Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-sq2k7 Total loading time: 0 Render date: 2025-10-01T02:00:28.521Z Has data issue: false hasContentIssue false

Chapter 20 - How Emotional Expressions Motivate Action

from Section V - Cognition–Emotion Interactions

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

Social adaptation requires humans to respond to others’ nonverbal emotional cues by selecting and executing adaptive motor responses. In this chapter, we provide a general overview of how visual perception of others’ emotional expressions, particularly threatening faces and bodies, promotes rapid processing and elaboration of multiple opportunities for action, at different levels of complexity. Notably, we will highlight how subcortical and cortical neural pathways interact to flexibly orchestrate our social behavior in response to threatening expressions, ranging from simple stimulus-driven reactions to more elaborated goal-directed actions. We will review recent findings from research on humans and other animals and discuss clinical implications, as well as future challenges and perspectives.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adams, R. B., Albohn, D. N., & Kveraga, K. (2017). Social vision: Applying a social-functional approach to face and expression perception. Current Directions in Psychological Science, 26, 243–248.CrossRefGoogle ScholarPubMed
Adams, R. B., Jr., Franklin, R. G., Jr., Kveraga, K., Ambady, N., Kleck, R. E., Whalen, P. J., … Nelson, A. J. (2012). Amygdala responses to averted vs direct gaze fear vary as a function of presentation speed. Social Cognitive and Affective Neuroscience, 7, 568–577.CrossRefGoogle ScholarPubMed
Adams, R. B., Im, H. Y., Cushing, C., Boshyan, J., Ward, N., Albohn, D. N., & Kveraga, K. (2019). Differential magnocellular versus parvocellular pathway contributions to the combinatorial processing of facial threat. Progress in Brain Research, 247, 71–87.CrossRefGoogle Scholar
Amodio, D. M. (2019). Social cognition 2.0: An interactive memory systems account. Trends in Cognitive Sciences, 23, 21–33.CrossRefGoogle ScholarPubMed
Bach, D. R., & Dayan, P. (2017). Algorithms for survival: A comparative perspective on emotions. Nature Reviews Neuroscience, 18, 311–319.CrossRefGoogle ScholarPubMed
Barkus, E. (2021). The effects of anhedonia in social context. Current Behavioral Neuroscience Reports, 8, 77–89.CrossRefGoogle Scholar
Barkus, E., & Badcock, J. C. (2019). A transdiagnostic perspective on social anhedonia. Frontiers in Psychiatry, 10, 216.CrossRefGoogle ScholarPubMed
Bastos, A. F., Vieira, A. S., Oliveira, J. M., Oliveira, L., Pereira, M. G., Figueira, I., … Volchan, E. (2016). Stop or move: Defensive strategies in humans. Behavioural Brain Research, 302, 252–262.CrossRefGoogle ScholarPubMed
Beaurenaut, M., Mennella, R., Dezecache, G., & Grèzes, J. (2023). Prioritization of danger-related social signals during threat-induced anxiety. Emotion, 23, 2356–2369.CrossRefGoogle ScholarPubMed
Bertini, C., Pietrelli, M., Braghittoni, D., & Làdavas, E. (2018). Pulvinar lesions disrupt fear-related implicit visual processing in hemianopic patients. Frontiers in Psychology, 9, 2329.CrossRefGoogle ScholarPubMed
Bonini, L., Rotunno, C., Arcuri, E., & Gallese, V. (2022). Mirror neurons 30 years later: Implications and applications. Trends in Cognitive Sciences, 26, 767–781.CrossRefGoogle ScholarPubMed
Borgomaneri, S., Vitale, F., & Avenanti, A. (2015). Early changes in corticospinal excitability when seeing fearful body expressions. Scientific Reports, 5, 14122.CrossRefGoogle ScholarPubMed
Borgomaneri, S., Vitale, F., Battaglia, S., & Avenanti, A. (2021). Early right motor cortex response to happy and fearful facial expressions: A TMS motor-evoked potential study. Brain Sciences, 11, 1203.CrossRefGoogle ScholarPubMed
Borra, E., Gerbella, M., Rozzi, S., Tonelli, S., & Luppino, G. (2014). Projections to the superior colliculus from inferior parietal, ventral premotor, and ventrolateral prefrontal areas involved in controlling goal-directed hand actions in the macaque. Cerebral Cortex, 24, 1054–1065.CrossRefGoogle Scholar
Botta, A., Lagravinese, G., Bove, M., Pelosin, E., Bonassi, G., Avenanti, A., & Avanzino, L. (2022). Sensorimotor inhibition during emotional processing. Scientific Reports, 12, 503–518.CrossRefGoogle ScholarPubMed
Bramson, B., Folloni, D., Verhagen, L., Hartogsveld, B., Mars, R. B., Toni, I., & Roelofs, K. (2020). Human lateral frontal pole contributes to control over emotional approach–avoidance actions. Journal of Neuroscience, 40, 2925–2934.CrossRefGoogle ScholarPubMed
Bramson, B., Jensen, O., Toni, I., & Roelofs, K. (2018). Cortical oscillatory mechanisms supporting the control of human social–emotional actions. The Journal of Neuroscience, 38, 5739–5749.CrossRefGoogle ScholarPubMed
Buades-Rotger, M., Beyer, F., & Krämer, U. M. (2017). Avoidant responses to interpersonal provocation are associated with increased amygdala and decreased mentalizing network activity. eNeuro, 4, ENEURO.0337-16.2017.CrossRefGoogle ScholarPubMed
Buades-Rotger, M., Solbakk, A.-K., Liebrand, M., Endestad, T., Funderud, I., Siegwardt, P., … Krämer, U. M. (2021). Patients with ventromedial prefrontal lesions show an implicit approach bias to angry faces. Journal of Cognitive Neuroscience, 33, 1069–1081.CrossRefGoogle ScholarPubMed
Burra, N., Hervais-Adelman, A., Celeghin, A., de Gelder, B., & Pegna, A. J. (2019). Affective blindsight relies on low spatial frequencies. Neuropsychologia, 128, 44–49.CrossRefGoogle ScholarPubMed
Cain, C. K. (2019). Avoidance problems reconsidered. Current Opinion in Behavioral Sciences, 26, 9–17.CrossRefGoogle ScholarPubMed
Campagner, D., Vale, R., Tan, Y. L., Iordanidou, P., Pavón Arocas, O., Claudi, F., … Branco, T. (2022). A cortico-collicular circuit for orienting to shelter during escape. Nature, 613, 111–119.Google ScholarPubMed
Cauchoix, M., Arslan, A. B., Fize, D., & Serre, T. (2012). The neural dynamics of visual processing in monkey extrastriate cortex: A comparison between univariate and multivariate techniques. In Langs, G., Rish, I., Grosse-Wentrup, M., & Murphy, B. (Eds.), Machine learning and interpretation in neuroimaging (pp. 164–171). Springer.Google Scholar
Chareyron, L. J., Banta Lavenex, P., Amaral, D. G., & Lavenex, P. (2011). Stereological analysis of the rat and monkey amygdala. The Journal of Comparative Neurology, 519, 3218–3239.CrossRefGoogle ScholarPubMed
Chen, M., & Bargh, J. A. (1999). Consequences of automatic evaluation: Immediate behavioral predispositions to approach or avoid the stimulus. Personality and Social Psychology Bulletin, 25, 215–224.CrossRefGoogle Scholar
Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1585–1599.CrossRefGoogle ScholarPubMed
Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.CrossRefGoogle ScholarPubMed
Claudi, F., Campagner, D., & Branco, T. (2022). Innate heuristics and fast learning support escape route selection in mice. Current Biology, 32, 2980–2987.e5.CrossRefGoogle ScholarPubMed
Conty, L., Dezecache, G., Hugueville, L., & Grèzes, J. (2012). Early binding of gaze, gesture, and emotion: Neural time course and correlates. The Journal of Neuroscience, 32, 4531–4539.CrossRefGoogle Scholar
Craske, M. G., Sandman, C. F., & Stein, M. B. (2022). How can neurobiology of fear extinction inform treatment? Neuroscience & Biobehavioral Reviews, 143, 104923.CrossRefGoogle ScholarPubMed
de Borst, A. W., & de Gelder, B. (2022). Threat detection in nearby space mobilizes human ventral premotor cortex, intraparietal sulcus, and amygdala. Brain Sciences, 12, 391.CrossRefGoogle ScholarPubMed
de Gelder, B. (2023). Social affordances, mirror neurons, and how to understand the social brain. Trends in Cognitive Sciences, 27, 218–219.CrossRefGoogle ScholarPubMed
De Houwer, J., Thomas, S., & Baeyens, F. (2001). Associative learning of likes and dislikes: A review of 25 years of research on human evaluative conditioning. Psychological Bulletin, 127, 853–869.CrossRefGoogle ScholarPubMed
Delgado, M. R., Jou, R. L., LeDoux, J. E., & Phelps, L. (2009). Avoiding negative outcomes: Tracking the mechanisms of avoidance learning in humans during fear conditioning. Frontiers in Behavioral Neuroscience, 3, 33.CrossRefGoogle ScholarPubMed
Dezecache, G., Conty, L., & Grèzes, J. (2013). Social affordances: Is the mirror neuron system involved? Behavioral and Brain Sciences, 36, 417–418.CrossRefGoogle Scholar
Diano, M., Tamietto, M., Celeghin, A., Weiskrantz, L., Tatu, M.-K., Bagnis, A., … Costa, T. (2017). Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions. Scientific Reports, 7, 45260.CrossRefGoogle ScholarPubMed
Dima, D. C., Perry, G., Messaritaki, E., Zhang, J., & Singh, K. D. (2018). Spatiotemporal dynamics in human visual cortex rapidly encode the emotional content of faces. Human Brain Mapping, 39, 3993–4006.CrossRefGoogle Scholar
Dinh, H. T., Meng, Y., Matsumoto, J., Setogawa, T., Nishimaru, H., & Nishijo, H. (2022). Fast detection of snakes and emotional faces in the macaque amygdala. Frontiers in Behavioral Neuroscience, 16, 839123.CrossRefGoogle ScholarPubMed
Distler, C., & Hoffmann, K.-P. (2015). Direct projections from the dorsal premotor cortex to the superior colliculus in the macaque (Macaca mulatta). Journal of Comparative Neurology, 523, 2390–2408.Google Scholar
Dorfman, H. M., & Gershman, S. J. (2019). Controllability governs the balance between Pavlovian and instrumental action selection. Nature Communications, 10, 5826.CrossRefGoogle ScholarPubMed
Eder, A. B., & Hommel, B. (2013). Anticipatory control of approach and avoidance: An ideomotor approach. Emotion Review, 5, 275–279.CrossRefGoogle Scholar
El Zein, M., Mennella, R., Sequestro, M., Meaux, E., Wyart, V., & Grèzes, J. (2024). Prioritized neural processing of social threats during perceptual decision-making. iScience, 27, 109951.CrossRefGoogle ScholarPubMed
El Zein, M., Wyart, V., & Grèzes, J. (2015). Anxiety dissociates the adaptive functions of sensory and motor response enhancements to social threats. eLife, 4, e10274.CrossRefGoogle ScholarPubMed
Engelen, T., de Graaf, T. A., Sack, A. T., & de Gelder, B. (2015). A causal role for inferior parietal lobule in emotion body perception. Cortex, 73, 195–202.CrossRefGoogle ScholarPubMed
Engelen, T., Zhan, M., Sack, A. T., & de Gelder, B. (2018). Dynamic interactions between emotion perception and action preparation for reacting to social threat: A combined cTBS-fMRI study. eNeuro, 5, ENEURO.0408-17.2018.CrossRefGoogle ScholarPubMed
Evans, D. A., Stempel, A. V., Vale, R., & Branco, T. (2019). Cognitive control of escape behaviour. Trends in Cognitive Sciences, 23, 334–348.CrossRefGoogle ScholarPubMed
Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Bolles, R. C. & Beecher, M. D. (Eds.), Evolution and learning (pp. 185–212). Lawrence Erlbaum Associates.Google Scholar
Faul, L., Stjepanović, D., Stivers, J. M., Stewart, G. W., Graner, J. L., Morey, R. A., & LaBar, K. S. (2020). Proximal threats promote enhanced acquisition and persistence of reactive fear-learning circuits. Proceedings of the National Academy of Sciences of the United States of America, 117, 16678–16689.Google ScholarPubMed
Fernandez-Leon, J. A., Engelke, D. S., Aquino-Miranda, G., Goodson, A., Rasheed, M. N., & Do Monte, F. H. (2021). Neural correlates and determinants of approach–avoidance conflict in the prelimbic prefrontal cortex. eLife, 10, e74950.CrossRefGoogle ScholarPubMed
Ferrari, C., Fiori, F., Suchan, B., Plow, E. B., & Cattaneo, Z. (2021). TMS over the posterior cerebellum modulates motor cortical excitability in response to facial emotional expressions. European Journal of Neuroscience, 53, 1029–1039.CrossRefGoogle ScholarPubMed
Gangopadhyay, P., Chawla, M., Dal Monte, O., & Chang, S. W. C. (2021). Prefrontal–amygdala circuits in social decision-making. Nature Neuroscience, 24, 5–18.CrossRefGoogle ScholarPubMed
George, D. T., Ameli, R., & Koob, G. F. (2019). Periaqueductal gray sheds light on dark areas of psychopathology. Trends in Neurosciences, 42, 349–360.CrossRefGoogle ScholarPubMed
Ghashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34, 905–923.CrossRefGoogle ScholarPubMed
Gothard, K. M., Battaglia, F. P., Erickson, C. A., Spitler, K. M., & Amaral, D. G. (2007). Neural responses to facial expression and face identity in the monkey amygdala. Journal of Neurophysiology, 97, 1671–1683.CrossRefGoogle ScholarPubMed
Grèzes, J., Adenis, M.-S., Pouga, L., & Armony, J. L. (2013). Self-relevance modulates brain responses to angry body expressions. Cortex, 49, 2210–2220.CrossRefGoogle ScholarPubMed
Grèzes, J., & Dezecache, G. (2014). How do shared-representations and emotional processes cooperate in response to social threat signals? Neuropsychologia, 55, 105–114.CrossRefGoogle ScholarPubMed
Grèzes, J., Erblang, M., Vilarem, E., Quiquempoix, M., Van Beers, P., Guillard, M., … Rabat, A. (2021). Impact of total sleep deprivation and related mood changes on approach-avoidance decisions to threat-related facial displays. Sleep, 44, zsab186.CrossRefGoogle ScholarPubMed
Grèzes, J., Risch, N., Courtet, P., Olié, E., & Mennella, R. (2023). Depression and approach-avoidance decisions to emotional displays: The role of anhedonia. Behaviour Research and Therapy, 164, 104306.CrossRefGoogle ScholarPubMed
Grèzes, J., Valabrègue, R., Gholipour, B., & Chevallier, C. (2014). A direct amygdala-motor pathway for emotional displays to influence action: A diffusion tensor imaging study. Human Brain Mapping, 35, 5974–5983.CrossRefGoogle Scholar
Guex, R., Méndez-Bértolo, C., Moratti, S., Strange, B. A., Spinelli, L., Murray, R. J., … Domínguez-Borràs, J. (2020). Temporal dynamics of amygdala response to emotion- and action-relevance. Scientific Reports, 10, 11138.CrossRefGoogle ScholarPubMed
Han, H.-B., Shin, H.-S., Jeong, Y., Kim, J., & Choi, J. H. (2023). Dynamic switching of neural oscillations in the prefrontal–amygdala circuit for naturalistic freeze-or-flight. Proceedings of the National Academy of Sciences of the United States of America, 120, e2308762120.Google ScholarPubMed
Hashemi, M. M., Gladwin, T. E., de Valk, N. M., Zhang, W., Kaldewaij, R., van Ast, V., … Roelofs, K. (2019). Neural dynamics of shooting decisions and the switch from freeze to fight. Scientific Reports, 9, 4240.CrossRefGoogle ScholarPubMed
Hersman, S., Allen, D., Hashimoto, M., Brito, S. I., & Anthony, T. E. (2020). Stimulus salience determines defensive behaviors elicited by aversively conditioned serial compound auditory stimuli. eLife, 9, e53803.CrossRefGoogle ScholarPubMed
Holley, D., & Fox, A. S. (2022). The central extended amygdala guides survival-relevant tradeoffs: Implications for understanding common psychiatric disorders. Neuroscience & Biobehavioral Reviews, 142, 104879.CrossRefGoogle ScholarPubMed
Hortensius, R., de Gelder, B., & Schutter, D. J. L. G. (2016). When anger dominates the mind: Increased motor corticospinal excitability in the face of threat. Psychophysiology, 53, 1307–1316.CrossRefGoogle ScholarPubMed
Hulsman, A. M., Terburg, D., Roelofs, K., & Klumpers, F. (2021). Chapter 28 – Roles of the bed nucleus of the stria terminalis and amygdala in fear reactions. In Swaab, D. F., Kreier, F., Lucassen, P. J., Salehi, A., & Buijs, R. M. (Eds.), Handbook of clinical neurology, vol. 179 (pp. 419–432). Elsevier.Google Scholar
Inagaki, M., Inoue, K., Tanabe, S., Kimura, K., Takada, M., & Fujita, I. (2023). Rapid processing of threatening faces in the amygdala of nonhuman primates: Subcortical inputs and dual roles. Cerebral Cortex, 33, 895–915.CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167, 748–751.CrossRefGoogle Scholar
Isa, T., Marquez-Legorreta, E., Grillner, S., & Scott, E. K. (2021). The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Current Biology, 31, R741–R762.CrossRefGoogle Scholar
Kaldewaij, R., Koch, S. B. J., Volman, I., Toni, I., & Roelofs, K. (2016). On the control of social approach–avoidance behavior: Neural and endocrine mechanisms. In Wöhr, M. & Krach, S. (Eds.), Social behavior from rodents to humans, vol. 30 (pp. 275–293). Springer International Publishing.Google Scholar
Kaldewaij, R., Koch, S. B. J., Zhang, W., Hashemi, M. M., Klumpers, F., & Roelofs, K. (2019). Frontal control over automatic emotional action tendencies predicts acute stress responsivity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4, 975–983.Google ScholarPubMed
Keefer, S. E., Gyawali, U., & Calu, D. J. (2021). Choose your path: Divergent basolateral amygdala efferents differentially mediate incentive motivation, flexibility and decision-making. Behavioural Brain Research, 409, 113306.CrossRefGoogle ScholarPubMed
Kim, E. J., Kong, M.-S., Park, S. G., Mizumori, S. J. Y., Cho, J., & Kim, J. J. (2018). Dynamic coding of predatory information between the prelimbic cortex and lateral amygdala in foraging rats. Science Advances, 4, eaar7328.CrossRefGoogle ScholarPubMed
Klaassen, F. H., Held, L., Figner, B., O’Reilly, J. X., Klumpers, F., de Voogd, L. D., & Roelofs, K. (2021). Defensive freezing and its relation to approach–avoidance decision-making under threat. Scientific Reports, 11, 12030.CrossRefGoogle ScholarPubMed
Koller, K., Rafal, R. D., Platt, A., & Mitchell, N. D. (2019). Orienting toward threat: Contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia, 128, 78–86.CrossRefGoogle Scholar
Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., … Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109, 2404–2412.e5.CrossRefGoogle ScholarPubMed
Laham, S. M., Kashima, Y., Dix, J., & Wheeler, M. (2015). A meta-analysis of the facilitation of arm flexion and extension movements as a function of stimulus valence. Cognition and Emotion, 29, 1069–1090.CrossRefGoogle ScholarPubMed
Le, Q. V., Le, Q. V., Nishimaru, H., Matsumoto, J., Takamura, Y., Hori, E., … Nishijo, H. (2020). A prototypical template for rapid face detection is embedded in the monkey superior colliculus. Frontiers in Systems Neuroscience, 14, 5.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life (p. 384). Simon & Schuster.Google Scholar
LeDoux, J. E., & Daw, N. D. (2018). Surviving threats: Neural circuit and computational implications of a new taxonomy of defensive behaviour. Nature Reviews Neuroscience, 19, 269–282.CrossRefGoogle ScholarPubMed
Leng, L., Beckers, T., & Vervliet, B. (2022). No joy – why bother? Higher anhedonia relates to reduced pleasure from and motivation for threat avoidance. Behaviour Research and Therapy, 159, 104227.CrossRefGoogle ScholarPubMed
Levita, L., Hoskin, R., & Champi, S. (2012). Avoidance of harm and anxiety: A role for the nucleus accumbens. NeuroImage, 62, 189–198.CrossRefGoogle ScholarPubMed
Lichtenberg, N. T., Sepe-Forrest, L., Pennington, Z. T., Lamparelli, A. C., Greenfield, V. Y., & Wassum, K. M. (2021). The medial orbitofrontal cortex–basolateral amygdala circuit regulates the influence of reward cues on adaptive behavior and choice. Journal of Neuroscience, 41, 7267–7277.CrossRefGoogle ScholarPubMed
Ligneul, R., Mainen, Z. F., Ly, V., & Cools, R. (2022). Stress-sensitive inference of task controllability. Nature Human Behaviour, 6, 812–822.CrossRefGoogle ScholarPubMed
Lima Portugal, L. C., Alves, R. C. S., Junior, O. F., Sanchez, T. A., Mocaiber, I., Volchan, E., … Pereira, M. G. (2020). Interactions between emotion and action in the brain. NeuroImage, 214, 116728.CrossRefGoogle ScholarPubMed
Liu, M., Liu, C. H., Zheng, S., Zhao, K., & Fu, X. (2021). Reexamining the neural network involved in perception of facial expression: A meta-analysis. Neuroscience & Biobehavioral Reviews, 131, 179–191.CrossRefGoogle ScholarPubMed
Livermore, J., Klaassen, F., Bramson, B., Hulsman, A., Meijer, S., Held, L., … Roelofs, K. (2021). Approach-avoidance decisions under threat: The role of autonomic psychophysiological states. Frontiers in Neuroscience, 15, 621517.CrossRefGoogle ScholarPubMed
Lu, J., Kemmerer, S., Riecke, L., & Gelder, B. (2023). Early threat perception is independent of later cognitive and behavioral control. A virtual reality-EEG-ECG study. Cerebral Cortex, 33, 8748–8758.CrossRefGoogle ScholarPubMed
Marsh, A. A., Ambady, N., & Kleck, R. E. (2005). The effects of fear and anger facial expressions on approach- and avoidance-related behaviors. Emotion, 5, 119–124.CrossRefGoogle ScholarPubMed
McCall, C., Hildebrandt, L. K., Hartmann, R., Baczkowski, B. M., & Singer, T. (2016). Introducing the Wunderkammer as a tool for emotion research: Unconstrained gaze and movement patterns in three emotionally evocative virtual worlds. Computers in Human Behavior, 59, 93–107.CrossRefGoogle Scholar
McFadyen, J., Dolan, R. J., & Garrido, M. I. (2020). The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nature Reviews. Neuroscience, 21, 264–276.CrossRefGoogle ScholarPubMed
McFadyen, J., Mattingley, J. B., & Garrido, M. I. (2019). An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife, 8, e40766.CrossRefGoogle Scholar
Méndez, C. A., Celeghin, A., Diano, M., Orsenigo, D., Ocak, B., & Tamietto, M. (2022). A deep neural network model of the primate superior colliculus for emotion recognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 377, 20210512.CrossRefGoogle ScholarPubMed
Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martínez-Alvarez, R., Mah, Y. H., … Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature Neuroscience, 19, 1041–1049.CrossRefGoogle ScholarPubMed
Mendl, M., & Paul, E. S. (2020). Animal affect and decision-making. Neuroscience & Biobehavioral Reviews, 112, 144–163.CrossRefGoogle ScholarPubMed
Mennella, R., Bavard, S., Mentec, I., & Grèzes, J. (2022). Spontaneous instrumental avoidance learning in social contexts. Scientific Reports, 12, 33.CrossRefGoogle ScholarPubMed
Mennella, R., Vilarem, E., & Grèzes, J. (2020). Rapid approach-avoidance responses to emotional displays reflect value-based decisions: Neural evidence from an EEG study. NeuroImage, 222, 117253.CrossRefGoogle ScholarPubMed
Mobbs, D., Headley, D. B., Ding, W., & Dayan, P. (2020). Space, time, and fear: Survival computations along defensive circuits. Trends in Cognitive Sciences, 24, 228–241.CrossRefGoogle ScholarPubMed
Mobbs, D., Marchant, J. L., Hassabis, D., Seymour, B., Tan, G., Gray, M., … Frith, C. D. (2009). From threat to fear: The neural organization of defensive fear systems in humans. Journal of Neuroscience, 29, 12236–12243.CrossRefGoogle ScholarPubMed
Moors, A., Boddez, Y., & De Houwer, J. (2017). The power of goal-directed processes in the causation of emotional and other actions. Emotion Review, 9, 310–318.CrossRefGoogle Scholar
Moors, A., Fini, C., Everaert, T., Bardi, L., Bossuyt, E., Kuppens, P., & Brass, M. (2019). The role of stimulus-driven versus goal-directed processes in fight and flight tendencies measured with motor evoked potentials induced by transcranial magnetic stimulation. PLoS ONE, 14, e0217266.CrossRefGoogle ScholarPubMed
Morris, J. S., Öhman, A., & Dolan, R. J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences of the United States of America, 96, 1680–1685.Google Scholar
Moscarello, J. M., & Hartley, C. A. (2017). Agency and the calibration of motivated behavior. Trends in Cognitive Sciences, 21, 725–735.CrossRefGoogle ScholarPubMed
Murray, E. A., & Fellows, L. K. (2022). Prefrontal cortex interactions with the amygdala in primates. Neuropsychopharmacology, 47, 163–179.CrossRefGoogle ScholarPubMed
Nguyen, M. N., Nishimaru, H., Matsumoto, J., Van Le, Q., Hori, E., Maior, R. S., … Nishijo, H. (2016). Population coding of facial information in the monkey superior colliculus and pulvinar. Frontiers in Neuroscience, 10, 583.CrossRefGoogle ScholarPubMed
Noordewier, M. K., Scheepers, D. T., & Hilbert, L. P. (2020). Freezing in response to social threat: A replication. Psychological Research, 84, 1890–1896.CrossRefGoogle ScholarPubMed
Orban, G. A., Lanzilotto, M., & Bonini, L. (2021). From observed action identity to social affordances. Trends in Cognitive Sciences, 25, 493–505.CrossRefGoogle ScholarPubMed
Orban, G. A., Sepe, A., & Bonini, L. (2021). Parietal maps of visual signals for bodily action planning. Brain Structure and Function, 226, 2967–2988.CrossRefGoogle ScholarPubMed
Paulus, A., & Wentura, D. (2016). It depends: Approach and avoidance reactions to emotional expressions are influenced by the contrast emotions presented in the task. Journal of Experimental Psychology: Human Perception and Performance, 42, 197–212.Google ScholarPubMed
Pessiglione, M., Vinckier, F., Bouret, S., Daunizeau, J., & Le Bouc, R. (2018). Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain, 141, 629–650.CrossRefGoogle Scholar
Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neuroscience, 11, 773–783.CrossRefGoogle Scholar
Pichon, S., de Gelder, B., & Grèzes, J. (2012). Threat prompts defensive brain responses independently of attentional control. Cerebral Cortex, 22, 274–285.CrossRefGoogle ScholarPubMed
Pierce, J. E., & Péron, J. (2020). The basal ganglia and the cerebellum in human emotion. Social Cognitive and Affective Neuroscience, 15, 599–613.CrossRefGoogle ScholarPubMed
Pittig, A., Boschet, J. M., Glück, V. M., & Schneider, K. (2021). Elevated costly avoidance in anxiety disorders: Patients show little downregulation of acquired avoidance in face of competing rewards for approach. Depression and Anxiety, 38, 361–371.CrossRefGoogle ScholarPubMed
Pittig, A., & Scherbaum, S. (2020). Costly avoidance in anxious individuals: Elevated threat avoidance in anxious individuals under high, but not low competing rewards. Journal of Behavior Therapy and Experimental Psychiatry, 66, 101524.CrossRefGoogle Scholar
Pizzagalli, D. A., & Roberts, A. C. (2022). Prefrontal cortex and depression. Neuropsychopharmacology, 47, 225–246.Google ScholarPubMed
Qi, S., Hassabis, D., Sun, J., Guo, F., Daw, N., & Mobbs, D. (2018). How cognitive and reactive fear circuits optimize escape decisions in humans. Proceedings of the National Academy of Sciences of the United States of America, 115, 3186–3191.Google ScholarPubMed
Reichardt, R. (2018). Farsighted and automatic: Affective stimuli facilitate ultimately compatible approach–avoidance tendencies even in the absence of evaluation goals. Motivation and Emotion, 42, 738–747.CrossRefGoogle Scholar
Reis, F. M. C. V., Mobbs, D., Canteras, N. S., & Adhikari, A. (2023). Orchestration of innate and conditioned defensive actions by the periaqueductal gray. Neuropharmacology, 228, 109458.CrossRefGoogle ScholarPubMed
Rizzo, G., Milardi, D., Bertino, S., Basile, G. A., Di Mauro, D., Calamuneri, A., … Cacciola, A. (2018). The limbic and sensorimotor pathways of the human amygdala: A structural connectivity study. Neuroscience, 385, 166–180.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiological Reviews, 94, 655–706.CrossRefGoogle ScholarPubMed
Roberts, A. C., & Clarke, H. F. (2019). Why we need nonhuman primates to study the role of ventromedial prefrontal cortex in the regulation of threat- and reward-elicited responses. Proceedings of the National Academy of Sciences of the United States of America, 116, 26297–26304.Google Scholar
Roberts, I. D., & Hutcherson, C. A. (2019). Affect and decision making: Insights and predictions from computational models. Trends in Cognitive Sciences, 23, 602–614.CrossRefGoogle ScholarPubMed
Roelofs, K., & Dayan, P. (2022). Freezing revisited: Coordinated autonomic and central optimization of threat coping. Nature Reviews Neuroscience, 23, 568–580.CrossRefGoogle ScholarPubMed
Roelofs, K., Hagenaars, M. A., & Stins, J. (2010). Facing freeze: Social threat induces bodily freeze in humans. Psychological Science, 21, 1575–1581.CrossRefGoogle ScholarPubMed
Rolls, E. T., Deco, G., Huang, C.-C., & Feng, J. (2023). Prefrontal and somatosensory-motor cortex effective connectivity in humans. Cerebral Cortex, 33, 4939–4963.CrossRefGoogle ScholarPubMed
Rosén, J., Kastrati, G., Reppling, A., Bergkvist, K., & Åhs, F. (2019). The effect of immersive virtual reality on proximal and conditioned threat. Scientific Reports, 9, 17407.CrossRefGoogle ScholarPubMed
Rosenberg, B. M., Taschereau-Dumouchel, V., Lau, H., Young, K. S., Nusslock, R., Zinbarg, R. E., & Craske, M. G. (2023). A multivoxel pattern analysis of anhedonia during fear extinction: Implications for safety learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8, 417–425.Google ScholarPubMed
Sander, D., Grandjean, D., Kaiser, S., Wehrle, T., & Scherer, K. R. (2007). Interaction effects of perceived gaze direction and dynamic facial expression: Evidence for appraisal theories of emotion. European Journal of Cognitive Psychology, 19, 470–480.CrossRefGoogle Scholar
Sandman, C. F., & Craske, M. G. (2022). Psychological treatments for anhedonia. Current Topics in Behavioral Neurosciences, 58, 491–513.CrossRefGoogle ScholarPubMed
Schutter, D. J. L. G., Hofman, D., & Van Honk, J. (2008). Fearful faces selectively increase corticospinal motor tract excitability: A transcranial magnetic stimulation study. Psychophysiology, 45, 345–348.CrossRefGoogle ScholarPubMed
Seibt, B., Neumann, R., Nussinson, R., & Strack, F. (2008). Movement direction or change in distance? Self- and object-related approach–avoidance motions. Journal of Experimental Social Psychology, 44, 713–720.CrossRefGoogle Scholar
Seqfuestro, M., Serfaty, J., Grèzes, J., & Mennella, R. (2024). Social threat avoidance depends on action-outcome predictability. Communications Psychology, 2, 100.Google Scholar
Shine, J. M. (2022). Adaptively navigating affordance landscapes: How interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour. Neuroscience & Biobehavioral Reviews, 143, 104921.CrossRefGoogle ScholarPubMed
Soares, S. C., Maior, R. S., Isbell, L. A., Tomaz, C., & Nishijo, H. (2017). Fast detector/first responder: Interactions between the superior colliculus-pulvinar pathway and stimuli relevant to primates. Frontiers in Neuroscience, 11, 67.CrossRefGoogle ScholarPubMed
Sporrer, J. K., Brookes, J., Hall, S., Zabbah, S., Serratos Hernandez, U. D., & Bach, D. R. (2023). Functional sophistication in human escape. iScience, 26, 108240.CrossRefGoogle Scholar
Stins, J. F., Roelofs, K., Villan, J., Kooijman, K., Hagenaars, M. A., & Beek, P. J. (2011). Walk to me when I smile, step back when I’m angry: Emotional faces modulate whole-body approach–avoidance behaviors. Experimental Brain Research, 212, 603–611.CrossRefGoogle ScholarPubMed
Tamietto, M., & de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11, 697–709.CrossRefGoogle ScholarPubMed
Taylor, C. T., Hoffman, S. N., & Khan, A. J. (2022). Anhedonia in anxiety disorders. In Pizzagalli, D. A. (Ed.), Anhedonia: Preclinical, translational, and clinical integration (pp. 201–218). Springer International Publishing.Google Scholar
Terburg, D., Scheggia, D., Triana del Rio, R., Klumpers, F., Ciobanu, A. C., Morgan, B., … van Honk, J. (2018). The basolateral amygdala is essential for rapid escape: A human and rodent study. Cell, 175, 723–735.e16.CrossRefGoogle ScholarPubMed
Tovote, P., Esposito, M. S., Botta, P., Chaudun, F., Fadok, J. P., Markovic, M., … Lüthi, A. (2016). Midbrain circuits for defensive behaviour. Nature, 534, 206–212.CrossRefGoogle ScholarPubMed
Vale, R., Evans, D. A., & Branco, T. (2017). Rapid spatial learning controls instinctive defensive behavior in mice. Current Biology, 27, 1342–1349.CrossRefGoogle ScholarPubMed
Vetter, P., Badde, S., Phelps, E. A., & Carrasco, M. (2019). Emotional faces guide the eyes in the absence of awareness. eLife, 8, e43467.CrossRefGoogle ScholarPubMed
Vilarem, E., Armony, J. L., & Grèzes, J. (2020). Action opportunities modulate attention allocation under social threat. Emotion, 20, 890–903.CrossRefGoogle ScholarPubMed
Vinckier, F., Gourion, D., & Mouchabac, S. (2017). Anhedonia predicts poor psychosocial functioning: Results from a large cohort of patients treated for major depressive disorder by general practitioners. European Psychiatry, 44, 1–8.CrossRefGoogle ScholarPubMed
Wallis, J. D., & Rushworth, M. F. S. (2014). Chapter 22 – Integrating benefits and costs in decision making. In Glimcher, P. W. & Fehr, E. (Eds.), Neuroeconomics, 2nd ed. (pp. 411–433). Academic Press.Google Scholar
Wang, S., Leri, F., & Rizvi, S. J. (2021). Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 110, 110289.CrossRefGoogle ScholarPubMed
Wang, X., Zhen, Z., Song, Y., Huang, L., Kong, X., & Liu, J. (2016). The hierarchical structure of the face network revealed by its functional connectivity pattern. The Journal of Neuroscience, 36, 890–900.CrossRefGoogle ScholarPubMed
Wang, Y., Luo, L., Chen, G., Luan, G., Wang, X., Wang, Q., & Fang, F. (2023). Rapid processing of invisible fearful faces in the human amygdala. Journal of Neuroscience, 43, 1405–1413.CrossRefGoogle ScholarPubMed
Wassum, K. M. (2022). Amygdala-cortical collaboration in reward learning and decision making. eLife, 11, e80926.CrossRefGoogle ScholarPubMed
Wendt, J., Löw, A., Weymar, M., Lotze, M., & Hamm, A. O. (2017). Active avoidance and attentive freezing in the face of approaching threat. NeuroImage, 158, 196–204.CrossRefGoogle ScholarPubMed
Young, K. S., Bookheimer, S. Y., Nusslock, R., Zinbarg, R. E., Damme, K. S. F., Chat, I. K.-Y., … Craske, M. G. (2021). Dysregulation of threat neurocircuitry during fear extinction: The role of anhedonia. Neuropsychopharmacology, 46, 1650–1657.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×