Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-10-03T04:55:57.128Z Has data issue: false hasContentIssue false

Chapter 11 - A Lifespan Perspective of Emotion in Voice Perception

from Section III - Emotion Perception and Elicitation

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

The ability to express and perceive vocal emotions plays an important role in social interactions. Notably, the encoding and decoding of emotions often occur in social interactions of persons of different ages, where speaker and listener characteristics dynamically shape the perception of emotion expressed in the voice. However, existing models of (emotional) voice processing have primarily focused on stimulus quality while accounting sparsely for person characteristics, such as speaker and listener age. Consequently, systematic research on the expression and perception of emotion in the voice across the lifespan is needed. Here, we provide a synopsis of how the perception and specifically the recognition of vocal emotions is modulated by the age of both speakers and listeners. First, we summarize what we currently know about human vocal tract development and age-related variations in voice acoustics. We then synthesize evidence on age-related changes in the expression and perception of vocal emotions. We conclude that the perception of emotion expressed in the voice is not only a matter of how one speaks but also of who speaks and who listens. A broader perspective on how the voice communicates emotions should be reflected in existing models and guide future research.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abrams, D. A., Chen, T., Odriozola, P., Cheng, K. M., Baker, A. E., Padmanabhan, A., … Menon, V. (2016). Neural circuits underlying mother’s voice perception predict social communication abilities in children. Proceedings of the National Academy of Sciences of the United States of America, 113, 6295–6300.Google ScholarPubMed
Addington, J., Piskulic, D., Perkins, D., Woods, S. W., Liu, L., & Penn, D. L. (2012). Affect recognition in people at clinical high risk of psychosis. Schizophrenia Research, 140, 87–92.CrossRefGoogle ScholarPubMed
Aguert, M., Laval, V., Lacroix, A., Gil, S., & Le Bigot, L. (2013). Inferring emotions from speech prosody: Not so easy at age five. PloS ONE, 8, e83657–e83657.CrossRefGoogle ScholarPubMed
Allen, R., & Brosgole, L. (1993). Facial and auditory affect recognition in senile geriatrics, the normal elderly and young adults. International Journal of Neuroscience, 68, 33–42.CrossRefGoogle ScholarPubMed
Allgood, R., & Heaton, P. (2015). Developmental change and cross-domain links in vocal and musical emotion recognition performance in childhood. British Journal of Developmental Psychology, 33, 398–403.CrossRefGoogle ScholarPubMed
Amminger, G. P., Schäfer, M. R., Papageorgiou, K., Klier, C. M., Schlögelhofer, M., Mossaheb, N., … McGorry, P. D. (2012). Emotion recognition in individuals at clinical high-risk for schizophrenia. Schizophrenia Bulletin, 38, 1030–1039.CrossRefGoogle ScholarPubMed
Amorim, M., Anikin, A., Mendes, A. J., Lima, C. F., Kotz, S. A., & Pinheiro, A. P. (2021). Changes in vocal emotion recognition across the life span. Emotion, 21, 315–325.CrossRefGoogle ScholarPubMed
Amorim, M., Roberto, M. S., Kotz, S. A., & Pinheiro, A. P. (2021). The perceived salience of vocal emotions is dampened in non-clinical auditory verbal hallucinations. Cognitive Neuropsychiatry, 27, 169–182.Google ScholarPubMed
Anikin, A., & Persson, T. (2017). Nonlinguistic vocalizations from online amateur videos for emotion research: A validated corpus. Behavior Research Methods, 49, 758–771.CrossRefGoogle ScholarPubMed
Arnal, L. H., Flinker, A., Kleinschmidt, A., Giraud, A. L., & Poeppel, D. (2015). Human screams occupy a privileged niche in the communication soundscape. Current Biology, 25, 2051–2056.CrossRefGoogle ScholarPubMed
Aslin, R. N. (1987). Visual and auditory development in infancy. In Osofsky, J. D. (Ed.), Handbook of infant development, 2nd ed. (pp. 5–97). John Wiley & Sons.Google Scholar
Banse, R., & Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70, 614–636.CrossRefGoogle ScholarPubMed
Belin, P., Fecteau, S., & Bédard, C. (2004). Thinking the voice: Neural correlates of voice perception. Trends in Cognitive Sciences, 8, 129–135.CrossRefGoogle ScholarPubMed
Belin, P., Fillion-Bilodeau, S., & Gosselin, F. (2008). The Montreal Affective Voices: A validated set of nonverbal affect bursts for research on auditory affective processing. Behavior Research Methods, 40, 531–539.CrossRefGoogle ScholarPubMed
Belin, P., Zatorre, R., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Nature, 403, 309–312.CrossRefGoogle ScholarPubMed
Bellis, T. J., Nicol, T., & Kraus, N. (2000). Aging affects hemispheric asymmetry in the neural representation of speech sounds. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20, 791–797.CrossRefGoogle ScholarPubMed
Bestelmeyer, P. E. G., Maurage, P., Rouger, J., Latinus, M., & Belin, P. (2014). Adaptation to vocal expressions reveals multistep perception of auditory emotion. Journal of Neuroscience, 34, 8098–8105.CrossRefGoogle ScholarPubMed
Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267–277.CrossRefGoogle ScholarPubMed
Blasi, A., Lloyd-Fox, S., Sethna, V., Brammer, M. J., Mercure, E., Murray, L., … Johnson, M. H. (2015). Atypical processing of voice sounds in infants at risk for autism spectrum disorder. Cortex, 71, 122–133.CrossRefGoogle ScholarPubMed
Blasi, A., Mercure, E., Lloyd-Fox, S., Thomson, A., Brammer, M., Sauter, D., … Murphy, D. G. M. (2011). Early specialization for voice and emotion processing in the infant brain. Current Biology, 21, 1220–1224.CrossRefGoogle ScholarPubMed
Bradley, M. M., & Lang, P. J. (2007). Emotion and motivation. In Cacioppo, J. T., Tassinary, L. G., & Berntston, G. G. (Eds.), Handbook of psychophysiology, 3rd ed. (pp. 581–607). Cambridge University Press.Google Scholar
Brix, N., Ernst, A., Lauridsen, L. L. B., Parner, E., Støvring, H., Olsen, J., … Ramlau-Hansen, C. H. (2019). Timing of puberty in boys and girls: A population-based study. Paediatric and Perinatal Epidemiology, 33, 70–78.CrossRefGoogle Scholar
Brosch, T., Grandjean, D., Sander, D., & Scherer, K. R. (2009). Cross-modal emotional attention: Emotional voices modulate early stages of visual processing. Journal of Cognitive Neuroscience, 21, 1670–1679.CrossRefGoogle ScholarPubMed
Buchanan, T. W., Lutz, K., Mirzazade, S., Specht, K., Shah, N. J., Zilles, K., & Jäncke, L. (2000). Recognition of emotional prosody and verbal components of spoken language: An fMRI study. Cognitive Brain Research, 9, 227–238.CrossRefGoogle ScholarPubMed
Caballero, J. A., Mauchand, M., Jiang, X., & Pell, M. D. (2021). Cortical processing of speaker politeness: Tracking the dynamic effects of voice tone and politeness markers. Social Neuroscience, 16, 423–438.CrossRefGoogle ScholarPubMed
Carstensen, L. L. (1995). Evidence for a life-span theory of socioemotional selectivity. Current Directions in Psychological Science, 4, 151–156.CrossRefGoogle Scholar
Castiajo, P., & Pinheiro, A. P. (2019). Decoding emotions from nonverbal vocalizations: How much voice signal is enough? Motivation and Emotion, 43, 803–813.CrossRefGoogle Scholar
Castiajo, P., & Pinheiro, A. P. (2021a). Acoustic salience in emotional voice perception and its relationship with hallucination proneness. Cognitive, Affective, & Behavioral Neuroscience, 21, 412–425.CrossRefGoogle Scholar
Castiajo, P., & Pinheiro, A. P. (2021b). Attention to voices is increased in non-clinical auditory verbal hallucinations irrespective of salience. Neuropsychologia, 162, 108030.CrossRefGoogle Scholar
Cheng, Y., Lee, S.-Y., Chen, H.-Y., Wang, P.-Y., & Decety, J. (2012). Voice and emotion processing in the human neonatal brain. Journal of Cognitive Neuroscience, 24, 1411–1419.CrossRefGoogle ScholarPubMed
Chieh, K., Sera, M. D., & Yang, Z. (2022). Emotional speech processing in 3- to 12-month-old infants: Influences of emotion categories and acoustic parameters. Journal of Speech, Language, and Hearing Research, 65, 487–500.Google Scholar
Chronaki, G., Benikos, N., Fairchild, G., & Sonuga-Barke, E. J. S. (2015). Atypical neural responses to vocal anger in attention-deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, 56, 477–487.CrossRefGoogle ScholarPubMed
Chronaki, G., Garner, M., Hadwin, J. A., Thompson, M. J. J., Chin, C. Y., & Sonuga-Barke, E. J. S. (2015). Emotion-recognition abilities and behavior problem dimensions in preschoolers: Evidence for a specific role for childhood hyperactivity. Child Neuropsychology, 21, 25–40.CrossRefGoogle ScholarPubMed
Chronaki, G., Hadwin, J. A., Garner, M., Maurage, P., & Sonuga-Barke, E. J. S. (2015). The development of emotion recognition from facial expressions and non-linguistic vocalizations during childhood. British Journal of Developmental Psychology, 33, 218–236.CrossRefGoogle ScholarPubMed
Chronaki, G., Wigelsworth, M., Pell, M. D., & Kotz, S. A. (2018). The development of cross-cultural recognition of vocal emotion during childhood and adolescence. Scientific Reports, 8, 8659.CrossRefGoogle ScholarPubMed
Corvin, S., Fauchon, C., Peyron, R., Reby, D., & Mathevon, N. (2022). Adults learn to identify pain in babies’ cries. Current Biology, 32, R824–R825.CrossRefGoogle ScholarPubMed
Cowen, A. S., Laukka, P., Elfenbein, H. A., Liu, R., & Keltner, D. (2019). The primacy of categories in the recognition of 12 emotions in speech prosody across two cultures. Nature Human Behaviour, 3, 369–382.CrossRefGoogle ScholarPubMed
Darwin, C. (1998). The expression of the emotions in man and animals, 3rd ed. Oxford University Press (Original work published in 1872).CrossRefGoogle Scholar
Demenescu, L. R., Kato, Y., & Mathiak, K. (2015). Neural processing of emotional prosody across the adult lifespan. BioMed Research International, 2015, 590216.CrossRefGoogle ScholarPubMed
Demenescu, L. R., Mathiak, K. A., & Mathiak, K. (2014). Age- and gender-related variations of emotion recognition in pseudowords and faces. Experimental Aging Research, 40, 187–207.CrossRefGoogle ScholarPubMed
Denham, S. A., Bassett, H. H., & Wyatt, T. (2015). The socialization of emotional competence. In Grusec, J. E. & Hastings, P. D. (Eds.), Handbook of socialization: Theory and research, 2nd ed. (pp. 590–613). The Guilford Press.Google Scholar
Doherty, C. P., Fitzsimons, M., Asenbauer, B., & Staunton, H. (1999). Discrimination of prosody and music by normal children. European Journal of Neurology, 6, 221–226.CrossRefGoogle ScholarPubMed
Dupuis, K., & Pichora-Fuller, M. K. (2010). Use of affective prosody by young and older adults. Psychology and Aging, 25, 16–29.CrossRefGoogle ScholarPubMed
Dupuis, K., & Pichora-Fuller, M. K. (2014). Intelligibility of emotional speech in younger and older adults. Ear and Hearing, 35, 695–707.Google ScholarPubMed
Dupuis, K., & Pichora-Fuller, M. K. (2015). Aging affects identification of vocal emotions in semantically neutral sentences. Journal of Speech Language and Hearing Research, 58, 1061.CrossRefGoogle ScholarPubMed
Ecklund-Flores, L., & Turkewitz, G. (1996). Asymmetric headturning to speech and nonspeech in human newborns. Developmental Psychobiology, 29, 205–217.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6, 169–200.CrossRefGoogle Scholar
Erlich, N., Lipp, O. V, & Slaughter, V. (2013). Of hissing snakes and angry voices: Human infants are differentially responsive to evolutionary fear-relevant sounds. Developmental Science, 16, 894–904.CrossRefGoogle ScholarPubMed
Ethofer, T., Bretscher, J., Gschwind, M., Kreifelts, B., Wildgruber, D., & Vuilleumier, P. (2012). Emotional voice areas: Anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cerebral Cortex, 22, 191–200.CrossRefGoogle ScholarPubMed
Fecteau, S., Armony, J. L., Joanette, Y., & Belin, P. (2005). Judgment of emotional nonlinguistic vocalizations: Age-related differences. Applied Neuropsychology, 12, 40–48.CrossRefGoogle ScholarPubMed
Fecteau, S., Belin, P., Joanette, Y., & Armony, J. L. (2007). Amygdala responses to nonlinguistic emotional vocalizations. NeuroImage, 36, 480–487.CrossRefGoogle ScholarPubMed
Filippa, M., Lima, D., Grandjean, A., Labbé, C., Coll, S. Y., Gentaz, E., & Grandjean, D. M. (2022). Emotional prosody recognition enhances and progressively complexifies from childhood to adolescence. Scientific Reports, 12, 17144.CrossRefGoogle ScholarPubMed
Fitch, W. T., & Giedd, J. (1999). Morphology and development of the human vocal tract: A study using magnetic resonance imaging. The Journal of the Acoustical Society of America, 106, 1511–1522.CrossRefGoogle ScholarPubMed
Fitch, W. T., Neubauer, J., & Herzel, H. (2002). Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour, 63, 407–418.CrossRefGoogle Scholar
Flom, R., & Bahrick, L. E. (2007). The development of infant discrimination of affect in multimodal and unimodal stimulation: The role of intersensory redundancy. Developmental Psychology, 43, 238–252.CrossRefGoogle ScholarPubMed
Fouquet, M., Pisanski, K., Mathevon, N., & Reby, D. (2016). Seven and up: Individual differences in male voice fundamental frequency emerge before puberty and remain stable throughout adulthood. Royal Society Open Science, 3, 160395.CrossRefGoogle ScholarPubMed
Frere, P. B., Vetter, N. C., Artiges, E., Filippi, I., Miranda, R., Vulser, H., … Lemaître, H. (2020). Sex effects on structural maturation of the limbic system and outcomes on emotional regulation during adolescence. NeuroImage, 210, 116441.CrossRefGoogle ScholarPubMed
Friend, M. (2000). Developmental changes in sensitivity to vocal paralanguage. Developmental Science, 3, 148–162.CrossRefGoogle ScholarPubMed
Frühholz, S., & Grandjean, D. (2013). Processing of emotional vocalizations in bilateral inferior frontal cortex. Neuroscience and Biobehavioral Reviews, 37, 2847–2855.CrossRefGoogle ScholarPubMed
Frühholz, S., Hofstetter, C., Cristinzio, C., Saj, A., Seeck, M., Vuilleumier, P., & Grandjean, D. (2015). Asymmetrical effects of unilateral right or left amygdala damage on auditory cortical processing of vocal emotions. Proceedings of the National Academy of Sciences of the United States of America, 112, 1583–1588.Google ScholarPubMed
Frühholz, S., Trost, W., & Kotz, S. A. (2016). The sound of emotions – Towards a unifying neural network perspective of affective sound processing. Neuroscience and Biobehavioral Reviews, 68, 96–110.CrossRefGoogle ScholarPubMed
Gandour, J., Wong, D., Dzemidzic, M., Lowe, M., Tong, Y., & Li, X. (2003). A cross-linguistic fMRI study of perception of intonation and emotion in Chinese. Human Brain Mapping, 18, 149–157.CrossRefGoogle ScholarPubMed
Garrido-Vásquez, P., Pell, M. D., Paulmann, S., Strecker, K., Schwarz, J., & Kotz, S. A. (2013). An ERP study of vocal emotion processing in asymmetric Parkinson’s disease. Social Cognitive and Affective Neuroscience, 8, 918–927.CrossRefGoogle ScholarPubMed
Gingras, J. L., Mitchell, E. A., & Grattan, K. E. (2005). Fetal homologue of infant crying. Archives of Disease in Childhood – Fetal and Neonatal Edition, 90, F415–F418.CrossRefGoogle ScholarPubMed
Giordano, B. L., Whiting, C., Kriegeskorte, N., Kotz, S. A., Gross, J., & Belin, P. (2021). The representational dynamics of perceived voice emotions evolve from categories to dimensions. Nature Human Behaviour, 5, 1203–1213.CrossRefGoogle ScholarPubMed
Goldstein, M. H., & Schwade, J. A. (2008). Social feedback to infants’ babbling facilitates rapid phonological learning. Psychological Science, 19, 515–523.CrossRefGoogle ScholarPubMed
Goldstein, U. G. (1980). An articulatory model for the vocal tracts of growing children. Massachusetts Institute of Technology.Google Scholar
Gordon, R. A., & Arvey, R. D. (2004). Age bias in laboratory and field settings: A meta-analytic investigation. Journal of Applied Social Psychology, 34, 468–492.CrossRefGoogle Scholar
Goy, H., Pichora-Fuller, M. K., & van Lieshout, P. (2016). Effects of age on speech and voice quality ratings. The Journal of the Acoustical Society of America, 139, 1648–1659.CrossRefGoogle ScholarPubMed
Grandjean, D., Sander, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). The voices of wrath: Brain responses to angry prosody in meaningless speech. Nature Neuroscience, 8, 145–146.CrossRefGoogle ScholarPubMed
Grosbras, M. H., Ross, P. D., & Belin, P. (2018). Categorical emotion recognition from voice improves during childhood and adolescence. Scientific Reports, 8, 14791.CrossRefGoogle ScholarPubMed
Grossmann, T., Oberecker, R., Koch, S. P., & Friederici, A. D. (2010). The developmental origins of voice processing in the human brain. Neuron, 65, 852–858.CrossRefGoogle ScholarPubMed
Grossmann, T., Striano, T., & Friederici, A. D. (2006). Crossmodal integration of emotional information from face and voice in the infant brain. Developmental Science, 9, 309–315.CrossRefGoogle ScholarPubMed
Harries, M. L. L., Walker, J. M., Williams, D. M., Hawkins, S., & Hughes, I. A. (1997). Changes in the male voice at puberty. Archives of Disease in Childhood, 77, 445–447.CrossRefGoogle Scholar
Hart, H. C., Palmer, A. R., & Hall, D. A. (2003). Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex, 13, 773–781.CrossRefGoogle ScholarPubMed
Hawk, S. T., van Kleef, G. A., Fischer, A. H., & van der Schalk, J. (2009). “Worth a thousand words”: Absolute and relative decoding of nonlinguistic affect vocalizations. Emotion, 9, 293–305.CrossRefGoogle ScholarPubMed
Hodges-Simeon, C. R., Gurven, M., Cárdenas, R. A., & Gaulin, S. J. C. (2013). Voice change as a new measure of male pubertal timing: A study among Bolivian adolescents. Annals of Human Biology, 40, 209–219.CrossRefGoogle ScholarPubMed
Hollien, H. (1987). “Old voices”: What do we really know about them? Journal of Voice, 1, 2–17.CrossRefGoogle Scholar
Hornak, J., Rolls, E. T., & Wade, D. (1996). Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia, 34, 247–261.CrossRefGoogle ScholarPubMed
Hunter, E. M., Phillips, L. H., & MacPherson, S. E. (2010). Effects of age on cross-modal emotion perception. Psychology and Aging, 25, 779–787.CrossRefGoogle ScholarPubMed
Isaacowitz, D. M., Löckenhoff, C. E., Lane, R. D., Wright, R., Sechrest, L., Riedel, R., & Costa, P. T. (2007). Age differences in recognition of emotion in lexical stimuli and facial expressions. Psychology and Aging, 22, 147–159.CrossRefGoogle ScholarPubMed
Izard, C. E., Schultz, D., Fine, S. E., Youngstrom, E., & Ackerman, B. P. (2000). Temperament, cognitive ability, emotion knowledge, and adaptive social behavior. Imagination, Cognition and Personality, 19, 305–330.CrossRefGoogle Scholar
Jiang, X., & Pell, M. D. (2016). Neural responses towards a speaker’s feeling of (un)knowing. Neuropsychologia, 81, 79–93.CrossRefGoogle ScholarPubMed
Juslin, P. N., & Laukka, P. (2003). Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129, 770–814.CrossRefGoogle ScholarPubMed
Juul, A., Magnusdottir, S., Scheike, T., Prytz, S., & Skakkebæk, N. E. (2007). Age at voice break in Danish boys: Effects of pre-pubertal body mass index and secular trend. International Journal of Andrology, 30, 537–542.CrossRefGoogle Scholar
Kahana-Kalman, R., & Walker-Andrews, A. S. (2001). The role of person familiarity in young infants’ perception of emotional expressions. Child Development, 72, 352–369.CrossRefGoogle Scholar
Knight, S., Lavan, N., Torre, I., & McGettigan, C. (2021). The influence of perceived vocal traits on trusting behaviours in an economic game. Quarterly Journal of Experimental Psychology, 74, 1747–1754.CrossRefGoogle Scholar
Kotz, S. A, Kalberlah, C., Bahlmann, J., Friederici, A. D., & Haynes, J.-D. (2013). Predicting vocal emotion expressions from the human brain. Human Brain Mapping, 34, 1971–1981.CrossRefGoogle ScholarPubMed
Kotz, S. A., Meyer, M., Alter, K., Besson, M., Von Cramon, D. Y., & Friederici, A. D. (2003). On the lateralization of emotional prosody: An event-related functional MR investigation. Brain and Language, 86, 366–376.CrossRefGoogle ScholarPubMed
Kotz, S. A., & Paulmann, S. (2007). When emotional prosody and semantics dance cheek to cheek: ERP evidence. Brain Research, 1151, 107–118.CrossRefGoogle ScholarPubMed
Kotz, S. A., & Paulmann, S. (2011). Emotion, language, and the brain. Linguistics and Language Compass, 5, 108–125.CrossRefGoogle Scholar
Kreiman, J., & Sidtis, D. (2011). Foundations of voice studies: An interdisciplinary approach to voice production and perception. Wiley-Blackwell.CrossRefGoogle Scholar
Lamar, M., & Resnick, S. M. (2004). Aging and prefrontal functions: Dissociating orbitofrontal and dorsolateral abilities. Neurobiology of Aging, 25, 553–558.CrossRefGoogle ScholarPubMed
Lambrecht, L., Kreifelts, B., & Wildgruber, D. (2012). Age-related decrease in recognition of emotional facial and prosodic expressions. Emotion, 12, 529–539.CrossRefGoogle ScholarPubMed
Laukka, P. (2005). Categorical perception of vocal emotion expressions. Emotion, 5, 277–295.CrossRefGoogle ScholarPubMed
Laukka, P., & Juslin, P. N. (2007). Similar patterns of age-related differences in emotion recognition from speech and music. Motivation and Emotion, 31, 182–191.CrossRefGoogle Scholar
Lavan, N., Knight, S., & McGettigan, C. (2019). Listeners form average-based representations of individual voice identities. Nature Communications, 10, 2404.CrossRefGoogle ScholarPubMed
Leipold, S., Abrams, D. A., Karraker, S., & Menon, V. (2022). Neural decoding of emotional prosody in voice-sensitive auditory cortex predicts social communication abilities in children. Cerebral Cortex, 33, 709–728.Google Scholar
Lima, C. F., Alves, T., Scott, S. K., & Castro, S. L. (2014). In the ear of the beholder: How age shapes emotion processing in nonverbal vocalizations. Emotion, 14, 145–160.CrossRefGoogle ScholarPubMed
Lima, C. F., Castro, S. L., & Scott, S. K. (2013). When voices get emotional: A corpus of nonverbal vocalizations for research on emotion processing. Behavior Research Methods, 45, 1234–1245.CrossRefGoogle ScholarPubMed
Liu, T., Pinheiro, A. P., Deng, G., Nestor, P. G., McCarley, R. W., & Niznikiewicz, M. A. (2012). Electrophysiological insights into processing nonverbal emotional vocalizations. NeuroReport, 23, 108–112.CrossRefGoogle ScholarPubMed
Maggio, R., Zappulla, C., & Pace, U. (2016). The relationship between emotion knowledge, emotion regulation and adjustment in preschoolers: A mediation model. Journal of Child and Family Studies, 25, 2626–2635.CrossRefGoogle Scholar
Mampe, B., Friederici, A. D., Christophe, A., & Wermke, K. (2009). Newborns’ cry melody is shaped by their native language. Current Biology, 19, 1994–1997.CrossRefGoogle ScholarPubMed
Markova, D., Richer, L., Pangelinan, M., Schwartz, D. H., Leonard, G., Perron, M., … Paus, T. (2016). Age-and sex-related variations in vocal-tract morphology and voice acoustics during adolescence. Hormones and Behavior, 81, 84–96.CrossRefGoogle ScholarPubMed
Mastropieri, D., & Turkewitz, G. (1999). Prenatal experience and neonatal responsiveness to vocal expressions of emotion. Developmental Psychobiology, 35, 204–214.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Mather, M. (2012). The emotion paradox in the aging brain. Annals of the New York Academy of Sciences, 1251, 33–49.CrossRefGoogle ScholarPubMed
Matsumoto, D., & Kishimoto, H. (1983). Developmental characteristics in judgments of emotion from nonverbal vocal cues. International Journal of Intercultural Relations, 7, 415–424.CrossRefGoogle Scholar
Mauchand, M., & Zhang, S. (2023). Disentangling emotional signals in the brain: An ALE meta-analysis of vocal affect perception. Cognitive, Affective, & Behavioral Neuroscience, 23, 17–29.CrossRefGoogle Scholar
McAllister, A., Sederholm, E., Sundberg, J., & Gramming, P. (1994). Relations between voice range profiles and physiological and perceptual voice characteristics in ten-year-old children. Journal of Voice, 8, 230–239.CrossRefGoogle ScholarPubMed
McAllister, A., & Sjölander, P. (2013). Children’s voice and voice disorders. Seminars in Speech Language, 34, 71–79.Google ScholarPubMed
McClure, E. B., & Nowicki, S. (2001). Associations between social anxiety and nonverbal processing skill in preadolescent boys and girls. Journal of Nonverbal Behavior, 25, 3–19.CrossRefGoogle Scholar
Mill, A., Allik, J., Realo, A., & Valk, R. (2009). Age-related differences in emotion recognition ability: A cross-sectional study. Emotion, 9, 619–630.CrossRefGoogle ScholarPubMed
Missana, M., Altvater-Mackensen, N., & Grossmann, T. (2017). Neural correlates of infants’ sensitivity to vocal expressions of peers. Developmental Cognitive Neuroscience, 26, 39–44.CrossRefGoogle ScholarPubMed
Mitchell, R. L. C., Elliott, R., Barry, M., Cruttenden, A., & Woodruff, P. W. R. (2003). The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia, 41, 1410–1421.CrossRefGoogle ScholarPubMed
Mitchell, R. L. C., Kingston, R. A., & Barbosa Bouças, S. L. (2011). The specificity of age-related decline in interpretation of emotion cues from prosody. Psychology and Aging, 26, 406–414.CrossRefGoogle ScholarPubMed
Morningstar, M., Dirks, M. A., & Huang, S. (2017). Vocal cues underlying youth and adult portrayals of socio-emotional expressions. Journal of Nonverbal Behavior, 41, 155–183.CrossRefGoogle Scholar
Morningstar, M., Dirks, M. A., Rappaport, B. I., Pine, D. S., & Nelson, E. E. (2019). Associations between anxious and depressive symptoms and the recognition of vocal socioemotional expressions in youth. Journal of Clinical Child & Adolescent Psychology, 48, 491–500.CrossRefGoogle ScholarPubMed
Morningstar, M., Ly, V. Y., Feldman, L., & Dirks, M. A. (2018). Mid-adolescents’ and adults’ recognition of vocal cues of emotion and social intent: Differences by expression and speaker age. Journal of Nonverbal Behavior, 42, 237–251.CrossRefGoogle Scholar
Morningstar, M., Mattson, W. I., Singer, S., Venticinque, J. S., & Nelson, E. E. (2020). Children and adolescents’ neural response to emotional faces and voices: Age-related changes in common regions of activation. Social Neuroscience, 15, 613–629.CrossRefGoogle ScholarPubMed
Morningstar, M., Nelson, E. E., & Dirks, M. A. (2018). Maturation of vocal emotion recognition: Insights from the developmental and neuroimaging literature. Neuroscience and Biobehavioral Reviews, 90, 221–230.CrossRefGoogle ScholarPubMed
Morningstar, M., Nowland, R., Dirks, M. A., & Qualter, P. (2020). Loneliness and the recognition of vocal socioemotional expressions in adolescence. Cognition and Emotion, 34, 970–976.CrossRefGoogle ScholarPubMed
Morris, J. S., Scott, S. K., & Dolan, R. J. (1999). Saying it with feeling: Neural responses to emotional vocalizations. Neuropsychologia, 37, 1155–1163.CrossRefGoogle ScholarPubMed
Narayanan, D. Z., Takahashi, D. Y., Kelly, L. M., Hlavaty, S. I., Huang, J., & Ghazanfar, A. A. (2022). Prenatal development of neonatal vocalizations. eLife, 11, e78485.CrossRefGoogle ScholarPubMed
Neves, L., Martins, M., Correia, A. I., Castro, S. L., & Lima, C. F. (2022). Associations between vocal emotion recognition and socio-emotional adjustment in children. Royal Society Open Science, 8, 211412.Google Scholar
Ogren, M., Burling, J. M., & Johnson, S. P. (2018). Family expressiveness relates to happy emotion matching among 9-month-old infants. Journal of Experimental Child Psychology, 174, 29–40.CrossRefGoogle ScholarPubMed
Orbelo, D. M., Grim, M. A., Talbott, R. E., & Ross, E. D. (2005). Impaired comprehension of affective prosody in elderly subjects is not predicted by age-related hearing loss or age-related cognitive decline. Journal of Geriatric Psychiatry and Neurology, 18, 25–32.CrossRefGoogle ScholarPubMed
Otte, R. A., Donkers, F. C. L., Braeken, M. A. K. A., & Van den Bergh, B. R. H. (2015). Multimodal processing of emotional information in 9-month-old infants II: Prenatal exposure to maternal anxiety. Brain and Cognition, 95, 107–117.Google ScholarPubMed
Owren, M. J., Berkowitz, M., & Bachorowski, J.-A. (2007). Listeners judge talker sex more efficiently from male than from female vowels. Perception & Psychophysics, 69, 930–941.CrossRefGoogle ScholarPubMed
Palama, A., Malsert, J., & Gentaz, E. (2018). Are 6-month-old human infants able to transfer emotional information (happy or angry) from voices to faces? An eye-tracking study. PLoS ONE, 13, e0194579.CrossRefGoogle ScholarPubMed
Pannese, A., Grandjean, D., & Frühholz, S. (2015). Subcortical processing in auditory communication. Hearing Research, 328, 67–77.CrossRefGoogle ScholarPubMed
Pannese, A., Grandjean, D., & Frühholz, S. (2016). Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions. Cortex, 85, 116–125.CrossRefGoogle ScholarPubMed
Paulmann, S, Bleichner, M., & Kotz, S. (2013). Valence, arousal, and task effects in emotional prosody processing. Frontiers in Psychology, 4, 345.CrossRefGoogle ScholarPubMed
Paulmann, S, & Kotz, S. A. (2008). Early emotional prosody perception based on different speaker voices. Neuroreport, 19, 209–213.CrossRefGoogle ScholarPubMed
Paulmann, S, Ott, D. V. M., & Kotz, S. A. (2011). Emotional speech perception unfolding in time: The role of the basal ganglia. PLoS ONE, 6, e17694.CrossRefGoogle ScholarPubMed
Paulmann, S, Seifert, S., & Kotz, S. A. (2010). Orbito-frontal lesions cause impairment during late but not early emotional prosodic processing. Social Neuroscience, 5, 59–75.CrossRefGoogle Scholar
Paulmann, S., Pell, M. D., & Kotz, S. A. (2008). How aging affects the recognition of emotional speech. Brain and Language, 104, 262–269.CrossRefGoogle ScholarPubMed
Pell, M. D., & Kotz, S. A. (2011). On the time course of vocal emotion recognition. PLoS ONE, 6, e27256.CrossRefGoogle ScholarPubMed
Pell, M. D., & Leonard, C. L. (2003). Processing emotional tone from speech in Parkinson’s disease: A role for the basal ganglia. Cognitive, Affective, & Behavioral Neuroscience, 3, 275–288.CrossRefGoogle ScholarPubMed
Pell, M. D., Rothermich, K., Liu, P., Paulmann, S., Sethi, S., & Rigoulot, S. (2015). Preferential decoding of emotion from human non-linguistic vocalizations versus speech prosody. Biological Psychology, 111, 14–25.CrossRefGoogle ScholarPubMed
Phillips, M. L., Young, A. W., Scott, S. K., Calder, A. J., Andrew, C., Giampietro, V., … Gray, J. A. (1998). Neural responses to facial and vocal expressions of fear and disgust. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265, 1809–1817.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Anikin, A., Conde, T., Sarzedas, J., Chen, S., Scott, S. K., & Lima, C. F. (2021). Emotional authenticity modulates affective and social trait inferences from voices. Philosophical Transactions of the Royal Society B: Biological Sciences, 376, 20200402.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Barros, C., Dias, M., & Kotz, S. A. (2017). Laughter catches attention! Biological Psychology, 130, 11–21.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Barros, C., & Pedrosa, J. (2016). Salience in a social landscape: Electrophysiological effects of task-irrelevant and infrequent vocal change. Social Cognitive and Affective Neuroscience, 11, 127–139.CrossRefGoogle Scholar
Pinheiro, A. P., Barros, C., Vasconcelos, M., Obermeier, C., & Kotz, S. A. (2017). Is laughter a better vocal change detector than a growl? Cortex, 92, 233–248.CrossRefGoogle Scholar
Pinheiro, A. P., del Re, E., Mezin, J., Nestor, P. G., Rauber, A., McCarley, R. W., … Niznikiewicz, M. A. (2013). Sensory-based and higher-order operations contribute to abnormal emotional prosody processing in schizophrenia: An electrophysiological investigation. Psychological Medicine, 43, 603–618.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Lima, D., Albuquerque, P. B., Anikin, A., & Lima, C. F. (2019). Spatial location and emotion modulate voice perception. Cognition and Emotion, 33, 1577–1586.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., & Niznikiewicz, M. (2019). Altered attentional processing of happy prosody in schizophrenia. Schizophrenia Research, 206, 217–224.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Rezaii, N., Rauber, A., Liu, T., Nestor, P. G., McCarley, R. W., … Niznikiewicz, M. A. (2014). Abnormalities in the processing of emotional prosody from single words in schizophrenia. Schizophrenia Research, 152, 235–241.CrossRefGoogle ScholarPubMed
Pisanski, K., Bryant, G. A., Cornec, C., Anikin, A., & Reby, D. (2022). Form follows function in human nonverbal vocalisations. Ethology Ecology & Evolution, 34, 303–321.CrossRefGoogle Scholar
Purhonen, M., Kilpeläinen-Lees, R., Valkonen-Korhonen, M., Karhu, J., & Lehtonen, J. (2004). Cerebral processing of mother’s voice compared to unfamiliar voice in 4-month-old infants. International Journal of Psychophysiology, 52, 257–266.CrossRefGoogle ScholarPubMed
Rauschecker, J. P. (1998). Cortical processing of complex sounds. Current Opinion in Neurobiology, 8, 516–521.CrossRefGoogle ScholarPubMed
Reissland, N., Francis, B., Buttanshaw, L., Austen, J. M., & Reid, V. (2016). Do fetuses move their lips to the sound that they hear? An observational feasibility study on auditory stimulation in the womb. Pilot and Feasibility Studies, 2, 14.CrossRefGoogle Scholar
Robb, M. P., & Saxman, J. H. (1985). Developmental trends in vocal fundamental frequency of young children. Journal of Speech, Language, and Hearing Research, 28, 421–427.CrossRefGoogle ScholarPubMed
Rojas, S., Kefalianos, E., & Vogel, A. (2020). How does our voice change as we age? A systematic review and meta-analysis of acoustic and perceptual voice data from healthy adults over 50 years of age. Journal of Speech, Language, and Hearing Research, 63, 533–551.CrossRefGoogle Scholar
Rosen, S., & Iverson, P. (2007). Constructing adequate non-speech analogues: What is special about speech anyway? Developmental Science, 10, 165–168.CrossRefGoogle ScholarPubMed
Ross, E. D., & Monnot, M. (2011). Affective prosody: What do comprehension errors tell us about hemispheric lateralization of emotions, sex and aging effects, and the role of cognitive appraisal. Neuropsychologia, 49, 866–877.CrossRefGoogle ScholarPubMed
Roux, P., Christophe, A., & Passerieux, C. (2010). The emotional paradox: Dissociation between explicit and implicit processing of emotional prosody in schizophrenia. Neuropsychologia, 48, 3642–3649.CrossRefGoogle ScholarPubMed
Ruffman, T., Halberstadt, J., & Murray, J. (2009). Recognition of facial, auditory, and bodily emotions in older adults. Journals of Gerontology – Series B Psychological Sciences and Social Sciences, 64, 696–703.Google ScholarPubMed
Ruffman, T., Henry, J. D., Livingstone, V., & Phillips, L. H. (2008). A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neuroscience and Biobehavioral Reviews, 32, 863–881.CrossRefGoogle ScholarPubMed
Ruffman, T., Sullivan, S., & Dittrich, W. (2009). Older adults’ recognition of bodily and auditory expressions of emotion. Psychology and Aging, 24, 614–622.CrossRefGoogle ScholarPubMed
Ryan, M., Murray, J., & Ruffman, T. (2010). Aging and the perception of emotion: Processing vocal expressions alone and with faces. Experimental Aging Research, 36, 1–22.Google ScholarPubMed
Sander, D., Grandjean, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). Emotion and attention interactions in social cognition: Brain regions involved in processing anger prosody. NeuroImage, 28, 848–858.CrossRefGoogle ScholarPubMed
Sauter, D. A., & Eimer, M. (2010). Rapid detection of emotion from human vocalizations. Journal of Cognitive Neuroscience, 22, 474–481.CrossRefGoogle ScholarPubMed
Sauter, D. A., Eisner, F., Ekman, P., & Scott, S. K. (2010). Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proceedings of the National Academy of Sciences of the United States of America, 107, 2408–2412.Google ScholarPubMed
Sauter, D. A., Panattoni, C., & Happé, F. (2013). Children’s recognition of emotions from vocal cues. British Journal of Developmental Psychology, 31, 97–113.CrossRefGoogle ScholarPubMed
Sauter, D. A., & Scott, S. K. (2007). More than one kind of happiness: Can we recognize vocal expressions of different positive states? Motivation and Emotion, 31, 192–199.CrossRefGoogle Scholar
Scheibe, S., & Blanchard-Fields, F. (2009). Effects of regulating emotions on cognitive performance: What is costly for young adults is not so costly for older adults. Psychology and Aging, 24, 217–223.CrossRefGoogle Scholar
Scheibe, S., & Carstensen, L. L. (2010). Emotional aging: Recent findings and future trends. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 65B, 135–144.Google ScholarPubMed
Scherer, K. R. (2003). Vocal communication of emotion: A review of research paradigms. Speech Communication, 40, 227–256.CrossRefGoogle Scholar
Scherer, K. R., Banse, R., & Wallbott, H. G. (2001). Emotion inferences from vocal expression correlate across languages and cultures. Journal of Cross-Cultural Psychology, 32, 76–92.CrossRefGoogle Scholar
Schirmer, A., & Adolphs, R. (2017). Emotion perception from face, voice, and touch: Comparisons and convergence. Trends in Cognitive Sciences, 21, 216–228.CrossRefGoogle ScholarPubMed
Schirmer, A., Escoffier, N., Zysset, S., Koester, D., Striano, T., & Friederici, A. D. (2008). When vocal processing gets emotional: On the role of social orientation in relevance detection by the human amygdala. NeuroImage, 40, 1402–1410.CrossRefGoogle ScholarPubMed
Schirmer, A., & Kotz, S. A. (2006). Beyond the right hemisphere: Brain mechanisms mediating vocal emotional processing. Trends in Cognitive Sciences, 10, 24–30.CrossRefGoogle ScholarPubMed
Schirmer, A., Striano, T., & Friederici, A. D. (2005). Sex differences in the preattentive processing of vocal emotional expressions. NeuroReport, 16, 635–639.CrossRefGoogle ScholarPubMed
Schirmer, A., Zysset, S., Kotz, S. A., & Von Cramon, D. Y. (2004). Gender differences in the activation of inferior frontal cortex during emotional speech perception. NeuroImage, 21, 1114–1123.CrossRefGoogle ScholarPubMed
Schröder, M. (2003). Experimental study of affect bursts. Speech Communication, 40, 99–116.CrossRefGoogle Scholar
Sen, A., Isaacowitz, D., & Schirmer, A. (2018). Age differences in vocal emotion perception: On the role of speaker age and listener sex. Cognition and Emotion, 32, 1189–1204.CrossRefGoogle ScholarPubMed
Shahidullah, S., & Hepper, P. G. (1994). Frequency discrimination by the fetus. Early Human Development, 36, 13–26.CrossRefGoogle ScholarPubMed
Shipp, T., Qi, Y., Huntley, R., & Hollien, H. (1992). Acoustic and temporal correlates of perceived age. Journal of Voice, 6, 211–216.CrossRefGoogle Scholar
Soken, N. H., & Pick, A. D. (1999). Infants’ perception of dynamic affective expressions: Do infants distinguish specific expressions? Child Development, 70, 1275–1282.CrossRefGoogle ScholarPubMed
Stathopoulos, E. T., Huber, J. E., & Sussman, J. E. (2011). Changes in acoustic characteristics of the voice across the life span: Measures from individuals 4–93 years of age. Journal of Speech, Language, and Hearing Research, 54, 1011–1021.CrossRefGoogle ScholarPubMed
Stern, D. (1985). The interpersonal world of the infant. Basic Books.Google Scholar
Sulpizio, S., Doi, H., Bornstein, M. H., Cui, J., Esposito, G., & Shinohara, K. (2018). fNIRS reveals enhanced brain activation to female (versus male) infant directed speech (relative to adult directed speech) in young human infants. Infant Behavior and Development, 52, 89–96.CrossRefGoogle Scholar
Sussman, J. E., & Sapienza, C. (1994). Articulatory, developmental, and gender effects on measures of fundamental frequency and jitter. Journal of Voice, 8, 145–156.CrossRefGoogle ScholarPubMed
Thompson, L. A., Aidinejad, M. R., & Ponte, J. (2001). Aging and the effects of facial and prosodic cues on emotional intensity ratings and memory reconstructions. Journal of Nonverbal Behavior, 25, 101–125.CrossRefGoogle Scholar
Tisserand, D. J., Pruessner, J. C., Sanz Arigita, E. J., van Boxtel, M. P. J., Evans, A. C., Jolles, J., & Uylings, H. B. M. (2002). Regional frontal cortical volumes decrease differentially in aging: An MRI study to compare volumetric approaches and voxel-based morphometry. NeuroImage, 17, 657–669.CrossRefGoogle ScholarPubMed
Titze, I. R. (1989). Physiologic and acoustic differences between male and female voices. The Journal of the Acoustical Society of America, 85, 1699–1707.CrossRefGoogle ScholarPubMed
Tonks, J., Williams, W. H., Frampton, I., Yates, P., & Slater, A. (2007). Assessing emotion recognition in 9–15-years olds: Preliminary analysis of abilities in reading emotion from faces, voices and eyes. Brain Injury, 21, 623–629.CrossRefGoogle ScholarPubMed
Trevor, C., Arnal, L. H., & Frühholz, S. (2020). Terrifying film music mimics alarming acoustic feature of human screams. The Journal of the Acoustical Society of America, 147, EL540–EL545.CrossRefGoogle ScholarPubMed
Vaillant-Molina, M., Bahrick, L. E., & Flom, R. (2013). Young infants match facial and vocal emotional expressions of other infants. Infancy, 18, E97–E111.CrossRefGoogle ScholarPubMed
Vasconcelos, M., Dias, M., Soares, A. P., & Pinheiro, A. P. (2017). What is the melody of that voice? Probing unbiased recognition accuracy with the montreal affective voices. Journal of Nonverbal Behavior, 41, 239–267.CrossRefGoogle Scholar
Vidas, D., Dingle, G. A., & Nelson, N. L. (2018). Children’s recognition of emotion in music and speech. Music & Science, 1, 1–10.CrossRefGoogle Scholar
Warlaumont, A. S., Richards, J. A., Gilkerson, J., & Oller, D. K. (2014). A social feedback loop for speech development and its reduction in autism. Psychological Science, 25, 1314–1324.CrossRefGoogle ScholarPubMed
Whiteside, S. P., & Hodgson, C. (2000). Some acoustic characteristics in the voices of 6- to 10-year-old children and adults: A comparative sex and developmental perspective. Logopedics Phoniatrics Vocology, 25, 122–132.CrossRefGoogle ScholarPubMed
Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., & Williams, L. M. (2007). Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology. Human Brain Mapping, 28, 228–237.CrossRefGoogle ScholarPubMed
Wieck, C., & Kunzmann, U. (2017). Age differences in emotion recognition: A question of modality? Psychology and Aging, 32, 401–411.CrossRefGoogle ScholarPubMed
Wildgruber, D., Ackermann, H., Kreifelts, B., & Ethofer, T. (2006). Cerebral processing of linguistic and emotional prosody: fMRI studies. Progress in Brain Research, 156, 249–268.CrossRefGoogle ScholarPubMed
Wu, Y., Muentener, P., & Schulz, L. E. (2017). One- to four-year-olds connect diverse positive emotional vocalizations to their probable causes. Proceedings of the National Academy of Sciences of the United States of America, 114, 11896–11901.Google ScholarPubMed
Xue, S. A., Cheng, R. W. C., & Ng, L. M. (2010). Vocal tract dimensional development of adolescents: An acoustic reflection study. International Journal of Pediatric Otorhinolaryngology, 74, 907–912.CrossRefGoogle ScholarPubMed
Yoo, S. H., Matsumoto, D., & LeRoux, J. A. (2006). The influence of emotion recognition and emotion regulation on intercultural adjustment. International Journal of Intercultural Relations, 30, 345–363.CrossRefGoogle Scholar
Zanto, T. P., & Gazzaley, A. (2014). Attention and ageing. In Nobre, A. C. & Kastner, S. (Eds.), The Oxford handbook of attention (pp. 927–971). Oxford University Press.Google Scholar
Zeskind, P. S., & Marshall, T. R. (1988). The relation between variations in pitch and maternal perceptions of infant crying. Child Development, 59, 193–196.CrossRefGoogle Scholar
Zhao, C., Chronaki, G., Schiessl, I., Wan, M. W., & Abel, K. M. (2019). Is infant neural sensitivity to vocal emotion associated with mother-infant relational experience? PLoS ONE, 14, e0212205.Google ScholarPubMed
Zhao, C., Schiessl, I., Wan, M. W., Chronaki, G., & Abel, K. M. (2021). Development of the neural processing of vocal emotion during the first year of life. Child Neuropsychology, 27, 333–350.CrossRefGoogle ScholarPubMed
Zieber, N., Kangas, A., Hock, A., & Bhatt, R. S. (2014). The development of intermodal emotion perception from bodies and voices. Journal of Experimental Child Psychology, 126, 68–79.CrossRefGoogle ScholarPubMed
Zinchenko, A., Kanske, P., Obermeier, C., Schröger, E., Villringer, A., & Kotz, S. A. (2018). Modulation of cognitive and emotional control in age-related mild-to-moderate hearing loss. Frontiers in Neurology, 9, 783.CrossRefGoogle ScholarPubMed
Zinchenko, A., Obermeier, C., Kanske, P., Schröger, E., Villringer, A., & Kotz, S. A. (2017). The influence of negative emotion on cognitive and emotional control remains intact in aging. Frontiers in Aging Neuroscience, 9, 349.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×