScholarPubMed
Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L., Parvizi, J., & Hichwa, R. D. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3, 1049–1056.CrossRefGoogle ScholarPubMed
Driscoll, D. M., Dal Monte, O., Solomon, J., Krueger, F., & Grafman, J. (2012). Empathic deficits in combat veterans with traumatic brain injury: A voxel-based lesion-symptom mapping study. Cognitive and Behavioral Neurology, 25, 160–166.CrossRefGoogle ScholarPubMed
Eslinger, P. J., & Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR. Neurology, 35, 1731–1741.CrossRefGoogle ScholarPubMed
Feinstein, J. S., Adolphs, R., Damasio, A., & Tranel, D. (2011). The human amygdala and the induction and experience of fear. Current Biology, 21, 34–38.CrossRefGoogle ScholarPubMed
Fellows, L. K. (2011). Orbitofrontal contributions to value-based decision making: Evidence from humans with frontal lobe damage. Annals of the New York Academy of Sciences, 1239, 51–58.CrossRefGoogle ScholarPubMed
Fellows, L. K., & Farah, M. J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: Evidence from a reversal learning paradigm. Brain, 126, 1830–1837.CrossRefGoogle ScholarPubMed
Fellows, L. K., & Farah, M. J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15, 58–63.Google ScholarPubMed
Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision making: Judgment under uncertainty or judgment per se? Cerebral Cortex, 17, 2669–2674.CrossRefGoogle ScholarPubMed
Fotopoulou, A., Pernigo, S., Maeda, R., Rudd, A., & Kopelman, M. A. (2010). Implicit awareness in anosognosia for hemiplegia: Unconscious interference without conscious re-representation. Brain, 133, 3564–2577.CrossRefGoogle ScholarPubMed
Frank, G. K. W., Reynolds, J. R., Shott, M. E., Jappe, L., Yang, T. T., Tregellas, J. R., & O’Reilly, R. C. (2012). Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology, 37, 2031–2046.CrossRefGoogle ScholarPubMed
Gillihan, S. J., Xia, C., Padon, A. A., Heberlein, A. S., Farah, M. J., & Fellows, L. K. (2011). Contrasting roles for lateral and ventromedial prefrontal cortex in transient and dispositional affective experience. Social Cognitive and Affective Neuroscience, 6, 128–137.CrossRefGoogle ScholarPubMed
Gläscher, J., Adolphs, R., Damasio, H., Bechara, A., Rudrauf, D., Calamia, M., … Tranel, D. (2012). Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 109, 14681–14686.Google ScholarPubMed
Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293, 2105–2108.CrossRefGoogle ScholarPubMed
Greenspan, J. D., & Winfield, J. A. (1992). Reversible pain and tactile deficits associated with a brain tumor compressing the posterior insula and parietal operculum. Pain, 50, 29–39.CrossRefGoogle ScholarPubMed
Hare, R. D. (2003). Manual for the revised psychopathy checklist, 2nd ed. Multi-Health Systems.Google Scholar
Jones, C. L., Ward, J., & Critchley, H. D. (2010). The neuropsychological impact of insular cortex lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 81, 611–618.CrossRefGoogle ScholarPubMed
Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10, 1625–1633.CrossRefGoogle ScholarPubMed
Kennedy, D. P., Gläscher, J., Tyszka, J. M., & Adolphs, R. (2009). Personal space regulation by the human amygdala. Nature Neuroscience, 12, 1226–1227.CrossRefGoogle ScholarPubMed
Khalsa, S. S., Rudrauf, D., Feinstein, J. S., & Tranel, D. (2009). The pathways of interoceptive awareness. Nature Neuroscience, 12, 1494–1496.CrossRefGoogle ScholarPubMed
Klüver, H., & Bucy, P. C. (1937). “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. American Journal of Physiology, 119, 352–353.Google Scholar
Koenigs, M., Huey, E. D., Calamia, M., Raymont, V., Tranel, D., & Grafman, J. (2008). Distinct regions of prefrontal cortex mediate resistance and vulnerability to depression. The Journal of Neuroscience, 28, 12341–12348.CrossRefGoogle ScholarPubMed
Koenigs, M., Huey, E. D., Raymont, V., Cheon, B., Solomon, J., Wassermann, E. M., & Grafman, J. (2008). Focal brain damage protects against post-traumatic stress disorder in combat veterans. Nature Neuroscience, 11, 32–37.CrossRefGoogle ScholarPubMed
Koenigs, M., & Tranel, D. (2007). Irrational economic decision-making after ventromedial prefrontal damage: Evidence from the Ultimatum Game. The Journal of Neuroscience, 27, 951–956.CrossRefGoogle ScholarPubMed
Koenigs, M., & Tranel, D. (2008). Prefrontal cortex damage abolishes brand-cued changes in cola preference. Social Cognitive and Affective Neuroscience, 3, 1–6.CrossRefGoogle ScholarPubMed
Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446, 908–911.CrossRefGoogle Scholar
Kringelbach, M., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341–372.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.CrossRefGoogle ScholarPubMed
Levens, S. M., Larsen, J. T., Bruss, J., Tranel, D., Bechara, A., & Mellers, B. A. (2014). What might have been? The role of the ventromedial prefrontal cortex and lateral orbitofrontal cortex in counterfactual emotions and choice. Neuropsychology, 54, 77–86.Google ScholarPubMed
MacPherson, S. E., Phillips, L. H., Della Sala, S., & Cantagallo, A. (2009). Iowa Gambling Task impairment is not specific to ventromedial prefrontal lesions. Clinical Neuropsychology, 23, 510–522.CrossRefGoogle Scholar
Mavaddat, N., Kirkpatrick, P. J., Rogers, R. D., & Sahakian, B. J. (2000). Deficits in decision-making in patients with aneurysms of the anterior communicating artery. Brain, 123, 2109–2117.CrossRefGoogle ScholarPubMed
Monte, O. D., Krueger, F., Solomon, J. M., Schintu, S., Knutson, K. M., Strenziok, M., … Grafman, J. (2013). A voxel-based lesion study on facial emotion recognition after penetrating brain injury. Social Cognitive and Affective Neuroscience, 8, 632–639.Google Scholar
Moretti, L., Dragone, D., & di Pellegrino, G. (2009). Reward and social valuation deficits following ventromedial prefrontal damage. Journal of Cognitive Neuroscience, 21, 128–140.CrossRefGoogle ScholarPubMed
Moretto, G., Làdavas, E., Mattioli, F., & di Pellegrino, G. (2010). A psychophysiological investigation of moral judgment after ventromedial prefrontal damage. Journal of Cognitive Neuroscience, 22, 1888–1899.CrossRefGoogle ScholarPubMed
Morris, J. S., deBonis, M., & Dolan, R. J. (2002). Human amygdala responses to fearful eyes. NeuroImage, 17, 214–222.CrossRefGoogle ScholarPubMed
Naqvi, N. H., Rudrauf, D., Damasio, H., & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science, 315, 531–534.CrossRefGoogle Scholar
Olsson, A., & Phelps, E. A. (2004). Learned fear of “unseen” faces after Pavlovian, observational, and instructed fear. Psychological Science, 15, 822–828.CrossRefGoogle ScholarPubMed
Perry, A., Lwi, S. J., Verstaen, A., Dewar, C., Levenson, R. W., & Knight, R. T. (2016). The role of the orbitofrontal cortex in regulation of interpersonal space: Evidence from frontal lesion and frontotemporal dementia patients. Social Cognitive and Affective Neuroscience, 11, 1894–1901.CrossRefGoogle ScholarPubMed
Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annual Review of Psychology, 57, 27–53.CrossRefGoogle ScholarPubMed
Phelps, E. A., Delgado, M. R., Nearing, K. I., & LeDoux, J. E. (2004). Extinction learning in humans: Role of the amygdala and vmPFC. Neuron, 43, 897–905.CrossRefGoogle ScholarPubMed
Phelps, E. A., O’Connor, K. J., Gatenby, J. C., Gore, J. C., Grillon, C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4, 437–441.CrossRefGoogle ScholarPubMed
Philippi, C. L., Feinstein, J. S., Khalsa, S. S., Damasio, A., Tranel, D., Landini, G., … Rudrauf, D. (2012). Preserved self-awareness following extensive bilateral brain damage to the insula, anterior cingulate, and medial prefrontal cortices. PLoS ONE, 7, e38413.CrossRefGoogle Scholar
Phillips, M. L., Young, A. W., Senior, C., Brammer, M., Andrew, C., Calder, A. J., … David, A. S. (1997). A specific neural substrate for perceiving facial expressions of disgust. Nature, 389, 495–498.CrossRefGoogle ScholarPubMed
Reber, J., Feinstein, J. S., O’Doherty, J. P., Liljeholm, M., Adolphs, R., & Tranel, D. (2017). Selective impairment of goal-directed decision-making following lesions to the human ventromedial prefrontal cortex. Brain, 140, 1743–1756.CrossRefGoogle Scholar
Roberts, N. A., Beer, J. S., Werner, K. H., Scabini, D., Levens, S. M., Knight, R. T., & Levenson, R. W. (2004). The impact of orbital prefrontal cortex damage on emotional activation to unanticipated and anticipated acoustic startle stimuli. Cognitive Affective and Behavioral Neuroscience, 4, 307–316.CrossRefGoogle ScholarPubMed
Rorden, C., & Kanath, H. O. (2004). Using human brain lesions to infer function: A relic from a past era in the fMRI age? Nature Reviews Neuroscience, 5, 813–819.CrossRefGoogle ScholarPubMed
Sanfey, A. G., Hastie, R., Colvin, M. K., & Grafman, J. (2003). Phineas gauged: Decision-making and the human prefrontal cortex. Neuropsychologia, 41, 1218–1229.CrossRefGoogle ScholarPubMed
Seeley, W. W., Merkle, F. T., Gaus, S. E., Craig, A. D., Allman, J. M., Hof, P. R., & von Economo, C. (2012). Distinctive neurons of the anterior cingulate and frontoinsular cortex: A historical perspective. Cerebral Cortex, 22, 245–250.CrossRefGoogle ScholarPubMed
Sellitto, M., Ciaramelli, E., & di Pellegrino, G. (2010). Myopic discounting of future rewards after medial orbitofrontal damage in humans. The Journal of Neuroscience, 30, 16429–16436.CrossRefGoogle ScholarPubMed
Sellitto, M., Ciaramelli, E., Mattioli, F., & di Pellegrino, G. (2016). Reduced sensitivity to sooner reward during intertemporal decision-making following insula damage in humans. Frontiers in Behavioral Neuroscience, 9, 1–14.CrossRefGoogle ScholarPubMed
Shacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N. & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677–694.Google Scholar
Shallice, T. (1988). From neuropsychology to mental structure. Cambridge University Press.CrossRefGoogle Scholar
Shamay-Tsoory, S. G., & Aharon-Peretz, J. (2007). Dissociable prefrontal networks for cognitive and affective theory of mind: A lesion study. Neuropsychologia, 45, 3054–3067.CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Aharon-Peretz, J., & Perry, D. (2009). Two systems for empathy: A double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain, 132, 617–627.CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Tibi-Elhanany, Y., & Aharon-Peretz, J. (2006). The ventromedial prefrontal cortex is involved in understanding affective but not cognitive theory of mind stories. Social Neuroscience, 1, 149–166.CrossRefGoogle Scholar
Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., Goldsher, D., & Aharon-Peretz, J. (2005). Impaired “affective theory of mind” is associated with right ventromedial prefrontal damage. Cognitive and Behavioral Neurology, 18, 55–67.CrossRefGoogle ScholarPubMed
Starr, C. J., Sawaki, L., Wittenberg, G. F., Burdette, J. H., Oshiro, Y., Quevedo, A. S., & Coghill, R. C. (2009). Roles of the insular cortex in the modulation of pain: Insights from brain lesions. The Journal of Neuroscience, 29, 2684–2694.CrossRefGoogle ScholarPubMed
Sutterer, M. J., Bruss, J., Boes, A. D., Voss, M. W., Bechara, A., & Tranel, D. (2016). Canceled connections: Lesion-derived network mapping helps explain differences in performance on a complex decision-making task. Cortex, 78, 31–43.CrossRefGoogle ScholarPubMed
Tranel, D., Gullickson, G., Koch, M., & Adolphs, R. (2006). Altered experience of emotion following bilateral amygdala damage. Cognitive Neuropsychiatry, 11, 219–232.CrossRefGoogle ScholarPubMed
Tsakiris, M., Hesse, M. D., Boy, C., Haggard, P., & Fink, G. R. (2007). Neural signatures of body ownership: A sensory network for bodily self-consciousness. Cerebral Cortex, 17, 2235–2244.CrossRefGoogle Scholar
Tsuchida, A., Doll, B. B., & Fellows, L. K. (2010). Beyond reversal: A critical role for human orbitofrontal cortex in flexible learning from probabilistic feedback. The Journal of Neuroscience, 30, 16868–16875.CrossRefGoogle ScholarPubMed
Tsuchida, A., & Fellows, L. K. (2012). Are you upset? Distinct roles for orbitofrontal and lateral prefrontal cortex in detecting and distinguishing facial expressions of emotion. Cerebral Cortex, 22, 2904–2912.CrossRefGoogle ScholarPubMed
Vandekerckhove, M., Plessers, M., Van Mieghem, A., Beeckmans, K., Van Acker, F., Maex, R., … Van Overwalle, F. (2014). Impaired facial emotion recognition in patients with ventromedial prefrontal hypoperfusion. Neuropsychology, 28, 605–612.CrossRefGoogle ScholarPubMed
Weller, J. A., Levin, I. P., Shiv, B., & Bechara, A. (2009). The effects of insula damage on decision-making for risky gains and losses. Social Neuroscience, 4, 347–358.CrossRefGoogle ScholarPubMed
Zaki, J., & Ochsner, K. N. (2012). The neuroscience of empathy: Progress, pitfalls and promise. Nature Neuroscience, 15, 675–680.CrossRefGoogle ScholarPubMed
Zhang, Z., Mendelsohn, A., Manson, K. F., Schiller, D., & Levy, I. (2016). Dissociating value representation and inhibition of inappropriate affective response during reversal learning in the ventromedial prefrontal cortex. eNeuro, 2, ENEURO.0072-15.2015.Google ScholarPubMed

References

Andreassi, J. L. (2006). Psychophysiology: Human behavior and physiological response. Routledge.Google Scholar
Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10, 229–240.CrossRefGoogle Scholar
Ayala, E. S., Meuret, A. E., & Ritz, T. (2010). Confrontation with blood and disgust stimuli precipitates respiratory dysregulation in blood–injection–injury phobia. Biological Psychology, 84, 88–97.CrossRefGoogle ScholarPubMed
Benning, S. D., Patrick, C. J., & Lang, A. R. (2004). Emotional modulation of the post-auricular reflex. Psychophysiology, 41, 426–432.CrossRefGoogle ScholarPubMed
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., … Van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretative caveats. Psychophysiology, 34, 623–648.CrossRefGoogle Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: The modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98, 459–487.CrossRefGoogle ScholarPubMed
Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & van Boxtel, A. (2005). Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42, 1–15.CrossRefGoogle ScholarPubMed
Boucsein, W. (2012). Electrodermal activity. Springer Science & Business Media.CrossRefGoogle Scholar
Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1, 276–298.Google ScholarPubMed
Bradley, M. M., Codispoti, M., & Lang, P. J. (2006). A multi-process account of startle modulation during affective perception. Psychophysiology, 43, 486–497.CrossRefGoogle ScholarPubMed
Brosschot, J. F., & Thayer, J. F. (2003). Heart rate response is longer after negative emotions than after positive emotions. International Journal of Psychophysiology, 50, 181–187.CrossRefGoogle ScholarPubMed
Burgdorf, C., Rinn, C., & Stemmler, G. (2016). Effects of personality on the opioidergic modulation of the emotion warmth-liking. Journal of Comparative Neurology, 524, 1712–1726.Google ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (2017). Handbook of psychophysiology, 4th ed. Cambridge University Press.Google Scholar
Cieslak, M., Ryan, W. S., Babenko, V., Erro, H., Rathbun, Z. M., Meiring, W., … Grafton, S. T. (2018). Quantifying rapid changes in cardiovascular state with a moving ensemble average. Psychophysiology, 55, e13018.CrossRefGoogle ScholarPubMed
Cieslak, M., Ryan, W. S., Macy, A., Kelsey, R. M., Cornick, J. E., Verket, M., … Grafton, S. (2015). Simultaneous acquisition of functional magnetic resonance images and impedance cardiography. Psychophysiology, 52, 481–488.CrossRefGoogle ScholarPubMed
Cohen, A. S., Barlow, D. H., & Blanchard, E. B. (1985). Psychophysiology of relaxation-associated panic attacks. Journal of Abnormal Psychology, 94, 96–101.CrossRefGoogle ScholarPubMed
Cuthbert, B. N. (2022). Research domain criteria (RDoC): Progress and potential. Current Directions in Psychological Science, 31, 107–114.CrossRefGoogle ScholarPubMed
Cutmore, T. R., & James, D. A. (2007). Sensors and sensor systems for psychophysiological monitoring: A review of current trends. Journal of Psychophysiology, 21, 51–71.CrossRefGoogle Scholar
Davis, K. L., & Montag, C. (2019). Selected principles of Pankseppian affective neuroscience. Frontiers in Neuroscience, 12, 1025.CrossRefGoogle ScholarPubMed
Dawson, M. E., Schell, A. M., & Böhmelt, A. H. (Eds.), (1999). Startle modification: Implications for neuroscience, cognitive science, and clinical science. Cambridge University Press.CrossRefGoogle Scholar
Dawson, M. E., Schell, A. M., & Filion, D. L. (2017). The electrodermal system. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (Eds.), Handbook of psychophysiology (pp. 217–243). Cambridge University Press.Google Scholar
Dimberg, U., & Thunberg, M. (1998). Rapid facial reactions to emotional facial expressions. Scandinavian Journal of Psychology, 39, 39–45.Google ScholarPubMed
Doberenz, S., Roth, W. T., Wollburg, E., Maslowski, N. I., & Kim, S. (2011). Methodological considerations in ambulatory skin conductance monitoring. International Journal of Psychophysiology, 80, 87–95.CrossRefGoogle ScholarPubMed
Eisenbarth, H., Chang, L. J., & Wager, T. D. (2016). Multivariate brain prediction of heart rate and skin conductance responses to social threat. Journal of Neuroscience, 36, 11987–11998.CrossRefGoogle ScholarPubMed
Ekman, P. (2003). Darwin, deception and facial expression. Annals New York Academy of Sciences, 1000, 205–221.CrossRefGoogle ScholarPubMed
Ekman, P., Davidson, R. J., & Friesen, W. V. (1990). The Duchenne smile: Emotional expression and brain physiology II. Journal of Personality and Social Psychology, 58, 342–353.CrossRefGoogle Scholar
Feleky, A. (1916). The influence of the emotions on respiration. Journal of Experimental Psychology, 1, 218–241.CrossRefGoogle Scholar
Frazier, T. W., Strauss, M. E., & Steinhauer, S. (2004). Respiratory sinus arrhythmia as an index of emotional response. Psychophysiology, 41, 75–83.CrossRefGoogle Scholar
Fridlund, A., & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23, 567–589.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Zorab, E., Navaratnam, N., Engels, M., Mallorquí-Bagué, N., Minati, L., … Critchley, H. D. (2016). Anger in brain and body: The neural and physiological perturbation of decision-making by emotion. Social Cognitive and Affective Neuroscience, 11, 150–158.CrossRefGoogle ScholarPubMed
Gavrilova, L., & Zawadzki, M. J. (2023). Testing the associations between state and trait anxiety, anger, sadness, and ambulatory blood pressure and whether race impacts these relationships. Annals of Behavioral Medicine, 57, 38–49.CrossRefGoogle ScholarPubMed
Gerpheide, K., Unterschemmann, S. L., Panitz, C., Bierwirth, P., Gross, J. J., & Mueller, E. M. (2024). Unpredictable threat increases early event-related potential amplitudes and cardiac acceleration: A brain–heart coupling study. Psychophysiology, 61, e14563.CrossRefGoogle ScholarPubMed
Gomez, P., Shafy, S., & Danuser, B. (2008). Respiration, metabolic balance, and attention in affective picture processing. Biological Psychology, 78, 138–149.CrossRefGoogle ScholarPubMed
Gomez, P., Zimmermann, P., Guttormsen-Schär, S., & Danuser, B. (2005). Respiratory responses associated with affective processing of film stimuli. Biological Psychology, 68, 223–235.CrossRefGoogle ScholarPubMed
Gordan, R., Gwathmey, J. K., & Xie, L. H. (2015). Autonomic and endocrine control of cardiovascular function. World Journal of Cardiology, 7, 204–214.CrossRefGoogle ScholarPubMed
Gravenstein, J. S., Jaffe, M. B., Gravenstein, N., & Paulus, D. A. (2011). Capnography. Cambridge University Press.CrossRefGoogle Scholar
Hartman, M. E., Ladwig, M. A., & Ekkekakis, P. (2021). Contactless differentiation of pleasant and unpleasant valence: Assessment of the acoustic startle eyeblink response with infrared reflectance oculography. Behavior Research Methods, 53, 2092–2104.CrossRefGoogle ScholarPubMed
Heller, A. S., Lapate, R. C., Mayer, K. E., & Davidson, R. J. (2014). The face of negative affect: Trial-by-trial corrugator responses to negative pictures are positively associated with amygdala and negatively associated with ventromedial prefrontal cortex activity. Journal of Cognitive Neuroscience, 26, 2102–2110.CrossRefGoogle ScholarPubMed
Hess, U., Sabourin, G., & Kleck, R. E. (2007). Postauricular and eyeblink startle responses to facial expression. Psychophysiology, 44, 431–435.CrossRefGoogle Scholar
Jänig, W., & Häbler, H. J. (2000). Specificity in the organization of the autonomic nervous system: A basis for precise neural regulation of homeostatic and protective body functions. Progress in Brain Research, 122, 351–367.CrossRefGoogle ScholarPubMed
Jennings, J. R. (2003). Autoregulation of blood pressure and thought: Preliminary results of an application of brain imaging to psychosomatic medicine. Psychosomatic Medicine, 65, 384–395.CrossRefGoogle ScholarPubMed
Jennings, J. R., Berg, W., Hutcheson, J., Obrist, P., Porges, S., & Turpin, G. (1981). Committee report. Publication guidelines for heart rate studies in man. Psychophysiology, 18, 226–231.CrossRefGoogle ScholarPubMed
Kelsey, R. M., Reiff, S., Wiens, S., Schneider, T. R., Mezzcappa, E. S., & Guethlein, W. (1998). The ensemble-averaged impedance cardiogram: An evaluation of scoring methods and interrater reliability. Psychophysiology, 35, 337–340.CrossRefGoogle ScholarPubMed
Kim, S., Wollburg, E., & Roth, W. T. (2012). Opposing breathing therapies for panic disorder: A randomized controlled trial of lowering vs raising end-tidal pCO2. The Journal of Clinical Psychiatry, 73, 13479.CrossRefGoogle Scholar
Klumpp, H., & Shankman, S. A. (2018). Using event-related potentials and startle to evaluate time course in anxiety and depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 10–18.Google ScholarPubMed
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84, 394–421.CrossRefGoogle ScholarPubMed
Kreibig, S. D., Gendolla, G. H. E., & Scherer, K. R. (2012). Goal relevance and goal conduciveness appraisals lead to differential autonomic reactivity in emotional responding to performance feedback. Biological Psychology, 91, 365–375.CrossRefGoogle ScholarPubMed
Kreibig, S. D., Schaefer, G., & Brosch, T. (2010). Psychophysiological response patterning in emotion: Implications for affective computing. In Scherer, K. R., Baenziger, T., & Roesch, E. (Eds.), Blueprint for affective computing: A sourcebook (pp. 105–130). Oxford University Press.Google Scholar
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology, 44, 787–806.CrossRefGoogle ScholarPubMed
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2011). Affective modulation of the acoustic startle: Does sadness engage the defensive system? Biological Psychology, 87, 161–163.CrossRefGoogle ScholarPubMed
Kuhn, M., Wendt, J., Sjouwerman, R., Büchel, C., Hamm, A., & Lonsdorf, T. B. (2020). The neurofunctional basis of affective startle modulation in humans: Evidence from combined facial electromyography and functional magnetic resonance imaging. Biological Psychiatry, 87, 548–558.CrossRefGoogle ScholarPubMed
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213.CrossRefGoogle ScholarPubMed
Lane, R. D., McRae, K., Reiman, E. M., Chen, K., Ahern, G. L., & Thayer, J. F. (2009). Neural correlates of heart rate variability during emotion. NeuroImage, 44, 213–222.CrossRefGoogle ScholarPubMed
Langewouters, G., Settels, J., Roelandt, R., & Wesseling, K. (1998). Why use Finapres or Portapres rather than intraarterial or intermittent non-invasive techniques of blood pressure measurement? Journal of Medical Engineering & Technology, 22, 37–43.CrossRefGoogle ScholarPubMed
Larsen, J. T., Norris, C. J., & Cacioppo, J. T. (2003). Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. Psychophysiology, 40, 776–785.CrossRefGoogle ScholarPubMed
Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6, 100–112.Google Scholar
Levenson, R. W. (2019). Stress and illness: A role for specific emotions. Psychosomatic Medicine, 81, 720–730.CrossRefGoogle Scholar
Lindström, B. R., Mattsson-Mårn, I. B., Golkar, A., & Olsson, A. (2013). In your face: Risk of punishment enhances cognitive control and error-related activity in the corrugator supercilii muscle. PLoS ONE, 8, e65692.CrossRefGoogle ScholarPubMed
Lozano, D. L., Norman, G., Knox, D., Wood, B. L., Miller, B. D., Emery, C. F., & Berntson, G. G. (2007). Where to B in dZ/dt. Psychophysiology, 44, 113–119.CrossRefGoogle Scholar
Marsh, P., Beauchaine, T. P., & Williams, B. (2008). Dissociation of sad facial expressions and autonomic nervous system responding in boys with disruptive behavior disorders. Psychophysiology, 45, 100–110.CrossRefGoogle Scholar
Matsumoto, D., & Lee, M. (1993). Consciousness, volition, and the neuropsychology of facial expressions of emotion. Consciousness and Cognition, 2, 237–254.CrossRefGoogle Scholar
Matsumura, K., Shimizu, K., Rolfe, P., Kakimoto, M., & Yamakoshi, T. (2017). Inter-method reliability of pulse volume related measures derived using finger-photoplethysmography. Journal of Psychophysiology, 32, 182–190.Google Scholar
Miller, A. D., Bianchi, A. L., & Bishop, B. P. (2019). Neural control of the respiratory muscles. CRC Press.CrossRefGoogle Scholar
Nikula, R. (1991). Psychological correlates of nonspecific skin conductance responses. Psychophysiology, 28, 86–90.CrossRefGoogle ScholarPubMed
O’Beirne, G. A., & Patuzzi, R. B. (1999). Basic properties of the sound-evoked post-auricular muscle response (PAMR). Hearing Research, 138, 115–132.CrossRefGoogle ScholarPubMed
Palomba, D., Sarlo, M., Angrilli, A., Mini, A., & Stegagno, L. (2000). Cardiac responses associated with affective processing of unpleasant film stimuli. International Journal of Psychophysiology, 36, 45–57.CrossRefGoogle ScholarPubMed
Pauls, C. A., & Stemmler, G. (2003). Repressive and defensive coping during fear and anger. Emotion, 3, 284–302.CrossRefGoogle ScholarPubMed
Peira, N., Fredrikson, M., & Pourtois, G. (2014). Controlling the emotional heart: Heart rate biofeedback improves cardiac control during emotional reactions. International Journal of Psychophysiology, 91, 225–231.CrossRefGoogle ScholarPubMed
Pickering, T. G., Hall, J. E., Appel, L. J., Falkner, B. E., Graves, J., Hill, M. N., … Roccella, E. J. (2005). Recommendations for blood pressure measurement in humans and experimental animals: part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension, 45, 142–161.CrossRefGoogle Scholar
Porges, S. W., & Byrne, E. A. (1992). Research methods for measurement of heart rate and respiration. Biological Psychology, 34, 93–130.CrossRefGoogle ScholarPubMed
Posada-Quintero, H. F., & Chon, K. H. (2020). Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors, 20, 479.CrossRefGoogle ScholarPubMed
Quigley, K. S., & Barrett, L. F. (2014). Is there consistency and specificity of autonomic changes during emotional episodes? Guidance from the conceptual act theory and psychophysiology. Biological Psychology, 98, 82–94.CrossRefGoogle ScholarPubMed
Quintana, D., Alvares, G. A., & Heathers, J. (2016). Guidelines for reporting articles on psychiatry and heart rate variability (graph): Recommendations to advance research communication. Translational Psychiatry, 6, e803–e803.CrossRefGoogle ScholarPubMed
Rastegar, S., GholamHosseini, H., & Lowe, A. (2020). Non-invasive continuous blood pressure monitoring systems: Current and proposed technology issues and challenges. Physical and Engineering Sciences in Medicine, 43, 11–28.CrossRefGoogle Scholar
Ritz, T., & Dahme, B. (2006). Implementation and interpretation of respiratory sinus arrhythmia measures in psychosomatic medicine: Practice against better evidence? Psychosomatic Medicine, 68, 617–627.CrossRefGoogle ScholarPubMed
Ritz, T., Dahme, B., Dubois, A. B., Folgering, H., Fritz, G. K., Harver, A., … Van de Woestijne, K. P. (2002). Guidelines for mechanical lung function measurements in psychophysiology. Psychophysiology, 39, 546–567.CrossRefGoogle ScholarPubMed
Rymarczyk, K., Zurawski, L., Jankowiak-Siuda, K., & Szatkowska, I. (2019). Empathy in facial mimicry of fear and disgust: Simultaneous EMG-fMRI recordings during observation of static and dynamic facial expressions. Frontiers in Psychology, 10, 701.CrossRefGoogle ScholarPubMed
Shaffer, F., Meehan, Z. M., & Zerr, C. L. (2020). A critical review of ultra-short-term heart rate variability norms research. Frontiers in Neuroscience, 14, 594880.CrossRefGoogle ScholarPubMed
Shapiro, D., Jamner, L. D., & Goldstein, I. B. (1997). Daily mood states and ambulatory blood pressure. Psychophysiology, 34, 399–405.CrossRefGoogle ScholarPubMed
Shapiro, D., Jamner, L., Lane, J., Light, K., Myrtek, M., Sawada, Y., & Steptoe, A. (1996). Blood pressure publication guidelines. Society for Psychophysical Research. Psychophysiology, 33, 1–12.CrossRefGoogle ScholarPubMed
Shastri, D., Merla, A., Tsiamyrtzis, P., & Pavlidis, I. (2008). Imaging facial signs of neurophysiological responses. IEEE Transactions on Biomedical Engineering, 56, 477–484.Google ScholarPubMed
Shearn, D., Bergman, E., Hill, K., Abel, A., & Hinds, L. (1990). Facial coloration and temperature responses in blushing. Psychophysiology, 27, 687–693.CrossRefGoogle ScholarPubMed
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27, 1–23.Google ScholarPubMed
Shokri-Kojori, E., Tomasi, D., & Volkow, N. D. (2018). An autonomic network: Synchrony between slow rhythms of pulse and brain resting state is associated with personality and emotions. Cerebral Cortex, 28, 3356–3371.CrossRefGoogle ScholarPubMed
Sloan, D. M., & Sandt, A. R. (2010). Depressed mood and emotional responding. Biological Psychology, 84, 368–374.CrossRefGoogle ScholarPubMed
Society for Psychophysiological Research (SPR) Ad Hoc Committee on Electrodermal Measures, Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E., & Filion, D. L. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49, 1017–1034.Google ScholarPubMed
Sparks, J., & Lang, A. (2010). An initial examination of the post-auricular reflex as a physiological indicator of appetitive activation during television viewing. Communication Methods and Measures, 4, 311–330.CrossRefGoogle Scholar
Stemmler, G., Aue, T., & Wacker, J. (2007). Anger and fear: Separable effects of emotion and motivational direction on somatovisceral responses. International Journal of Psychophysiology, 66, 141–153.CrossRefGoogle ScholarPubMed
Stern, R. M., Ray, W. J., & Quigley, K. S. (2001). Psychophysiological recording. Oxford University Press.Google Scholar
Sturm, V. E., Sollberger, M., Seeley, W. W., Rankin, K. P., Ascher, E. A., Rosen, H. J., … Levenson, R. W. (2013). Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity. Social Cognitive and Affective Neuroscience, 8, 468–474.CrossRefGoogle ScholarPubMed
Stussi, Y., Delplanque, S., & Sander, D. (2023). Measuring the postauricular reflex as an indicator of appetitive processing. In Bensafi, M. (Ed.), Basic protocols on emotions, senses, and foods (pp. 203–222). Springer.Google Scholar
Stussi, Y., Ferrero, A., Pourtois, G., & Sander, D. (2019). Achievement motivation modulates Pavlovian aversive conditioning to goal-relevant stimuli. npj Science of Learning, 4, 4.CrossRefGoogle ScholarPubMed
Sze, J. A., Gyurak, A., Goodkind, M. S., & Levenson, R. W. (2012). Greater emotional empathy and prosocial behavior in late life. Emotion, 12, 1129–1140.CrossRefGoogle ScholarPubMed
Task Force of the European Society of Cardiology (ESC) and the North American Society of Pacing Electrophysiology (NASPE) (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065.Google Scholar
Tolin, D. F., Lee, E., Levy, H. C., Das, A., Mammo, L., Katz, B. W., & Diefenbach, G. J. (2021). Psychophysiological assessment of stress reactivity and recovery in anxiety disorders. Journal of Anxiety Disorders, 82, 102426.CrossRefGoogle ScholarPubMed
Trost, W. J., Labbé, C., & Grandjean, D. (2017). Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia, 96, 96–110.CrossRefGoogle Scholar
Van Boxtel, A. (2001). Optimal signal bandwidth for the recording of surface EMG activity of facial, jaw, oral, and neck muscles. Psychophysiology, 38, 22–34.CrossRefGoogle ScholarPubMed
van Boxtel, A., Boelhouwer, A. J., & Bos, A. R. (1998). Optimal EMG signal bandwidth and interelectrode distance for the recording of acoustic, electrocutaneous, and photic blink reflexes. Psychophysiology, 35, 690–697.CrossRefGoogle ScholarPubMed
Van Der Mee, D., Gevonden, M., Westerink, J. H., & De Geus, E. (2021). Validity of electrodermal activity-based measures of sympathetic nervous system activity from a wrist-worn device. International Journal of Psychophysiology, 168, 52–64.CrossRefGoogle ScholarPubMed
Van Reekum, C. M., Johnstone, T., Banse, R., Etter, A., Wehrle, T., & Scherer, K. R. (2004). Psychophysiological responses to appraisal dimensions in a computer game. Cognition and Emotion, 18, 663–688.CrossRefGoogle Scholar
Vergara, R. C., Möenne-Loccoz, C., Ávalos, C., Egaña, J., & Maldonado, P. E. (2019). Finger temperature: A psychophysiological assessment of the attentional state. Frontiers in Human Neuroscience, 13, 66.CrossRefGoogle ScholarPubMed
Vlemincx, E., Severs, L., & Ramirez, J. M. (2022). The psychophysiology of the sigh: II: The sigh from the psychological perspective. Biological Psychology, 170, 108386.Google Scholar
Wattendorf, E., Westermann, B., Fiedler, K., Ritz, S., Redmann, A., Pfannmöller, J., … Celio, M. R. (2019). Laughter is in the air: Involvement of key nodes of the emotional motor system in the anticipation of tickling. Social Cognitive and Affective Neuroscience, 14, 837–847.CrossRefGoogle ScholarPubMed
Wientjes, C. J. E. (1992). Respiration in psychophysiology: Measurement issues and applications. Biological Psychology, 34, 179–203.CrossRefGoogle Scholar
Yoshihara, K., Tanabe, H. C., Kawamichi, H., Koike, T., Yamazaki, M., Sudo, N., & Sadato, N. (2016). Neural correlates of fear-induced sympathetic response associated with the peripheral temperature change rate. NeuroImage, 134, 522–531.CrossRefGoogle ScholarPubMed
Zarei, S. A., Yahyavi, S. S., Salehi, I., Kazemiha, M., Kamali, A. M., & Nami, M. (2022). Toward reanimating the laughter-involved large-scale brain networks to alleviate affective symptoms. Brain and Behavior, 12, e2640.CrossRefGoogle ScholarPubMed
Zerwas, F. K., Springstein, T., Karnilowicz, H. R., Lam, P., Butler, E. A., John, O. P., & Mauss, I. B. (2021). “I feel you”: Greater linkage between friends’ physiological responses and emotional experience is associated with greater empathic accuracy. Biological Psychology, 161, 108079.CrossRefGoogle ScholarPubMed

References

Agcaoglu, O., Wilson, T. W., Wang, Y. P., Stephen, J., & Calhoun, V. D. (2019). Resting state connectivity differences in eyes open versus eyes closed conditions. Human Brain Mapping, 40, 2488–2498.CrossRefGoogle ScholarPubMed
Baez-Lugo, S., Deza-Araujo, Y. I., Maradan, C., Collette, F., Lutz, A., Marchant, N. L., … Medit-Ageing Research Group (2023). Exposure to negative socio-emotional events induces sustained alteration of resting-state brain networks in older adults. Nature Aging, 3, 105–120.CrossRefGoogle ScholarPubMed
Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25, 390–397.CrossRefGoogle ScholarPubMed
Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23, 361–372.CrossRefGoogle ScholarPubMed
Bestelmeyer, P. E. G., Maurage, P., Rouger, J., Latinus, M., & Belin, P. (2014). Adaptation to vocal expressions reveals multistep perception of auditory emotion. Journal of Neuroscience, 34, 8098–8105.CrossRefGoogle ScholarPubMed
Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R., … Prabhakaran, V. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage, 83, 550–558.CrossRefGoogle ScholarPubMed
Bordi, F., & LeDoux, J. (1992). Sensory tuning beyond the sensory system: An initial analysis of auditory response properties of neurons in the lateral amygdaloid nucleus and overlying areas of the striatum. Journal of Neuroscience, 12, 2493–2503.CrossRefGoogle ScholarPubMed
Carlson, H., Leitao, J., Delplanque, S., Cayeux, I., Sander, D., & Vuilleumier, P. (2020). Sustained effects of pleasant and unpleasant smells on resting state brain activity. Cortex, 132, 386–403.CrossRefGoogle ScholarPubMed
Chen, G., Taylor, P. A., Reynolds, R. C., Leibenluft, E., Pine, D. S., Brotman, M. A., … Haller, S. P. (2023). BOLD response is more than just magnitude: Improving detection sensitivity through capturing hemodynamic profiles. NeuroImage, 277, 120224.CrossRefGoogle ScholarPubMed
Chen, J. E., Polimeni, J. R., Bollmann, S., & Glover, G. H. (2019). On the analysis of rapidly sampled fMRI data. NeuroImage, 188, 807–820.CrossRefGoogle ScholarPubMed
Chen, N. K., Dickey, C. C., Yoo, S. S., Guttmann, C. R., & Panych, L. P. (2003). Selection of voxel size and slice orientation for fMRI in the presence of susceptibility field gradients: Application to imaging of the amygdala. NeuroImage, 19, 817–825.CrossRefGoogle ScholarPubMed
Corradi-Dell’Acqua, C., Hofstetter, C., Sharvit, G., Hugli, O., & Vuilleumier, P. (2023). Healthcare experience affects pain-specific responses to others’ suffering in the anterior insula. Human Brain Mapping, 44, 5655–5671.Google ScholarPubMed
de Zwart, J. A., van Gelderen, P., Jansma, J. M., Fukunaga, M., Bianciardi, M., & Duyn, J. H. (2009). Hemodynamic nonlinearities affect BOLD fMRI response timing and amplitude. NeuroImage, 47, 1649–1658.CrossRefGoogle ScholarPubMed
Donders, F. C. (1969). Over de snelheid van psychische processen [On the speed of psychological processes]. In Koster, W. G. & Instituut voor Perceptie Onderzoek (Eindhoven Netherlands) (Eds.), Attention and performance II: Proceedings of the Donders Centenary Symposium on Reaction time, held in Eindhoven, July 29–August 2, 1968 (pp. 412–431). North-Holland Publishing.Google Scholar
Eryilmaz, H., Van De Ville, D., Schwartz, S., & Vuilleumier, P. (2011). Impact of transient emotions on functional connectivity during subsequent resting state: A wavelet correlation approach. NeuroImage, 54, 2481–2491.CrossRefGoogle Scholar
Faraday, M. (1846). Experimental researches in electricity. Nineteenth series. On the magnetization of light and the illumination of magnetic lines of force. Philosophical Transactions of the Royal Society of London, 136, 1–20.Google Scholar
Fernandez, B., Leuchs, L., Sämann, P. G., Czisch, M., & Spoormaker, V. I. (2017). Multi-echo EPI of human fear conditioning reveals improved BOLD detection in ventromedial prefrontal cortex. NeuroImage, 156, 65–77.CrossRefGoogle ScholarPubMed
Finn, E. S. (2021). Is it time to put rest to rest? Trends in Cognitive Sciences, 25, 1021–1032.CrossRefGoogle ScholarPubMed
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.CrossRefGoogle ScholarPubMed
Frassle, S., Lomakina, E. I., Razi, A., Friston, K. J., Buhmann, J. M., & Stephan, K. E. (2017). Regression DCM for fMRI. NeuroImage, 155, 406–421.CrossRefGoogle ScholarPubMed
Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connect, 1, 13–36.CrossRefGoogle ScholarPubMed
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6, 218–229.CrossRefGoogle ScholarPubMed
Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15, 870–878.CrossRefGoogle ScholarPubMed
Gerchen, M. F., Bernal-Casas, D., & Kirsch, P. (2014). Analyzing task-dependent brain network changes by whole-brain psychophysiological interactions: A comparison to conventional analysis. Human Brain Mapping, 35, 5071–5082.CrossRefGoogle ScholarPubMed
Gonzalez-Castillo, J., Kam, J. W. Y., Hoy, C. W., & Bandettini, P. A. (2021). How to interpret resting-state fMRI: Ask your participants. Journal of Neuroscience, 41, 1130–1141.CrossRefGoogle ScholarPubMed
Haacke, E. M., Brown, R. W., Thompson, M. R., & Venkatesan, R. (1999). Magnetic resonance imaging: Physical principles and sequence design. Wiley-Liss.Google Scholar
Handwerker, D. A., Gonzalez-Castillo, J., D’Esposito, M., & Bandettini, P. A. (2012). The continuing challenge of understanding and modeling hemodynamic variation in fMRI. NeuroImage, 62, 1017–1023.CrossRefGoogle ScholarPubMed
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303, 1634–1640.CrossRefGoogle ScholarPubMed
Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014). Decoding neural representational spaces using multivariate pattern analysis. Annual Review of Neuroscience, 37, 435–456.CrossRefGoogle ScholarPubMed
Huettel, S. A., Song, A. W., & McCarthy, G. (2014). Functional magnetic resonance imaging, 3rd ed. Sinauer Associates.Google Scholar
Jezzard, P., Matthews, P. M., & Smith, S. M. (2001). Functional MRI: An introduction to methods. Oxford University Press.Google Scholar
Kragel, P. A., Koban, L., Barrett, L. F., & Wager, T. D. (2018). Representation, pattern information, and brain signatures: From neurons to neuroimaging. Neuron, 99, 257–273.CrossRefGoogle ScholarPubMed
Kragel, P. A., & LaBar, K. S. (2015). Multivariate neural biomarkers of emotional states are categorically distinct. Social Cognitive and Affective Neuroscience, 10, 1437–1448.CrossRefGoogle ScholarPubMed
Kragel, P. A., Reddan, M. C., LaBar, K. S., & Wager, T. D. (2019). Emotion schemas are embedded in the human visual system. Science Advances, 5, eaaw4358.CrossRefGoogle ScholarPubMed
Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., … Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 89, 5675–5679.Google ScholarPubMed
Larsson, J., Solomon, S. G., & Kohn, A. (2016). fMRI adaptation revisited. Cortex, 80, 154–160.CrossRefGoogle ScholarPubMed
Leitão, J., Burckhardt, M., & Vuilleumier, P. (2022). Amygdala in action: Functional connectivity during approach and avoidance behaviors. Journal of Cognitive Neuroscience, 34, 729–747.CrossRefGoogle ScholarPubMed
Logan, B. R., & Rowe, D. B. (2004). An evaluation of thresholding techniques in fMRI analysis. NeuroImage, 22, 95–108.CrossRefGoogle ScholarPubMed
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.CrossRefGoogle ScholarPubMed
Ma, N., Baetens, K., Vandekerckhove, M., Van Der Cruyssen, L., & Van Overwalle, F. (2014). Dissociation of a trait and a valence representation in the mPFC. Social Cognitive and Affective Neuroscience, 9, 1506–1514.CrossRefGoogle Scholar
McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. NeuroImage, 61, 1277–1286.CrossRefGoogle ScholarPubMed
Merboldt, K. D., Fransson, P., Bruhn, H., & Frahm, J. (2001). Functional MRI of the human amygdala? NeuroImage, 14, 253–257.CrossRefGoogle ScholarPubMed
Mohammadi, G., Van De Ville, D., & Vuilleumier, P. (2023). Brain networks subserving functional core processes of emotions identified with componential modeling. Cerebral Cortex, 33, 7993–8010.CrossRefGoogle ScholarPubMed
Morawetz, C., Holz, P., Lange, C., Baudewig, J., Weniger, G., Irle, E., & Dechent, P. (2008). Improved functional mapping of the human amygdala using a standard functional magnetic resonance imaging sequence with simple modifications. Magnetic Resonance Imaging, 26, 45–53.CrossRefGoogle ScholarPubMed
Morgenroth, E., Vilaclara, L., Muszynski, M., Gaviria, J., Vuilleumier, P., & Van De Ville, D. (2023). Probing neurodynamics of experienced emotions: A Hitchhiker’s guide to film fMRI. Social Cognitive and Affective Neuroscience, 18, nsad063.CrossRefGoogle ScholarPubMed
Noble, S., Spann, M. N., Tokoglu, F., Shen, X., Constable, R. T., & Scheinost, D. (2017). Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility. Cerebral Cortex, 27, 5415–5429.CrossRefGoogle ScholarPubMed
Nummenmaa, L., & Saarimäki, H. (2019). Emotions as discrete patterns of systemic activity. Neuroscience Letters, 693, 3–8.CrossRefGoogle ScholarPubMed
Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87, 9868–9872.Google ScholarPubMed
Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 89, 5951–5955.Google ScholarPubMed
Pauling, L., & Coryell, C. D. (1936). The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 22, 210–216.Google ScholarPubMed
Peelen, M. V., Atkinson, A. P., & Vuilleumier, P. (2010). Supramodal representations of perceived emotions in the human brain. Journal of Neuroscience, 30, 10127–10134.CrossRefGoogle ScholarPubMed
Peelen, M. V., & Downing, P. E. (2023). Testing cognitive theories with multivariate pattern analysis of neuroimaging data. Nature Human Behaviour, 7, 1430–1441.CrossRefGoogle ScholarPubMed
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2007). Statistical parametric mapping: The analysis of functional brain images. Elsevier.Google Scholar
Preston, A. R., Thomason, M. E., Ochsner, K. N., Cooper, J. C., & Glover, G. H. (2004). Comparison of spiral-in/out and spiral-out BOLD fMRI at 1.5 and 3 T. NeuroImage, 21, 291–301.CrossRefGoogle ScholarPubMed
Preti, M. G., Bolton, T. A., & Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage, 160, 41–54.CrossRefGoogle Scholar
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447.CrossRefGoogle ScholarPubMed
Reinders, A. A., Glascher, J., de Jong, J. R., Willemsen, A. T., den Boer, J. A., & Buchel, C. (2006). Detecting fearful and neutral faces: BOLD latency differences in amygdala-hippocampal junction. NeuroImage, 33, 805–814.CrossRefGoogle ScholarPubMed
Risk, B. B., Murden, R. J., Wu, J., Nebel, M. B., Venkataraman, A., Zhang, Z., & Qiu, D. (2021). Which multiband factor should you choose for your resting-state fMRI study? NeuroImage, 234, 117965.CrossRefGoogle ScholarPubMed
Roy, C. S., & Sherrington, C. S. (1890). On the regulation of the blood-supply of the brain. Journal of Physiology, 11, 85–158.CrossRefGoogle ScholarPubMed
Saarimäki, H. (2021). Naturalistic stimuli in affective neuroimaging: A review. Frontiers in Human Neuroscience, 15, 675068.CrossRefGoogle ScholarPubMed
Sander, D., Grandjean, D., & Scherer, K. R. (2018). Brain networks, emotion components, and appraised relevance. Emotion Review, 10, 238–241.CrossRefGoogle Scholar
Scherer, K. R., & Moors, A. (2019). The emotion process: Event appraisal and component differentiation. Annual Review of Psychology, 70, 719–745.CrossRefGoogle ScholarPubMed
Sergerie, K., Chochol, C., & Armony, J. L. (2008). The role of the amygdala in emotional processing: A quantitative meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 32, 811–830.CrossRefGoogle ScholarPubMed
Setsompop, K., Gagoski, B. A., Polimeni, J. R., Witzel, T., Wedeen, V. J., & Wald, L. L. (2012). Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g -factor penalty: Blipped-CAIPI for simultaneous multislice EPI. Magnetic Resonance in Medicine, 67, 1210–1224.CrossRefGoogle Scholar
Sharvit, G., Lin, E., Vuilleumier, P., & Corradi-Dell’Acqua, C. (2020). Does inappropriate behavior hurt or stink? The interplay between neural representations of somatic experiences and moral decisions. Science Advances, 6, eaat4390.CrossRefGoogle ScholarPubMed
Sherman, B. E., Harris, B. B., Turk-Browne, N. B., Sinha, R., & Goldfarb, E. V. (2023). Hippocampal mechanisms support cortisol-induced memory enhancements. The Journal of Neuroscience, 43, 7198–7212.CrossRefGoogle ScholarPubMed
Shmuel, A., & Grinvald, A. (1996). Functional organization for direction of motion and its relationship to orientation maps in cat area 18. Journal of Neuroscience, 16, 6945–6964.CrossRefGoogle ScholarPubMed
Shmuel, A., & Maier, A. (2022). Locally measured neuronal correlates of functional MRI signals. In Mulert, C. & Lemieux, L. (Eds.), EEG – fMRI: Physiological basis, technique, and applications (pp. 79–104). Springer.Google Scholar
Skerry, A. E., & Saxe, R. (2015). Neural representations of emotion are organized around abstract event features. Current Biology, 25, 1945–1954.CrossRefGoogle ScholarPubMed
Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., … Woolrich, M. W. (2011). Network modelling methods for FMRI. NeuroImage, 54, 875–891.CrossRefGoogle ScholarPubMed
Sporns, O. (2018). Graph theory methods: Applications in brain networks. Dialogues Clinical Neuroscience, 20, 111–121.CrossRefGoogle ScholarPubMed
Takano, T., Tian, G. F., Peng, W., Lou, N., Libionka, W., Han, X., & Nedergaard, M. (2006). Astrocyte-mediated control of cerebral blood flow. Nature Neuroscience, 9, 260–267.CrossRefGoogle ScholarPubMed
Takata, N., Sugiura, Y., Yoshida, K., Koizumi, M., Hiroshi, N., Honda, K., … Tanaka, K. F. (2018). Optogenetic astrocyte activation evokes BOLD fMRI response with oxygen consumption without neuronal activity modulation. Glia, 66, 2013–2023.CrossRefGoogle ScholarPubMed
Truong, T. K., & Song, A. W. (2008). Single-shot dual-z-shimmed sensitivity-encoded spiral-in/out imaging for functional MRI with reduced susceptibility artifacts. Magnetic Resonance in Medicine, 59, 221–227.CrossRefGoogle ScholarPubMed
Whitehead, J. C., Spiousas, I., & Armony, J. L. (2024). Individual differences in the evaluation of ambiguous visual and auditory threat‐related expressions. European Journal of Neuroscience, 59, 370–393.CrossRefGoogle ScholarPubMed
Wilson, F. A., & Rolls, E. T. (1993). The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks. Experimental Brain Research, 93, 367–382.CrossRefGoogle ScholarPubMed
Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58–73.3.0.CO;2-O>CrossRefGoogle ScholarPubMed

References

Abi-Dargham, A., Gil, R., Krystal, J., Baldwin, R. M., Seibyl, J. P., Bowers, M., … Laruelle, M. (1998). Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort. American Journal of Psychiatry, 155, 761–767.CrossRefGoogle ScholarPubMed
Andersson, J. D., Matuskey, D., & Finnema, S. J. (2019). Positron emission tomography imaging of the γ-aminobutyric acid system. Neuroscience Letters, 691, 35–43.CrossRefGoogle ScholarPubMed
Angarita, G. A., Worhunsky, P. D., Naganawa, M., Toyonaga, T., Nabulsi, N. B., Li, C. R., … Malison, R. T. (2022). Lower prefrontal cortical synaptic vesicle binding in cocaine use disorder: An exploratory 11C-UCB-J positron emission tomography study in humans. Addiction Biology, 27, e13123.CrossRefGoogle Scholar
Asch, R. H., Holmes, S. E., Jastreboff, A. M., Potenza, M. N., Baldassarri, S. R., Carson, R. E., … Esterlis, I. (2022). Lower synaptic density is associated with psychiatric and cognitive alterations in obesity. Neuropsychopharmacology, 47, 543–552.CrossRefGoogle ScholarPubMed
Badgaiyan, R. D. (2010). Dopamine is released in the striatum during human emotional processing. Neuroreport, 21, 1172–1176.CrossRefGoogle ScholarPubMed
Badgaiyan, R. D., Fischman, A. J., & Alpert, N. M. (2009). Dopamine release during human emotional processing. NeuroImage, 47, 2041–2045.CrossRefGoogle ScholarPubMed
Bencherif, B., Fuchs, P. N., Sheth, R., Dannals, R. F., Campbell, J. N., & Frost, J. J. (2002). Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain, 99, 589–598.CrossRefGoogle ScholarPubMed
Boecker, H., Sprenger, T., Spilker, M. E., Henriksen, G., Koppenhoefer, M., Wagner, K. J., … Tolle, T. R. (2008). The runner’s high: Opioidergic mechanisms in the human brain. Cerebral Cortex, 18, 2523–2531.CrossRefGoogle ScholarPubMed
Brotman, D. J., Golden, S. H., & Wittstein, I. S. (2007). The cardiovascular toll of stress. The Lancet, 370, 1089–1100.CrossRefGoogle ScholarPubMed
Burghardt, P. R., Rothberg, A. E., Dykhuis, K. E., Burant, C. F., & Zubieta, J. K. (2015). Endogenous opioid mechanisms are implicated in obesity and weight loss in humans. Journal of Clinical Endocrinology & Metabolism, 100, 3193–3201.Google ScholarPubMed
Burns, H. D., Van Laere, K., Sanabria-Bohórquez, S., Hamill, T. G., Bormans, G., Eng, W. S., … Hargreaves, R. J. (2007). [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proceedings of the National Academy of Sciences of the United States of America, 104, 9800–9805.Google ScholarPubMed
Cherry, S. R., Badawi, R. D., Karp, J. S., Moses, W. W., Price, P., & Jones, T. (2017). Total-body imaging: Transforming the role of positron emission tomography. Science Translational Medicine, 9, eaaf6169.CrossRefGoogle ScholarPubMed
Cherry, S. R., Jones, T., Karp, J. S., Qi, J., Moses, W. W., & Badawi, R. D. (2018). Total-body PET: Maximizing sensitivity to create new opportunities for clinical research and patient care. Journal of Nuclear Medicine, 59, 3–12.CrossRefGoogle ScholarPubMed
Critchley, H. D., & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77, 624–638.CrossRefGoogle ScholarPubMed
Cumming, P. (2014). PET neuroimaging: The white elephant packs his trunk? NeuroImage, 84, 1094–1100.CrossRefGoogle ScholarPubMed
Cumming, P., Abi-Dargham, A., & Gründer, G. (2021). Molecular imaging of schizophrenia: Neurochemical findings in a heterogeneous and evolving disorder. Behavioural Brain Research, 398, 113004.CrossRefGoogle Scholar
D’Esposito, M., Zarahn, E., & Aguirre, G. K. (1999). Event-related functional MRI: Implications for cognitive psychology. Psychological Bulletin, 125, 155–164.Google ScholarPubMed
D’Souza, D. C., Radhakrishnan, R., Naganawa, M., Ganesh, S., Nabulsi, N., Najafzadeh, S., … Skosnik, P. (2021). Preliminary in vivo evidence of lower hippocampal synaptic density in cannabis use disorder. Molecular Psychiatry, 26, 3192–3200.CrossRefGoogle ScholarPubMed
Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: Evolutionary and neurobiological origins. Nature Reviews Neuroscience, 14, 143–152.CrossRefGoogle ScholarPubMed
Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L. L. B., Parvizi, J., & Hichwa, R. D. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3, 1049–1056.CrossRefGoogle ScholarPubMed
de Weijer, B. A., van de Giessen, E., van Amelsvoort, T. A., Boot, E., Braak, B., Janssen, I. M., … Booij, J. (2011). Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. EJNMMI Research, 1, 37.CrossRefGoogle ScholarPubMed
Drevets, W. C., Frank, E., Price, J. C., Kupfer, D. J., Holt, D., Greer, P. J., … Mathis, C. (1999). Pet imaging of serotonin 1A receptor binding in depression. Biological Psychiatry, 46, 1375–1387.CrossRefGoogle ScholarPubMed
Erritzoe, D., Godlewska, B. R., Rizzo, G., Searle, G. E., Agnorelli, C., Lewis, Y., … Rabiner, E. A. (2023). Brain serotonin release is reduced in patients with depression: A [11C]Cimbi-36 positron emission tomography study with a d-amphetamine challenge. Biological Psychiatry, 93, 1089–1098.CrossRefGoogle ScholarPubMed
Farde, L., Hall, H., Ehrin, E., & Sedvall, G. (1986). Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science, 231, 258–261.CrossRefGoogle ScholarPubMed
Farde, L., Wiesel, F. A., Hall, H., Halldin, C., Stone-Elander, S., & Sedvall, G. (1987). No D2 receptor increase in PET study of schizophrenia. Archives of General Psychiatry, 44, 671–672.CrossRefGoogle ScholarPubMed
Finnema, S. J., Nabulsi, N. B., Eid, T., Detyniecki, K., Lin, S. F., Chen, M. K., … Carson, R. E. (2016). Imaging synaptic density in the living human brain. Science Translational Medicine, 8, 348ra96.CrossRefGoogle ScholarPubMed
Finnema, S. J., Nabulsi, N. B., Mercier, J., Lin, S. F., Chen, M. K., Matuskey, D., … Carson, R. E. (2018). Kinetic evaluation and test-retest reproducibility of [11C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. Journal of Cerebral Blood Flow & Metabolism, 38, 2041–2052.CrossRefGoogle ScholarPubMed
Fisher, P. M., Meltzer, C. C., Price, J. C., Coleman, R. L., Ziolko, S. K., Becker, C., … Hariri, A. R. (2009). Medial prefrontal cortex 5-HT2A density is correlated with amygdala reactivity, response habituation, and functional coupling. Cerebral Cortex, 19, 2499–2507.CrossRefGoogle ScholarPubMed
Fisher, P. M., Meltzer, C. C., Ziolko, S. K., Price, J. C., Moses-Kolko, E. L., Berga, S. L., & Hariri, A. R. (2006). Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity. Nature Neuroscience, 9, 1362–1363.CrossRefGoogle ScholarPubMed
Fujita, M., Hines, C. S., Zoghbi, S. S., Mallinger, A. G., Dickstein, L. P., Liow, J. S., … Zarate, C. A., Jr. (2012). Downregulation of brain phosphodiesterase type IV measured with 11C-(R)-rolipram positron emission tomography in major depressive disorder. Biology Psychiatry, 72, 548–554.CrossRefGoogle ScholarPubMed
Gilbert, T. M., Zürcher, N. R., Wu, C. J., Bhanot, A., Hightower, B. G., Kim, M., … Hooker, J. M. (2019). PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. Journal of Clinical Investigation, 129, 364–372.Google ScholarPubMed
Gorelick, D. A., Kim, Y. K., Bencherif, B., Boyd, S. J., Nelson, R., Copersino, M., … Frost, J. J. (2005). Imaging brain mu-opioid receptors in abstinent cocaine users: Time course and relation to cocaine craving. Biological Psychiatry, 57, 1573–1582.CrossRefGoogle ScholarPubMed
Gryglewski, G., Lanzenberger, R., Kranz, G. S., & Cumming, P. (2014). Meta-analysis of molecular imaging of serotonin transporters in major depression. Journal of Cerebral Blood Flow and Metabolism, 34, 1096–1103.CrossRefGoogle ScholarPubMed
Gunn, R. N., Lammertsma, A. A., Hume, S. P., & Cunningham, V. J. (1997). Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. NeuroImage, 6, 279–287.CrossRefGoogle ScholarPubMed
Gunn, R. N., & Rabiner, E. A. (2014). PET neuroimaging: The elephant unpacks his trunk: Comment on Cumming: ‘PET neuroimaging: The white elephant packs his trunk?’. NeuroImage, 94, 408–410.CrossRefGoogle ScholarPubMed
Hahn, A., Gryglewski, G., Nics, L., Hienert, M., Rischka, L., Vraka, C., … Lanzenberger, R. (2016). Quantification of task-specific glucose metabolism with constant infusion of 18F-FDG. Journal of Nuclear Medicine, 57, 1933–1940.CrossRefGoogle ScholarPubMed
Haltia, L. T., Rinne, J. O., Helin, S., Parkkola, R., Nagren, K., & Kaasinen, V. (2008). Effects of intravenous placebo with glucose expectation on human basal ganglia dopaminergic function. Synapse, 62, 682–688.CrossRefGoogle ScholarPubMed
Haltia, L. T., Rinne, J. O., Merisaari, H., Maguire, R. P., Savontaus, E., Helin, S., … Kaasinen, V. (2007). Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse, 61, 748–756.CrossRefGoogle ScholarPubMed
Hanssen, T. A., Nordrehaug, J. E., Eide, G. E., Bjelland, I., & Rokne, B. (2009). Anxiety and depression after acute myocardial infarction: An 18-month follow-up study with repeated measures and comparison with a reference population. European Journal of Cardiovascular Prevention Rehabilitation, 16, 651–659.CrossRefGoogle ScholarPubMed
Heinz, A., Reimold, M., Wrase, J., Hermann, D., Croissant, B., Mundle, G., … Mann, K. (2005). Correlation of stable elevations in striatal mu-opioid receptor availability in detoxified alcoholic patients with alcohol craving: A positron emission tomography study using carbon 11-labeled carfentanil. Archives of General Psychiatry, 62, 57–64.CrossRefGoogle ScholarPubMed
Henriksen, G., & Willoch, F. (2008). Imaging of opioid receptors in the central nervous system. Brain, 131, 1171–1196.CrossRefGoogle ScholarPubMed
Hillman, E. M. C. (2014). Coupling mechanism and significance of the BOLD signal: A status report. Annual Review of Neuroscience, 37, 161–181.CrossRefGoogle Scholar
Hirvonen, J. (2015). In vivo imaging of the cannabinoid CB1 receptor with positron emission tomography. Clinical Pharmacology & Therapeutics, 97, 565–567.CrossRefGoogle ScholarPubMed
Hirvonen, J., Goodwin, R. S., Li, C. T., Terry, G. E., Zoghbi, S. S., Morse, C., … Innis, R. B. (2012). Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Molecular Psychiatry, 17, 642–649.CrossRefGoogle ScholarPubMed
Hirvonen, J., Karlsson, H., Kajander, J., Lepola, A., Markkula, J., Rasi-Hakala, H., … Hietala, J. (2008). Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: An in-vivo imaging study using PET and [carbonyl-11C]WAY-100635. International Journal of Neuropsychopharmacology, 11, 465–476.CrossRefGoogle ScholarPubMed
Hirvonen, J., Virtanen, K. A., Nummenmaa, L., Hannukainen, J. C., Honka, M.-J., Bucci, M., … Nuutila, P. (2011). Effects of insulin on brain glucose metabolism in impaired glucose tolerance. Diabetes, 60, 443–447.CrossRefGoogle ScholarPubMed
Hirvonen, J., Zanotti-Fregonara, P., Gorelick, D. A., Lyoo, C. H., Rallis-Frutos, D., Morse, C., … Innis, R. B. (2018). Decreased cannabinoid CB1 receptors in male tobacco smokers examined with positron emission tomography. Biological Psychiatry, 84, 715–721.CrossRefGoogle ScholarPubMed
Hirvonen, J., Zanotti-Fregonara, P., Umhau, J. C., George, D. T., Rallis-Frutos, D., Lyoo, C. H., … Heilig, M. (2013). Reduced cannabinoid CB1 receptor binding in alcohol dependence measured with positron emission tomography. Molecular Psychiatry, 18, 916–921.CrossRefGoogle ScholarPubMed
Holmes, S. E., Scheinost, D., Finnema, S. J., Naganawa, M., Davis, M. T., DellaGioia, N., … Esterlis, I. (2019). Lower synaptic density is associated with depression severity and network alterations. Nature Communications, 10, 1529.CrossRefGoogle ScholarPubMed
Horwitz, B., & Simonyan, K. (2014). PET neuroimaging: Plenty of studies still need to be performed: Comment on Cumming: ‘PET neuroimaging: The white elephant packs his trunk?’. NeuroImage, 84, 1101–1103.CrossRefGoogle ScholarPubMed
Hsu, D. T., Sanford, B. J., Meyers, K. K., Love, T. M., Hazlett, K. E., Walker, S. J., … Zubieta, J. K. (2015). It still hurts: Altered endogenous opioid activity in the brain during social rejection and acceptance in major depressive disorder. Molecular Psychiatry, 20, 193–200.CrossRefGoogle ScholarPubMed
James, W. (1884). What is an emotion? Mind, 9, 188–205.Google Scholar
Jern, P., Chen, J., Tuisku, J., Saanijoki, T., Hirvonen, J., Lukkarinen, L., … Nummenmaa, L. (2023). Endogenous opioid release following orgasm in man: A combined PET–fMRI study. Journal of Nuclear Medicine, 64, 1310–1313.CrossRefGoogle Scholar
Johnson, P. M., & Kenny, P. J. (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature Neuroscience, 13, 635–641.Google ScholarPubMed
Jonasson, L. S., Axelsson, J., Riklund, K., Braver, T. S., Ogren, M., Backman, L., & Nyberg, L. (2014). Dopamine release in nucleus accumbens during rewarded task switching measured by [11C]raclopride. NeuroImage, 99, 357–364.CrossRefGoogle ScholarPubMed
Joseph, A. T. (2004). Understanding the standardized uptake value, its methods, and implications for usage. Journal of Nuclear Medicine, 45, 1431.Google Scholar
Joutsa, J., Johansson, J., Niemela, S., Ollikainen, A., Hirvonen, M. M., Piepponen, P., … Kaasinen, V. (2012). Mesolimbic dopamine release is linked to symptom severity in pathological gambling. NeuroImage, 60, 1992–1999.CrossRefGoogle ScholarPubMed
Kajander, S., Joutsiniemi, E., Saraste, M., Pietilä, M., Ukkonen, H., Saraste, A., … Knuuti, J. (2010). Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation, 122, 603–613.CrossRefGoogle ScholarPubMed
Kantonen, T., Karjalainen, T., Isojärvi, J., Nuutila, P., Tuisku, J., Rinne, J., … Nummenmaa, L. (2020). Interindividual variability and lateralization of µ-opioid receptors in the human brain. NeuroImage, 217, 116922.CrossRefGoogle ScholarPubMed
Kantonen, T., Karjalainen, T., Pekkarinen, L., Isojärvi, J., Kalliokoski, K., Kaasinen, V., … Nummenmaa, L. (2021). Cerebral μ-opioid and CB1 receptor systems have distinct roles in human feeding behavior. Translational Psychiatry, 11, 442.CrossRefGoogle ScholarPubMed
Kantonen, T., Pekkarinen, L., Karjalainen, T., Bucci, M., Kalliokoski, K., Haaparanta-Solin, M., … Nummenmaa, L. (2021). Obesity risk is associated with altered cerebral glucose metabolism and decreased µ-opioid and CB1-receptor availability. International Journal of Obesity, 46, 400–407.Google Scholar
Karjalainen, T., Karlsson, H. K., Lahnakoski, J. M., Glerean, E., Nuutila, P., Jaaskelainen, I. P., … Nummenmaa, L. (2017). Dissociable roles of cerebral µ-opioid and type 2 dopamine receptors in vicarious pain: A combined PET–fMRI study. Cerebral Cortex, 27, 4257–4266.CrossRefGoogle Scholar
Karjalainen, T., Seppala, K., Glerean, E., Karlsson, H. K., Lahnakoski, J. M., Nuutila, P., … Nummenmaa, L. (2019). Opioidergic regulation of emotional arousal: A combined PET–fMRI study. Cereb Cortex, 29, 4006–4016.CrossRefGoogle ScholarPubMed
Karlsson, H. K., Tuominen, L., Tuulari, J. J., Hirvonen, J., Honka, H., Parkkola, R., … Nummenmaa, L. (2016). Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Molecular Psychiatry, 21, 1057–1062.Google ScholarPubMed
Karlsson, H. K., Tuominen, L., Tuulari, J. J., Hirvonen, J., Parkkola, R., Helin, S., … Nummenmaa, L. (2015). Obesity is associated with decreased µ-opioid but unaltered dopamine D2 receptor availability in the brain. Journal of Neuroscience, 35, 3959–3965.CrossRefGoogle ScholarPubMed
Kennedy, S. E., Koeppe, R. A., Young, E. A., & Zubieta, J. K. (2006). Dysregulation of endogenous opioid emotion regulation circuitry in major depression in women. Archives of General Psychiatry, 63, 1199–1208.CrossRefGoogle ScholarPubMed
Kirkham, T. C., Williams, C. M., Fezza, F., & Di Marzo, V. (2002). Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: Stimulation of eating by 2-arachidonoyl glycerol. British Journal of Pharmacology, 136, 550–557.CrossRefGoogle ScholarPubMed
Knuuti, J., Tuisku, J., Kärpijoki, H., Iida, H., Maaniitty, T., Latva-Rasku, A., … Nummenmaa, L. (2023). Quantitative perfusion imaging with total-body PET. Journal of Nuclear Medicine, 64, 11S–19S.CrossRefGoogle ScholarPubMed
Koch, T., & Hollt, V. (2008). Role of receptor internalization in opioid tolerance and dependence. Pharmacology & Therapeutics, 117, 199–206.CrossRefGoogle ScholarPubMed
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., … Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.CrossRefGoogle ScholarPubMed
Koepp, M. J., Hammers, A., Lawrence, A. D., Asselin, M. C., Grasby, P. M., & Bench, C. J. (2009). Evidence for endogenous opioid release in the amygdala during positive emotion. NeuroImage, 44, 252–256.CrossRefGoogle ScholarPubMed
Köhler-Forsberg, K., Dam, V. H., Ozenne, B., Sankar, A., Beliveau, V., Landman, E. B., … Knudsen, G. M. (2023). Serotonin 4 receptor brain binding in major depressive disorder and association with memory dysfunction. JAMA Psychiatry, 80, 296–304.CrossRefGoogle Scholar
Laaksonen, L., Kallioinen, M., Långsjö, J., Laitio, T., Scheinin, A., Scheinin, J., … Scheinin, H. (2018). Comparative effects of dexmedetomidine, propofol, sevoflurane, and S-ketamine on regional cerebral glucose metabolism in humans: A positron emission tomography study. British Journal of Anaesthesia, 121, 281–290.CrossRefGoogle ScholarPubMed
Lammertsma, A. A., & Hume, S. P. (1996). Simplified reference tissue model for PET receptor studies. NeuroImage, 4, 153–158.CrossRefGoogle ScholarPubMed
Lan, M. J., Zanderigo, F., Pantazatos, S. P., Sublette, M. E., Miller, J., Ogden, R. T., & Mann, J. J. (2022). Serotonin 1A receptor binding of [11C]CUMI-101 in bipolar depression quantified using positron emission tomography: Relationship to psychopathology and antidepressant response. International Journal of Neuropsychopharmacology, 25, 534–544.CrossRefGoogle ScholarPubMed
Logothetis, N. K., & Wandell, B. A. (2004). Interpreting the BOLD signal. Annual Review of Physiology, 66, 735–769.CrossRefGoogle ScholarPubMed
Majo, V. J., Prabhakaran, J., Mann, J. J., & Kumar, J. S. D. (2013). PET and SPECT tracers for glutamate receptors. Drug Discovery Today, 18, 173–184.CrossRefGoogle ScholarPubMed
Majuri, J., Joutsa, J., Johansson, J., Voon, V., Alakurtti, K., Parkkola, R., … Kaasinen, V. (2016). Dopamine and opioid neurotransmission in behavioral addictions: A comparative PET study in pathological gambling and binge eating. Neuropsychopharmacology, 42, 1169–1177.Google ScholarPubMed
Manninen, S., Tuominen, L., Dunbar, R. I. M., Karjalainen, T., Hirvonen, J., Arponen, E., … Nummenmaa, L. (2017). Social laughter triggers endogenous opioid release in humans. The Journal of Neuroscience, 37, 6125–6131.CrossRefGoogle ScholarPubMed
Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., … Dosenbach, N. U. F. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603, 654–660.CrossRefGoogle ScholarPubMed
Martinez, D., Saccone, P. A., Liu, F., Slifstein, M., Orlowska, D., Grassetti, A., … Comer, S. D. (2012). Deficits in dopamine D2 receptors and presynaptic dopamine in heroin dependence: Commonalities and differences with other types of addiction. Biological Psychiatry, 71, 192–198.CrossRefGoogle ScholarPubMed
Mechoulam, R., & Parker, L. A. (2013). The endocannabinoid system and the brain. Annual Review of Psychology, 64, 21–47.CrossRefGoogle ScholarPubMed
Meyer, J. H., Wilson, A. A., Sagrati, S., Hussey, D., Carella, A., Potter, W. Z., … Houle, S. (2004). Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: An [11C]DASB positron emission tomography study. American Journal of Psychiatry, 161, 826–835.CrossRefGoogle ScholarPubMed
Moses, W. W. (2011). Fundamental limits of spatial resolution in PET. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 648, S236–S240.CrossRefGoogle ScholarPubMed
Nummenmaa, L., Glerean, E., Hari, R., & Hietanen, J. K. (2014). Bodily maps of emotions. Proceedings of the National Academy of Sciences of the United States of America, 111, 646–651.Google ScholarPubMed
Nummenmaa, L., Hari, R., Hietanen, J. K., & Glerean, E. (2018). Maps of subjective feelings. Proceedings of the National Academy of Sciences of the United States of America, 115, 9198–9203.Google ScholarPubMed
Nummenmaa, L., Hirvonen, J., Hannukainen, J. C., Immonen, H., Lindroos, M. M., Salminen, P., & Nuutila, P. (2012). Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PloS ONE, 7, 10.CrossRefGoogle ScholarPubMed
Nummenmaa, L., Karjalainen, T., Isojärvi, J., Kantonen, T., Tuisku, J., Kaasinen, V., … Rinne, J. (2020). Lowered endogenous mu-opioid receptor availability in subclinical depression and anxiety. Neuropsychopharmacology, 45, 1953–1959.CrossRefGoogle ScholarPubMed
Nummenmaa, L., & Saarimäki, H. (2017). Emotions as discrete patterns of systemic activity. Neuroscience Letters, 693, 3–8.Google ScholarPubMed
Nummenmaa, L., & Tuominen, L. J. (2018). Opioid system and human emotions. British Journal of Pharmacology, 175, 2737–2749.CrossRefGoogle ScholarPubMed
Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87, 9868–9872.Google ScholarPubMed
Onwordi, E. C., Halff, E. F., Whitehurst, T., Mansur, A., Cotel, M. C., Wells, L., … Howes, O. D. (2020). Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nature Communications, 11, 246.CrossRefGoogle ScholarPubMed
Pak, K., Malen, T., Santavirta, S., Shin, S., Nam, H.-Y., De Mayer, S., & Nummenmaa, L. (2022). Brain glucose metabolism and ageing: A 5-year longitudinal study in a large PET cohort. Diabetes Care, 46, e64–e66.Google Scholar
Parsey, R. V., Ogden, R. T., Miller, J. M., Tin, A., Hesselgrave, N., Goldstein, E., … Mann, J. J. (2010). Higher serotonin 1A binding in a second major depression cohort: modeling and reference region considerations. Biological Psychiatry, 68, 170–178.CrossRefGoogle Scholar
Pascoal, T. A., Chamoun, M., Lax, E., Wey, H. Y., Shin, M., Ng, K. P., … Rosa-Neto, P. (2022). [11C]Martinostat PET analysis reveals reduced HDAC I availability in Alzheimer’s disease. Nature Communications, 13, 4171.Google ScholarPubMed
Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14, 180–190.CrossRefGoogle ScholarPubMed
Raine, A., Stoddard, J., Bihrle, S., & Buchsbaum, M. (1998). Prefrontal glucose deficits in murderers lacking psychosocial deprivation. Neuropsychiatry Neuropsychology and Behavioral Neurology, 11, 1–7.Google ScholarPubMed
Rebelos, E., Bucci, M., Karjalainen, T., Oikonen, V., Bertoldo, A., Hannukainen, J. C., … Nuutila, P. (2021). Insulin resistance is associated with enhanced brain glucose uptake during euglycemic hyperinsulinemia: A large-scale PET cohort. Diabetes Care, 44, 788–794.CrossRefGoogle ScholarPubMed
Reiman, E. M., Lane, R. D., Ahern, G. L., Schwartz, G. E., Davidson, R. J., Friston, K. J., … Chen, K. (1997). Neuroanatomical correlates of externally and internally generated human emotion. American Journal of Psychiatry, 154, 918–925.Google ScholarPubMed
Rhodes, R. A., Murthy, N. V., Dresner, M. A., Selvaraj, S., Stavrakakis, N., Babar, S., … Grasby, P. M. (2007). Human 5-HT transporter availability predicts amygdala reactivity in vivo. Journal of Neuroscience, 27, 9233–9237.CrossRefGoogle ScholarPubMed
Risch, N., Herrell, R., Lehner, T., Liang, K. Y., Eaves, L., Hoh, J., … Merikangas, K. R. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression a meta-analysis. JAMA, 301, 2462–2471.CrossRefGoogle ScholarPubMed
Rowlett, J. K., Platt, D. M., Lelas, S., Atack, J. R., & Dawson, G. R. (2005). Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proceedings of the National Academy of Sciences, 102, 915–920.CrossRefGoogle ScholarPubMed
Saanijoki, T., Tuominen, L., Tuulari, J. J., Nummenmaa, L., Arponen, E., Kalliokoski, K., & Hirvonen, J. (2017). Opioid release after high-intensity interval training in healthy human subjects. Neuropsychopharmacology, 43, 246–254.Google ScholarPubMed
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14, 257–262.CrossRefGoogle Scholar
Scott, D. J., Stohler, C. S., Koeppe, R. A., & Zubieta, J. K. (2007). Time-course of change in [11C]carfentanil and [11C]raclopride binding potential after a nonpharmacological challenge. Synapse, 61, 707–714.CrossRefGoogle ScholarPubMed
Selvaraj, S., Mouchlianitis, E., Faulkner, P., Turkheimer, F., Cowen, P. J., Roiser, J. P., & Howes, O. (2015). Presynaptic serotoninergic regulation of emotional processing: A multimodal brain imaging study. Biology Psychiatry, 78, 563–571.CrossRefGoogle ScholarPubMed
Shackman, A. J., Fox, A. S., Oler, J. A., Shelton, S. E., Davidson, R. J., & Kalin, N. H. (2013). Neural mechanisms underlying heterogeneity in the presentation of anxious temperament. Proceedings of the National Academy of Sciences, 110, 6145–6150.CrossRefGoogle ScholarPubMed
Shrestha, S., Hirvonen, J., Hines, C. S., Henter, I. D., Svenningsson, P., Pike, V. W., & Innis, R. B. (2012). Serotonin-1A receptors in major depression quantified using PET: Controversies, confounds, and recommendations. NeuroImage, 59, 3243–3251.CrossRefGoogle ScholarPubMed
Siegel, E. H., Sands, M. K., Van den Noortgate, W., Condon, P., Chang, Y., Dy, J., … Barrett, L. F. (2018). Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychological Bulletin, 144, 343–393.CrossRefGoogle ScholarPubMed
Small, D. M., Jones-Gotman, M., & Dagher, A. (2003). Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. NeuroImage, 19, 1709–1715.CrossRefGoogle ScholarPubMed
Smith, A. L., Freeman, S. M., Barnhart, T. E., Abbott, D. H., Ahlers, E. O., Kukis, D. L., … Young, L. J. (2016). Initial investigation of three selective and potent small molecule oxytocin receptor PET ligands in New World monkeys. Bioorganic & Medicinal Chemistry Letters, 26, 3370–3375.CrossRefGoogle ScholarPubMed
Sokoloff, L. (1999). Energetics of functional activation in neural tissues. Neurochemical Research, 24, 321–329.CrossRefGoogle ScholarPubMed
Steele, K. E., Prokopowicz, G. P., Schweitzer, M. A., Magunsuon, T. H., Lidor, A. O., Kuwabawa, H., … Wong, D. F. (2010). Alterations of central dopamine receptors before and after gastric bypass surgery. Obesity Surgery, 20, 369–374.CrossRefGoogle ScholarPubMed
Stiernman, L. J., Grill, F., Hahn, A., Rischka, L., Lanzenberger, R., Panes Lundmark, V., … Rieckmann, A. (2021). Dissociations between glucose metabolism and blood oxygenation in the human default mode network revealed by simultaneous PET-fMRI. Proceedings of the National Academy of Sciences, 118, e2021913118.CrossRefGoogle ScholarPubMed
Su, L., Cai, Y., Xu, Y., Dutt, A., Shi, S., & Bramon, E. (2014). Cerebral metabolism in major depressive disorder: A voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry, 14, 321.CrossRefGoogle ScholarPubMed
Surti, S. (2015). Update on time-of-flight PET imaging. Journal of Nuclear Medicine, 56, 98–105.CrossRefGoogle ScholarPubMed
Taglialatela, J. P., Russell, J. L., Schaeffer, J. A., & Hopkins, W. D. (2008). Communicative signaling activates Broca’s homolog in chimpanzees. Current Biology, 18, 343–348.CrossRefGoogle ScholarPubMed
Tan, H., Gu, Y., Yu, H., Hu, P., Zhang, Y., Mao, W., & Shi, H. (2020). Total-body PET/CT: Current applications and future perspectives. American Journal of Roentgenology, 215, 325–337.CrossRefGoogle ScholarPubMed
Terry, G. E., Hirvonen, J., Liow, J. S., Zoghbi, S. S., Gladding, R., Tauscher, J. T., … Innis, R. B. (2010). Imaging and quantitation of cannabinoid CB1 receptors in human and monkey brains using (18)F-labeled inverse agonist radioligands. Journal of Nuclear Medicine, 51, 112–120.CrossRefGoogle Scholar
Terry, G. E., Liow, J. S., Zoghbi, S. S., Hirvonen, J., Farris, A. G., Lerner, A., … Innis, R. B. (2009). Quantitation of cannabinoid CB1 receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand. NeuroImage, 48, 362–370.CrossRefGoogle Scholar
Tiger, M., Farde, L., Rück, C., Varrone, A., Forsberg, A., Lindefors, N., … Lundberg, J. (2016). Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder. Psychiatry Research Neuroimaging, 253, 36–42.CrossRefGoogle ScholarPubMed
Tseng, C. J., Gilbert, T. M., Catanese, M. C., Hightower, B. G., Peters, A. T., Parmar, A. J., … Hooker, J. M. (2020). In vivo human brain expression of histone deacetylases in bipolar disorder. Translational Psychiatry, 10, 224.CrossRefGoogle ScholarPubMed
Tuominen, L., Salo, J., Hirvonen, J., Nagren, K., Laine, P., Melartin, T., … Hietala, J. (2012). Temperament trait Harm Avoidance associates with µ-opioid receptor availability in frontal cortex: A PET study using [11C] carfentanil. NeuroImage, 61, 670–676.CrossRefGoogle ScholarPubMed
Tuominen, L., Tuulari, J., Karlsson, H., Hirvonen, J., Helina, S., Salminen, P., … Nummenmaa, L. (2015). Aberrant mesolimbic dopamine-opiate interaction in obesity. NeuroImage, 122, 80–86.CrossRefGoogle ScholarPubMed
Tuulari, J. J., Tuominen, L., de Boer, F. E., Hirvonen, J., Helin, S., Nuutila, P., & Nummenmaa, L. (2017). Feeding releases endogenous opioids in humans. Journal of Neuroscience, 37, 8284–8291.CrossRefGoogle ScholarPubMed
Villien, M., Wey, H.-Y., Mandeville, J. B., Catana, C., Polimeni, J. R., Sander, C. Y., … Hooker, J. M. (2014). Dynamic functional imaging of brain glucose utilization using fPET-FDG. NeuroImage, 100, 192–199.CrossRefGoogle ScholarPubMed
Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Ding, Y. S., Sedler, M., … Pappas, N. (2001). Low level of brain dopamine D2 receptors in methamphetamine abusers: Association with metabolism in the orbitofrontal cortex. American Journal of Psychiatry, 158, 2015–2021.CrossRefGoogle ScholarPubMed
Volkow, N. D., Fowler, J. S., Wang, G. J., Baler, R., & Telang, F. (2009). Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology, 56, 3–8.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Hitzemann, R., Ding, Y. S., … Piscani, K. (1996). Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcoholism: Clinical and Experimental Research, 20, 1594–1598.CrossRefGoogle Scholar
Volkow, N. D., Wang, G. J., Telang, F., Fowler, J. S., Thanos, P. K., Logan, J., … Pradhan, K. (2008). Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors. NeuroImage, 42, 1537–1543.CrossRefGoogle ScholarPubMed
Wadsak, W., & Mitterhauser, M. (2010). Basics and principles of radiopharmaceuticals for PET/CT. European Journal of Radiology, 73, 461–469.CrossRefGoogle ScholarPubMed
Wang, G. J., Volkow, N. D., Logan, J., Pappas, N. R., Wong, C. T., Zhu, W., … Fowler, J. S. (2001). Brain dopamine and obesity. Lancet, 357, 354–357.CrossRefGoogle ScholarPubMed
Weerts, E. M., Wand, G. S., Kuwabara, H., Munro, C. A., Dannals, R. F., Hilton, J., … McCaul, M. E. (2011). Positron emission tomography imaging of mu- and delta-opioid receptor binding in alcohol-dependent and healthy control subjects. Alcoholism: Clinical and Experimental Research, 35, 2162–2173.CrossRefGoogle ScholarPubMed
Wey, H.-Y., Gilbert, T. M., Zürcher, N. R., She, A., Bhanot, A., Taillon, B. D., … Hooker, J. M. (2016). Insights into neuroepigenetics through human histone deacetylase PET imaging. Science Translational Medicine, 8, 351ra106.CrossRefGoogle ScholarPubMed
Whistler, J. L. (2012). Examining the role of mu opioid receptor endocytosis in the beneficial and side-effects of prolonged opioid use: From a symposium on new concepts in mu-opioid pharmacology. Drug and Alcohol Dependence, 121, 189–204.CrossRefGoogle ScholarPubMed
Wong, D. F., Kuwabara, H., Horti, A. G., Raymont, V., Brasic, J., Guevara, M., … Cascella, N. (2010). Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. NeuroImage, 52, 1505–1513.CrossRefGoogle ScholarPubMed
Wong, D. F., Wagner, H. N., Jr., Tune, L. E., Dannals, R. F., Pearlson, G. D., Links, J. M., … Gjedde, A. (1986). Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science, 234, 1558–1563.CrossRefGoogle ScholarPubMed
Zald, D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Research. Brain Research Reviews, 41, 88–123.CrossRefGoogle ScholarPubMed
Zhang, X., Cherry, S. R., Xie, Z., Shi, H., Badawi, R. D., & Qi, J. (2020). Subsecond total-body imaging using ultrasensitive positron emission tomography. Proceedings of the National Academy of Sciences, 117, 2265–2267.Google ScholarPubMed
Zubieta, J. K., Smith, Y. R., Bueller, J. A., Xu, Y. J., Kilbourn, M. R., Jewett, D. M., … Stohler, C. S. (2001). Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science, 293, 311–315.CrossRefGoogle ScholarPubMed

References

Bacigalupo, F., & Luck, S. J. (2018). Event-related potential components as measures of aversive conditioning in humans. Psychophysiology, 55, e13015.CrossRefGoogle ScholarPubMed
Bae, G.-Y., & Luck, S. J. (2019). Reactivation of previous experiences in a working memory task. Psychological Science, 30, 587–595.CrossRefGoogle Scholar
Barry, R. J., & Blasio, F. M. D. (2021). Characterizing pink and white noise in the human electroencephalogram. Journal of Neural Engineering, 18, 034001.CrossRefGoogle ScholarPubMed
Bartsch, F., Hamuni, G., Miskovic, V., Lang, P. J., & Keil, A. (2015). Oscillatory brain activity in the alpha range is modulated by the content of word-prompted mental imagery. Psychophysiology, 52, 727–735.CrossRefGoogle ScholarPubMed
Ben-Simon, E., Oren, N., Sharon, H., Kirschner, A., Goldway, N., Okon-Singer, H., … Hendler, T. (2015). Losing neutrality: The neural basis of impaired emotional control without sleep. The Journal of Neuroscience, 35, 13194–13205.Google Scholar
Berger, H. (1969). On the electroencephalogram of man. Electroencephalography and Clinical Neurophysiology, 28, 37–73.Google Scholar
Bertrand, O., Bohorquez, J., & Pernier, J. (1994). Time-frequency digital filtering based on an invertible wavelet transform: An application to evoked potentials. IEEE Transactions on Biomedical Engineering, 41, article 1.CrossRefGoogle Scholar
Boudewyn, M. A., Luck, S. J., Farrens, J. L., & Kappenman, E. S. (2018). How many trials does it take to get a significant ERP effect? It depends. Psychophysiology, 55, e13049.CrossRefGoogle ScholarPubMed
Borck, C. (2005). Hirnströme—Eine kulturgeschichte der elektroenzephalographie. Wallstein Verlag.Google Scholar
Bradley, M. M. (2009). Natural selective attention: Orienting and emotion. Psychophysiology, 46, 1–11.CrossRefGoogle ScholarPubMed
Bradley, M. M., Codispoti, M., & Lang, P. J. (2006). A multi-process account of startle modulation during affective perception. Psychophysiology, 43, 486–497.CrossRefGoogle ScholarPubMed
Bradley, M. M., Hamby, S., Low, A., & Lang, P. J. (2007). Brain potentials in perception: Picture complexity and emotional arousal. Psychophysiology, 44, 364–373.CrossRefGoogle ScholarPubMed
Bradley, M. M., Keil, A., & Lang, P. J. (2012). Orienting and emotional perception: Facilitation, attenuation, and interference. Frontiers in Psychology, 3, 493.CrossRefGoogle ScholarPubMed
Bradley, M. M., & Lang, P. J. (2007). The International Affective Picture System (IAPS) in the study of emotion and attention. In Coan, J. A. & Allen, J. J. B. (Eds.), Handbook of emotion elicitation and assessment (pp. 29–46). Oxford University Press.Google Scholar
Brookes, M. J., Leggett, J., Rea, M., Hill, R. M., Holmes, N., Boto, E., & Bowtell, R. (2022). Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging. Trends in Neurosciences, 45, 621–634.CrossRefGoogle ScholarPubMed
Bruchmann, M., Schindler, S., Dinyarian, M., & Straube, T. (2022). The role of phase and orientation for ERP modulations of spectrum-manipulated fearful and neutral faces. Psychophysiology, 59, e13974.CrossRefGoogle ScholarPubMed
Bruder, G. E., Quitkin, F. M., Stewart, J. W., Martin, C., Voglmaier, M. M., & Harrison, W. M. (1989). Cerebral laterality and depression: Differences in perceptual asymmetry among diagnostic subtypes. Journal of Abnormal Psychology, 98, 177–186.CrossRefGoogle ScholarPubMed
Chaumon, M., Bishop, D. V. M., & Busch, N. A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of Neuroscience Methods, 250, 47–63.CrossRefGoogle Scholar
Clayson, P. E., Keil, A., & Larson, M. J. (2022). Open science in human electrophysiology. International Journal of Psychophysiology, 174, 43–46.CrossRefGoogle ScholarPubMed
Clayson, P. E., & Miller, G. A. (2017a). ERP Reliability Analysis (ERA) toolbox: An open-source toolbox for analyzing the reliability of event-related brain potentials. International Journal of Psychophysiology, 111, 68–79.CrossRefGoogle Scholar
Clayson, P. E., & Miller, G. A. (2017b). Psychometric considerations in the measurement of event-related brain potentials: Guidelines for measurement and reporting. International Journal of Psychophysiology, 111, 57–67.CrossRefGoogle Scholar
Cohen, D. (1968). Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science, 161, 784–786.CrossRefGoogle ScholarPubMed
Cohen, D. (1972). Magnetoencephalography: Detection of the brain’s electrical activity with a superconducting magnetometer. Science, 175, 664–666.CrossRefGoogle ScholarPubMed
Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. MIT Press.CrossRefGoogle Scholar
CookIII, E. W., & Miller, G. A. (1992). Digital filtering: Background and tutorial for psychophysiologists. Psychophysiology, 29, 350–367.CrossRefGoogle ScholarPubMed
Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biological Psychology, 52, 95–111.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. International Journal of Neuroscience, 39, 71–89.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1995). Cerebral asymmetry, emotion, and affective style. In Davidson, R. J. & Hugdahl, K. (Eds.), Brain asymmetry (pp. 361–387). MIT Press.Google Scholar
Delgado, M. R., Olsson, A., & Phelps, E. A. (2006). Extending animal models of fear conditioning to humans. Biological Psychology, 73, 39–48.CrossRefGoogle ScholarPubMed
Delorme, A., Mullen, T., Kothe, C., Akalin Acar, Z., Bigdely-Shamlo, N., Vankov, A., & Makeig, S. (2011). EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for advanced EEG processing. Computational Intelligence and Neuroscience, 2011, e130714.CrossRefGoogle ScholarPubMed
Dien, J. (2010a). Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and Varimax rotations. Psychophysiology, 47, 170–183.CrossRefGoogle Scholar
Dien, J. (2010b). The ERP PCA Toolkit: An open source program for advanced statistical analysis of event-related potential data. Journal of Neuroscience Methods, 187, 138–145.CrossRefGoogle Scholar
Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., … Voytek, B. (2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature Neuroscience, 23, 1655–1665.CrossRefGoogle ScholarPubMed
Elliott, G., Rothenberg, T. J., & Stock, J. (1996). Efficient tests for an autoregressive unit root. Econometrica, 64, article 4.CrossRefGoogle Scholar
Fox, N. A. (1991). If it’s not left, it’s right. Electroencephalograph asymmetry and the development of emotion. The American Psychologist, 46, 863–872.CrossRefGoogle Scholar
Friedl, W. M., & Keil, A. (2020). Aversive conditioning of spatial position sharpens neural population-level tuning in visual cortex and selectively reduces alpha-band activity. The Journal of Neuroscience, 41, 5723–5733.Google Scholar
Gable, P., Miller, M., & Bernat, E. (2022). The Oxford handbook of EEG frequency. Oxford University Press.CrossRefGoogle Scholar
Galambos, R. (1992). A comparison of certain gamma-band (40 Hz) brain rhythms in cat and man. In Basar, E. & Bullock, T. (Eds.), Induced rhythms in the brain (pp. 103–122). Springer.Google Scholar
Gibney, K. D., Kypriotakis, G., Cinciripini, P. M., Robinson, J. D., Minnix, J. A., & Versace, F. (2020). Estimating statistical power for event-related potential studies using the late positive potential. Psychophysiology, 57, e13482.CrossRefGoogle ScholarPubMed
Gratton, G. (2018). Brain reflections: A circuit-based framework for understanding information processing and cognitive control. Psychophysiology, 55, e13038.CrossRefGoogle ScholarPubMed
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48, 1711–1725.Google Scholar
Güntekin, B., & Başar, E. (2014). A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia, 58, 33–51.CrossRefGoogle ScholarPubMed
Gupta, R. S., Kujawa, A., & Vago, D. R. (2019). The neural chronometry of threat-related attentional bias: Event-related potential (ERP) evidence for early and late stages of selective attentional processing. International Journal of Psychophysiology, 146, 20–42.CrossRefGoogle ScholarPubMed
Hajcak, G., Dunning, J. P., & Foti, D. (2009). Motivated and controlled attention to emotion: Time-course of the late positive potential. Clinical Neurophysiology, 120, 505–510.CrossRefGoogle ScholarPubMed
Hajcak, G., & Foti, D. (2020). Significance?… Significance! Empirical, methodological, and theoretical connections between the late positive potential and P300 as neural responses to stimulus significance: An integrative review. Psychophysiology, 57, e13570.CrossRefGoogle ScholarPubMed
Haken, H. (1983). Synergetics: An introduction. Springer.CrossRefGoogle Scholar
Handy, T. C. (2004). Event-related potentials: A methods handbook. MIT Press.Google Scholar
He, B. J. (2014). Scale-free brain activity: Past, present, and future. Trends in Cognitive Sciences, 18, 480–487.CrossRefGoogle ScholarPubMed
Heim, S., & Keil, A. (2006). Effects of classical conditioning on identification and cortical processing of speech syllables. Experimental Brain Research, 175, 411–424.CrossRefGoogle ScholarPubMed
Hughes, A. M., Whitten, T. A., Caplan, J. B., & Dickson, C. T. (2012). BOSC: A better oscillation detection method, extracts both sustained and transient rhythms from rat hippocampal recordings. Hippocampus, 22, 1417–1428.CrossRefGoogle Scholar
Jackson, A. F., & Bolger, D. J. (2014). The neurophysiological bases of EEG and EEG measurement: A review for the rest of us. Psychophysiology, 51, 1061–1071.CrossRefGoogle ScholarPubMed
Jaiswal, A., Nenonen, J., Stenroos, M., Gramfort, A., Dalal, S. S., Westner, B. U., … Parkkonen, L. (2020). Comparison of beamformer implementations for MEG source localization. NeuroImage, 216, 116797. https://doi.org/10.1016/j.neuroimage.2020.116797CrossRefGoogle ScholarPubMed
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186.CrossRefGoogle ScholarPubMed
Junghöfer, M., Bradley, M. M., Elbert, T. R., & Lang, P. J. (2001). Fleeting images: A new look at early emotion discrimination. Psychophysiology, 38, 175–178.CrossRefGoogle Scholar
Kappenman, E. S., Farrens, J. L., Luck, S. J., & Proudfit, G. H. (2014). Behavioral and ERP measures of attentional bias to threat in the dot-probe task: Poor reliability and lack of correlation with anxiety. Frontiers in Psychology, 5, 1368.CrossRefGoogle ScholarPubMed
Kappenman, E. S., & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47, 888–904.Google ScholarPubMed
Keil, A. (2022). Recommendations and publication guidelines for studies using frequency-domain and time-frequency-domain analyses of neural time series. Psychophysiology, 59, e14052.CrossRefGoogle ScholarPubMed
Keil, A., Bernat, E. M., Cohen, M. X., Ding, M., Fabiani, M., Gratton, G., … Weisz, N. (2022). Recommendations and publication guidelines for studies using frequency domain and time-frequency domain analyses of neural time series. Psychophysiology, 59, e14052.CrossRefGoogle ScholarPubMed
Keil, A., Bradley, M. M., Hauk, O., Rockstroh, B., Elbert, T., & Lang, P. J. (2002). Large-scale neural correlates of affective picture processing. Psychophysiology, 39, 641–649.CrossRefGoogle ScholarPubMed
Keil, A., Bradley, M. M., Junghoefer, M., Russmann, T., Lowenthal, W., & Lang, P. J. (2007). Cross-modal attention capture by affective stimuli: Evidence from event-related potentials. Cognitive, Affective, & Behavioral Neuroscience, 7, 18–24.CrossRefGoogle ScholarPubMed
Keil, A., Debener, S., Gratton, G., Junghofer, M., Kappenman, E. S., Luck, S. J., … Yee, C. M. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51, 1–21.CrossRefGoogle ScholarPubMed
Keuper, K., Zwanzger, P., Nordt, M., Eden, A., Laeger, I., Zwitserlood, P., … Dobel, C. (2014). How “love” and “hate” differ from “sleep”: Using combined electro/magnetoencephalographic data to reveal the sources of early cortical responses to emotional words. Human Brain Mapping, 35, 875–888.CrossRefGoogle Scholar
Khanna, A., Pascual-Leone, A., Michel, C. M., & Farzan, F. (2015). Microstates in resting-state EEG: Current status and future directions. Neuroscience & Biobehavioral Reviews, 49, 105–113.CrossRefGoogle ScholarPubMed
Kiesel, A., Miller, J., Jolicoeur, P., & Brisson, B. (2008). Measurement of ERP latency differences: A comparison of single-participant and jackknife-based scoring methods. Psychophysiology, 42, article 2.Google Scholar
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16, 606–617.CrossRefGoogle ScholarPubMed
Kwaitkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54, 159–178.Google Scholar
Lang, P. J., & Bradley, M. M. (2010). Emotion and the motivational brain. Biological Psychology, 84, 437–450.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1989). Central pathways of emotional plasticity. In Florin, I., Weiner, H., Murison, R., & Hellhammer, D. (Eds.), Frontiers of stress research. Neuronal control of bodily function: Basic and clinical aspects, Vol. 3. (pp. 122–136). Hans Huber Publishers.Google Scholar
Li, W., & Keil, A. (2023). Sensing fear: Fast and precise threat evaluation in human sensory cortex. Trends in Cognitive Sciences, 27, 341–352.CrossRefGoogle ScholarPubMed
Liu, Y., Huang, H., McGinnis-Deweese, M., Keil, A., & Ding, M. (2012). Neural substrate of the late positive potential in emotional processing. Journal of Neuroscience, 32, 14563–14572.CrossRefGoogle ScholarPubMed
Luck, S. J. (2014). An introduction to the event-related potential technique. MIT Press.Google Scholar
Maris, E. (2012). Statistical testing in electrophysiological studies. Psychophysiology, 49, 549–565.CrossRefGoogle ScholarPubMed
McTeague, L. M., Gruss, L. F., & Keil, A. (2015). Aversive learning shapes neuronal orientation tuning in human visual cortex. Nature Communications, 6, 7823.CrossRefGoogle ScholarPubMed
McTeague, L. M., Laplante, M.-C., Bulls, H. W., Shumen, J. R., Lang, P. J., & Keil, A. (2018). Face perception in social anxiety: Visuocortical dynamics reveal propensities for hypervigilance or avoidance. Biological Psychiatry, 83, 618–628.CrossRefGoogle ScholarPubMed
Melcher, J. R., & Cohen, D. (1988). Dependence of the MEG on dipole orientation in the rabbit head. Electroencephalography and Clinical Neurophysiology, 70, 460–472.CrossRefGoogle ScholarPubMed
Michel, C. M., & Brunet, D. (2019). EEG source imaging: A practical review of the analysis steps. Frontiers in Neurology, 10, 325.CrossRefGoogle ScholarPubMed
Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., & Grave de Peralta, R. (2004). EEG source imaging. Clinical Neurophysiology, 115, 2195–2222.CrossRefGoogle ScholarPubMed
Miller, J., Patterson, T., & Ulrich, R. (1998). Jackknife-based method for measuring LRP onset latency differences. Psychophysiology, 35, 99–115.CrossRefGoogle ScholarPubMed
Miskovic, V., & Keil, A. (2012). Acquired fears reflected in cortical sensory processing: A review of electrophysiological studies of human classical conditioning. Psychophysiology, 49, 1230–1241.CrossRefGoogle ScholarPubMed
Müller, M. M., Andersen, S., & Keil, A. (2008). Time course of competition for visual processing resources between emotional pictures and a foreground task. Cerebral Cortex, 18, 1892–1899.CrossRefGoogle Scholar
Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1997). EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical Neurophysiology, 103, 499–515.Google ScholarPubMed
Olejniczak, P. (2006). Neurophysiologic basis of EEG. Journal of Clinical Neurophysiology, 23, 186–189.CrossRefGoogle ScholarPubMed
Panitz, C., Hermann, C., & Mueller, E. M. (2015). Conditioned and extinguished fear modulate functional corticocardiac coupling in humans. Psychophysiology, 52, 1351–1360.CrossRefGoogle ScholarPubMed
Panitz, C., Keil, A., & Mueller, E. M. (2019). Extinction-resistant attention to long-term conditioned threat is indexed by selective visuocortical alpha suppression in humans. Scientific Reports, 9, 15809.CrossRefGoogle ScholarPubMed
Pernet, C., Garrido, M. I., Gramfort, A., Maurits, N., Michel, C. M., Pang, E., … Puce, A. (2020). Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research. Nature Neuroscience, 23, 1473–1483.CrossRefGoogle ScholarPubMed
Pessoa, L. (2018). Understanding emotion with brain networks. Current Opinion in Behavioral Sciences, 19, 19–25.CrossRefGoogle ScholarPubMed
Peyk, P., DeCesarei, A., & Junghöfer, M. (2011). Electro magneto encephalograhy software: Overview and integration with other EEG/MEG toolboxes. Computational Intelligence and Neuroscience, 2011, 861705.CrossRefGoogle Scholar
Piastra, M. C., Nüßing, A., Vorwerk, J., Clerc, M., Engwer, C., & Wolters, C. H. (2021). A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources. Human Brain Mapping, 42, 978–992.CrossRefGoogle Scholar
Radilova, J. (1982). The late positive component of visual evoked response sensitive to emotional factors. Activitas Nervosa Superior, Suppl 3, 334–337.Google ScholarPubMed
Riels, K., Ramos Campagnoli, R., Thigpen, N., & Keil, A. (2022). Oscillatory brain activity links experience to expectancy during associative learning. Psychophysiology, 59, e13946.CrossRefGoogle ScholarPubMed
Ringach, D. L. (2010). Population coding under normalization. Vision Research, 50, 2223–2232.CrossRefGoogle ScholarPubMed
Sabatinelli, D., Keil, A., Frank, D. W., & Lang, P. J. (2013). Emotional perception: Correspondence of early and late event-related potentials with cortical and subcortical functional MRI. Biological Psychology, 92, 513–519.CrossRefGoogle ScholarPubMed
Schindler, S., & Bublatzky, F. (2020). Attention and emotion: An integrative review of emotional face processing as a function of attention. Cortex, 130, 362–386.CrossRefGoogle ScholarPubMed
Schindler, S., Busch, N., Bruchmann, M., Wolf, M.-I., & Straube, T. (2022). Early ERP functions are indexed by lateralized effects to peripherally presented emotional faces and scrambles. Psychophysiology, 59, e13959.CrossRefGoogle ScholarPubMed
Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Birbaumer, N., & Lang, P. J. (1997). Probe P3 and blinks: Two measures of affective startle modulation. Psychophysiology, 34, 1–6.CrossRefGoogle ScholarPubMed
Schupp, H. T., Stockburger, J., Codispoti, M., Junghofer, M., Weike, A. I., & Hamm, A. O. (2007). Selective visual attention to emotion. Journal of Neuroscience, 27, 1082–1089.CrossRefGoogle ScholarPubMed
Smith, E. E., Reznik, S. J., Stewart, J. L., & Allen, J. J. B. (2017). Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. International Journal of Psychophysiology, 111, 98–114.CrossRefGoogle ScholarPubMed
Stegmann, Y., Ahrens, L., Pauli, P., Keil, A., & Wieser, M. J. (2020). Social aversive generalization learning sharpens the tuning of visuocortical neurons to facial identity cues. eLife, 9, e55204.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3, 151–162.CrossRefGoogle ScholarPubMed
Thigpen, N. N., Bartsch, F., & Keil, A. (2017). The malleability of emotional perception: Short-term plasticity in retinotopic neurons accompanies the formation of perceptual biases to threat. Journal of Experimental Psychology: General, 146, 464–471.Google ScholarPubMed
Thigpen, N. N., Kappenman, E. S., & Keil, A. (2017). Assessing the internal consistency of the event-related potential: An example analysis. Psychophysiology, 54, 123–138.CrossRefGoogle ScholarPubMed
Thigpen, N., Petro, N. M., Oschwald, J., Oberauer, K., & Keil, A. (2019). Selection of visual objects in perception and working memory one at a time. Psychological Science, 30, 1259–1272.CrossRefGoogle ScholarPubMed
Tomarken, A. J., Davidson, R. J., Wheeler, R. E., & Kinney, L. (1992). Psychometric properties of resting anterior EEG asymmetry: Temporal stability and internal consistency. Psychophysiology, 29, 576–592.CrossRefGoogle ScholarPubMed
Urigüen, J. A., & Garcia-Zapirain, B. (2015). EEG artifact removal – State-of-the-art and guidelines. Journal of Neural Engineering, 12, 031001.CrossRefGoogle ScholarPubMed
van der Vinne, N., Vollebregt, M. A., van Putten, M. J. A. M., & Arns, M. (2017). Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. NeuroImage: Clinical, 16, 79–87.Google ScholarPubMed
Walter, W. G. (1967). The analysis, synthesis and identification of evoked responses and contigent negative variation (CNV). Electroencephalography and Clinical Neurophysiology, 23, 489.Google ScholarPubMed
Ward, R. T., Gilbert, F. E., Pouliot, J., Chiasson, P., McIlvanie, S., Traiser, C., … Keil, A. (2022). The relationship between self-reported misophonia symptoms and auditory aversive generalization leaning: A preliminary report. Frontiers in Neuroscience, 16, 899476.CrossRefGoogle Scholar
Wieser, M. J., & Keil, A. (2020). Attentional threat biases and their role in anxiety: A neurophysiological perspective. International Journal of Psychophysiology, 153, 148–158.CrossRefGoogle ScholarPubMed
Wieser, M. J., McTeague, L. M., & Keil, A. (2011). Sustained preferential processing of social threat cues: Bias without competition? Journal of Cognitive Neuroscience, 23, 1973–1986.CrossRefGoogle ScholarPubMed
Wieser, M. J., Miskovic, V., & Keil, A. (2016). Steady-state visual evoked potentials as a research tool in social affective neuroscience. Psychophysiology, 53, 1763–1775.CrossRefGoogle ScholarPubMed
Widmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for electrophysiological data – a practical approach. Journal of Neuroscience Methods, 250, 34–46.CrossRefGoogle Scholar
Wiesman, A. I., da Silva Castanheira, J., & Baillet, S. (2022). Stability of spectral estimates in resting-state magnetoencephalography: Recommendations for minimal data duration with neuroanatomical specificity. NeuroImage, 247, 118823.CrossRefGoogle ScholarPubMed
Yao, D., Qin, Y., Hu, S., Dong, L., Bringas Vega, M. L., & Valdés Sosa, P. A. (2022). Which reference should we use for EEG and ERP practice? Brain Topography, 32, 530–549.Google Scholar

References

Adolphs, R., & Anderson, D. (2018). The neuroscience of emotion: A new synthesis. Princeton University Press.Google Scholar
Anderson, D. J., & Adolphs, R. (2014). A framework for studying emotions across species. Cell, 157, 187–200.CrossRefGoogle ScholarPubMed
Ashhad, S., Kam, K., Negro, C. A. D., & Feldman, J. L. (2022). Breathing rhythm and pattern and their influence on emotion. Annual Review of Neuroscience, 45, 223–247.CrossRefGoogle ScholarPubMed
Bailey, K., & Crawley, J. (2008). Anxiety-related behaviors in mice. In Buccafusco, J. J. (Ed.), Methods of behavior analysis in neuroscience (Frontiers in neuroscience), 2nd ed. (pp. 77–101). CRC Press.Google Scholar
Berntson, G. G., & Khalsa, S. S. (2021). Neural circuits of interoception. Trends in Neurosciences, 44, 17–28.CrossRefGoogle ScholarPubMed
Bicks, L. K., Koike, H., Akbarian, S., & Morishita, H. (2015). Prefrontal cortex and social cognition in mouse and man. Frontiers in Psychology, 6, 1805.CrossRefGoogle ScholarPubMed
Campos, P., Walker, J. J., & Mollard, P. (2020). Diving into the brain: Deep-brain imaging techniques in conscious animals. The Journal of Endocrinology, 246, R33–R50.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1927). The James–Lange theory of emotions: A critical examination and an alternative theory. The American Journal of Psychology, 39, 106–124.CrossRefGoogle Scholar
Chen, X., Tong, C., Han, Z., Zhang, K., Bo, B., Feng, Y., & Liang, Z. (2020). Sensory evoked fMRI paradigms in awake mice. NeuroImage, 204, 116242.CrossRefGoogle ScholarPubMed
Critchley, H. D., & Garfinkel, S. N. (2017). Interoception and emotion. Current Opinion in Psychology, 17, 7–14.CrossRefGoogle ScholarPubMed
Crook, R. J. (2021). Behavioral and neurophysiological evidence suggests affective pain experience in octopus. iScience, 24, 102229.CrossRefGoogle ScholarPubMed
D’Acquisto, F. (2017). Affective immunology: Where emotions and the immune response converge. Dialogues in Clinical Neuroscience, 19, 9–19.Google ScholarPubMed
Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: Evolutionary and neurobiological origins. Nature Reviews Neuroscience, 14, 143–152.CrossRefGoogle ScholarPubMed
Darwin, R. C. (1872). The expression of the emotions in man and animals. John Murray.CrossRefGoogle Scholar
Datta, S. R., Anderson, D. J., Branson, K., Perona, P., & Leifer, A. (2019). Computational neuroethology: A call to action. Neuron, 104, 11–24.CrossRefGoogle ScholarPubMed
Dixon, M. L., Thiruchselvam, R., Todd, R., & Christoff, K. (2017). Emotion and the prefrontal cortex: An integrative review. Psychological Bulletin, 143, 1033–1081.CrossRefGoogle ScholarPubMed
Dolensek, N., Gehrlach, D. A., Klein, A. S., & Gogolla, N. (2020). Facial expressions of emotion states and their neuronal correlates in mice. Science, 368, 89–94.CrossRefGoogle ScholarPubMed
Dutschmann, M., & Dick, T. E. (2013). Comprehensive physiology. Comprehensive Physiology, 2, 2443–2469.Google Scholar
Edelman, B. J., & Macé, E. (2021). Functional ultrasound brain imaging: Bridging networks, neurons, and behavior. Current Opinion in Biomedical Engineering, 18, 100286.CrossRefGoogle Scholar
Emiliani, V., Entcheva, E., Hedrich, R., Hegemann, P., Konrad, K. R., Lüscher, C., … Yizhar, O. (2022). Optogenetics for light control of biological systems. Nature Reviews Methods Primers, 2, 55.CrossRefGoogle ScholarPubMed
Forkosh, O., Karamihalev, S., Roeh, S., Alon, U., Anpilov, S., Touma, C., … Chen, A. (2019). Identity domains capture individual differences from across the behavioral repertoire. Nature Neuroscience, 22, 2023–2028.CrossRefGoogle ScholarPubMed
Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., … Kempermann, G. (2013). Emergence of individuality in genetically identical mice. Science, 340, 756–759.CrossRefGoogle ScholarPubMed
Gibbons, M., Versace, E., Crump, A., Baran, B., & Chittka, L. (2022). Motivational trade-offs and modulation of nociception in bumblebees. Proceedings of the National Academy of Sciences of the United States of Ameria, 119, e2205821119.Google ScholarPubMed
Gibson, W. T., Gonzalez, C. R., Fernandez, C., Ramasamy, L., Tabachnik, T., Du, R. R., … Anderson, D. J. (2015). Behavioral responses to a repetitive visual threat stimulus express a persistent state of defensive arousal in Drosophila. Current Biology, 25, 1401–1415.CrossRefGoogle ScholarPubMed
Han, S., Soleiman, M. T., Soden, M. E., Zweifel, L. S., & Palmiter, R. D. (2015). Elucidating an affective pain circuit that creates a threat memory. Cell, 162, 363–374.CrossRefGoogle ScholarPubMed
Hsueh, B., Chen, R., Jo, Y., Tang, D., Raffiee, M., Kim, Y. S., … Deisseroth, K. (2023). Cardiogenic control of affective behavioural state. Nature, 615, 292–299.CrossRefGoogle ScholarPubMed
Kennedy, A., Kunwar, P. S., Li, L., Stagkourakis, S., Wagenaar, D. A., & Anderson, D. J. (2020). Stimulus-specific hypothalamic encoding of a persistent defensive state. Nature, 586, 730–734.CrossRefGoogle ScholarPubMed
Keysers, C., Knapska, E., Moita, M. A., & Gazzola, V. (2022). Emotional contagion and prosocial behavior in rodents. Trends in Cognitive Sciences, 26, 688–706.CrossRefGoogle ScholarPubMed
Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H. D., Davenport, P. W., Feinstein, J. S., … Zucker, N. (2018). Interoception and mental health: A roadmap. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 501–513.Google ScholarPubMed
Klein, A. S., Dolensek, N., Weiand, C., & Gogolla, N. (2021). Fear balance is maintained by bodily feedback to the insular cortex in mice. Science, 374, 1010–1015.CrossRefGoogle Scholar
Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., … Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109, 2404–2412.e5.CrossRefGoogle ScholarPubMed
Kunwar, P. S., Zelikowsky, M., Remedios, R., Cai, H., Yilmaz, M., Meister, M., & Anderson, D. J. (2015). Ventromedial hypothalamic neurons control a defensive emotion state. eLife, 4, e06633.CrossRefGoogle ScholarPubMed
Liu, S., Ye, M., Pao, G. M., Song, S. M., Jhang, J., Jiang, H., … Han, S. (2022). Divergent brainstem opioidergic pathways that coordinate breathing with pain and emotions. Neuron, 110, 857–873.e9.CrossRefGoogle ScholarPubMed
Margolis, K. G., Cryan, J. F., & Mayer, E. A. (2021). The microbiota–gut–brain axis: From motility to mood. Gastroenterology, 160, 1486–1501.CrossRefGoogle ScholarPubMed
Mayer, E. A. (2011). Gut feelings: The emerging biology of gut–brain communication. Nature Reviews Neuroscience, 12, 453–466.CrossRefGoogle ScholarPubMed
Mobbs, D., Adolphs, R., Fanselow, M. S., Barrett, L. F., LeDoux, J. E., Ressler, K., & Tye, K. M. (2019). Viewpoints: Approaches to defining and investigating fear. Nature Neuroscience, 22, 1205–1216.CrossRefGoogle ScholarPubMed
Montaldo, G., Urban, A., & Macé, E. (2022). Functional ultrasound neuroimaging. Annual Review of Neuroscience, 45, 491–513.CrossRefGoogle ScholarPubMed
Navabpour, S., Kwapis, J. L., & Jarome, T. J. (2020). A neuroscientist’s guide to transgenic mice and other genetic tools. Neuroscience & Biobehavioral Reviews, 108, 732–748.CrossRefGoogle ScholarPubMed
Panksepp, J. (2012). What is an emotional feeling? Lessons about affective origins from cross-species neuroscience. Motivation and Emotion, 36, 4–15.CrossRefGoogle Scholar
Papini, M. R., Penagos-Corzo, J. C., & Pérez-Acosta, A. M. (2019). Avian emotions: Comparative perspectives on fear and frustration. Frontiers in Psychology, 9, 2707.CrossRefGoogle ScholarPubMed
Russell, L. E., Dalgleish, H. W. P., Nutbrown, R., Gauld, O. M., Herrmann, D., Fişek, M., … Häusser, M. (2022). All-optical interrogation of neural circuits in behaving mice. Nature Protocols, 17, 1579–1620.CrossRefGoogle ScholarPubMed
Scheggia, D., Greca, F. L., Maltese, F., Chiacchierini, G., Italia, M., Molent, C., … Papaleo, F. (2022). Reciprocal cortico-amygdala connections regulate prosocial and selfish choices in mice. Nature Neuroscience, 25, 1505–1518.CrossRefGoogle ScholarPubMed
Scheggia, D., Managò, F., Maltese, F., Bruni, S., Nigro, M., Dautan, D., … Papaleo, F. (2019). Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice. Nature Neuroscience, 23, 47–60.Google ScholarPubMed
Seth, A. K., & Friston, K. J. (2016). Active interoceptive inference and the emotional brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20160007.CrossRefGoogle ScholarPubMed
Shemesh, Y., & Chen, A. (2023). A paradigm shift in translational psychiatry through rodent neuroethology. Molecular Psychiatry, 28, 993–1003.CrossRefGoogle ScholarPubMed
Silva, B. A., Gross, C. T., & Gräff, J. (2016). The neural circuits of innate fear: Detection, integration, action, and memorization. Learning & Memory, 23, 544–555.CrossRefGoogle ScholarPubMed
Silva, B. A., Mattucci, C., Krzywkowski, P., Murana, E., Illarionova, A., Grinevich, V., … Gross, C. T. (2013). Independent hypothalamic circuits for social and predator fear. Nature Neuroscience, 16, 1731–1733.CrossRefGoogle ScholarPubMed
Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., … Harris, T. D. (2021). Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science, 372, eabf4588.CrossRefGoogle ScholarPubMed
Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C. B., Carandini, M., & Harris, K. D. (2019). Spontaneous behaviors drive multidimensional, brainwide activity. Science, 364, 255.CrossRefGoogle ScholarPubMed
Terburg, D., Scheggia, D., Rio, R. T. del, Klumpers, F., Ciobanu, A. C., Morgan, B., … Honk, J. van. (2018). The basolateral amygdala is essential for rapid escape: A human and rodent study. Cell, 175, 723–735.e16.CrossRefGoogle ScholarPubMed
Tinbergen, N. (1951). The study of instinct. Clarendon Press.Google Scholar
Wilent, W. B., Oh, M. Y., Buetefisch, C. M., Bailes, J. E., Cantella, D., Angle, C., & Whiting, D. M. (2010). Induction of panic attack by stimulation of the ventromedial hypothalamus: Case report. Journal of Neurosurgery, 112, 1295–1298.CrossRefGoogle Scholar
Wilent, W. B., Oh, M. Y., Buetefisch, C., Bailes, J. E., Cantella, D., Angle, C., & Whiting, D. M. (2011). Mapping of microstimulation evoked responses and unit activity patterns in the lateral hypothalamic area recorded in awake humans: Technical note. Journal of Neurosurgery, 115, 295–300.CrossRefGoogle ScholarPubMed
Wiltschko, A. B., Johnson, M. J., Iurilli, G., Peterson, R. E., Katon, J. M., Pashkovski, S. L., … Datta, S. R. (2015). Mapping sub-second structure in mouse behavior. Neuron, 88, 1121–1135.CrossRefGoogle ScholarPubMed
Yap, E.-L., & Greenberg, M. E. (2018). Activity-regulated transcription: Bridging the gap between neural activity and behavior. Neuron, 100, 330–348.CrossRefGoogle Scholar
Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., Zwan, J. van der, … Linnarsson, S. (2018). Molecular architecture of the mouse nervous system. Cell, 174, 999–1014.e22.CrossRefGoogle ScholarPubMed
Ziegler, L. von, Sturman, O., & Bohacek, J. (2020). Big behavior: Challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology, 46, 33–44.Google Scholar
Zych, A. D., & Gogolla, N. (2021). Expressions of emotions across species. Current Opinion in Neurobiology, 68, 57–66.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×