Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-2bdfx Total loading time: 0 Render date: 2025-09-28T12:44:29.744Z Has data issue: false hasContentIssue false

Chapter 21 - From Perception to Action

Understanding the Evolution of Survival Decisions in Humans and Other Species

from Section V - Cognition–Emotion Interactions

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

A common feature of all existing organisms is their ability to adapt, survive, and even thrive in the face of danger. Evolution has endowed organisms with a myriad of defensive mechanisms, from bodily phenotypes and sensory apparatus to learning mechanisms. Humans are no different, and a wide variety of defensive mechanisms has allowed us to adapt to changing landscapes and threats. Yet, we are unique in our capacity to predict the future, to learn from others through many streams of communication vicariously, and to experience emotions consciously. In this chapter, we briefly go through the evolutionary history of defensive behaviors and how they are guided by a canonical set of ecological conditions, by the characteristics of the threat, and by the organisms’ repertoire of cognitive and sensory abilities. We explore the converging mechanisms across species and highlight the uniqueness of humans, including the rich internal representations of the dangers that allow us to experience a large array of emotions.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Adhikari, A., Topiwala, M. A., & Gordon, J. A. (2010). Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron, 65, 257–269.CrossRefGoogle ScholarPubMed
Alhadeff, A. L. (2021). The power of hunger. Science, 374, 547–548.CrossRefGoogle ScholarPubMed
Al-Mosleh, S., Choi, G. P. T., Abzhanov, A., & Mahadevan, L. (2021). Geometry and dynamics link the form, function, and evolution of finch beaks. Proceedings of the National Academy of Sciences of the United States of America, 118, e2105957118.Google ScholarPubMed
Avery, S. N., Clauss, J. A., & Blackford, J. U. (2016). The human BNST: Functional role in anxiety and addiction. Neuropsychopharmacology, 41, 126–141.CrossRefGoogle ScholarPubMed
Bach, D. R., Guitart-Masip, M., Packard, P. A., Miró, J., Falip, M., Fuentemilla, L., & Dolan, R. J. (2014). Human hippocampus arbitrates approach-avoidance conflict. Current Biology, 24, 541–547.CrossRefGoogle ScholarPubMed
Barbee, B., & Pinter-Wollman, N. (2022). Nutritional needs and mortality risk combine to shape foraging decisions in ants. Current Zoology, 69, 747–755.Google ScholarPubMed
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12, 1–23.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2017). How emotions are made: The secret life of the brain. Pan Macmillan.Google Scholar
Barrett, L. F., Wilson-Mendenhall, C. D., & Barsalou, L.W. (2015). The conceptual act theory: A road map. In Barrett, L. F. & Russell, J. A. (Eds.), The psychological construction of emotion (pp. 83–110). Guilford.Google Scholar
Barsbai, T., Lukas, D., & Pondorfer, A. (2021). Local convergence of behavior across species. Science, 371(6526), 292–295.CrossRefGoogle ScholarPubMed
Beauchamp, G. (2015). Animal vigilance: Monitoring predators and competitors. Elsevier.CrossRefGoogle Scholar
Blanchard, R. J., & Blanchard, D. C. (1989). Antipredator defensive behaviors in a visible burrow system. Journal of Comparative Psychology, 103, 70–82.CrossRefGoogle Scholar
Canteras, N. S., & Swanson, L. W. (1992). The dorsal premammillary nucleus: An unusual component of the mammillary body. Proceedings of the National Academy of Sciences of the United States of America, 89, 10089–10093.Google ScholarPubMed
Casas, J., Steinmann, T., & Dangles, O. (2008). The aerodynamic signature of running spiders. PLoS ONE, 3, e2116.CrossRefGoogle ScholarPubMed
Cisek, P. (2021). Evolution of behavioural control from chordates to primates. Philosophical Transactions of the Royal Society B, 377, 20200522.Google ScholarPubMed
Critchley, H. D., & Garfinkel, S. N. (2017). Interoception and emotion. Current Opinion in Psychology, 17, 7–14.CrossRefGoogle ScholarPubMed
Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray.CrossRefGoogle Scholar
Darwin, E. (1794). Zoonomia, vol. 1. Nova Science Publishers.Google Scholar
Dawkins, R., & Krebs, J. R. (1979). Arms races between and within species. Proceedings of the Royal Society of London. Series B, Biological Sciences, 205, 489–511.Google ScholarPubMed
Dejean, C., Courtin, J., Karalis, N., Chaudun, F., Wurtz, H., Bienvenu, T. C. M., & Herry, C. (2016). Prefrontal neuronal assemblies temporally control fear behaviour. Nature, 535, 420–424.CrossRefGoogle ScholarPubMed
Dill, L. M., & Fraser, A. H. (1984). Risk of predation and the feeding behavior of juvenile coho salmon (Oncorhynchus kisutch). Behavioral Ecology and Sociobiology, 16, 65–71.CrossRefGoogle Scholar
Dillon, D. G., & LaBar, K. S. (2005). Startle modulation during conscious emotion regulation is arousal-dependent. Behavioral Neuroscience, 119, 1118–1124.CrossRefGoogle ScholarPubMed
Duvarci, S., & Pare, D. (2014). Amygdala microcircuits controlling learned fear. Neuron, 82, 966–980.CrossRefGoogle ScholarPubMed
Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Beecher, R. C. B. M. D. (Ed.), Evolution and learning (pp. 185–211). Erlbaum.Google Scholar
Fanselow, M. S., & Pennington, Z. T. (2018). A return to the psychiatric dark ages with a two-system framework for fear. Behaviour Research and Therapy, 100, 24–29.CrossRefGoogle Scholar
Faull, O. K., & Pattinson, K. T. (2017). The cortical connectivity of the periaqueductal gray and the conditioned response to the threat of breathlessness. eLife, 6, e21749.CrossRefGoogle Scholar
Fung, B., Qi, S., Hassabis, D., Daw, N., & Mobbs, D. (2019). Slow escape decisions are swayed by trait anxiety. Nature Human Behavior, 3, 702–708.Google ScholarPubMed
Garcia-Pelegrin, E., Wilkins, C., & Clayton, N. S. (2021). The ape that lived to tell the tale. The evolution of the art of storytelling and its relationship to mental time travel and theory of mind. Frontiers in Psychology, 12, 755783.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J., & Critchley, H. D. (2014). Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeats. The Journal of Neuroscience, 34, 6573–6582.CrossRefGoogle ScholarPubMed
Gromer, D., Kiser, D. P., & Pauli, P. (2021). Thigmotaxis in a virtual human open field test. Scientific Reports, 11, 6670.CrossRefGoogle Scholar
Halladay, L. R., & Blair, H. T. (2015). Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement. Journal of Neurophysiology, 114, 793–807.CrossRefGoogle ScholarPubMed
Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences of the United States of America, 104, 1726–1731.Google ScholarPubMed
Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517, 284–292.CrossRefGoogle ScholarPubMed
Jimenez, J. C., Su, K., Goldberg, A. R., Luna, V. M., Biane, J. S., Ordek, G., … Kheirbek, M. A. (2018). Anxiety cells in a hippocampal-hypothalamic circuit. Neuron, 97, 670–683.e6.CrossRefGoogle Scholar
Kunwar, P. S., Zelikowsky, M., Remedios, R., Cai, H., Yilmaz, M., Meister, M., & Anderson, D. J. (2015). Ventromedial hypothalamic neurons control a defensive emotion state. eLife, 4, e06633.CrossRefGoogle ScholarPubMed
Lagos, P. A., Meier, A., Tolhuysen, L. O., Castro, R. A., Bozinovic, F., & Ebensperger, L. A. (2009). Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Canadian Journal of Zoology, 87, 1016–1023.CrossRefGoogle Scholar
LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life (p. 384). Simon & Schuster.Google Scholar
LeDoux, J. E. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2022). As soon as there was life, there was danger: The deep history of survival behaviours and the shallower history of consciousness. Philosophical Transactions of the Royal Society London B. Biological Sciences, 377, 20210292.CrossRefGoogle Scholar
LeDoux, J. E., Iwata, J., Cicchetti, P., & Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. Journal of Neuroscience, 8, 2517–2529.CrossRefGoogle ScholarPubMed
LeDoux, J. E., & Pine, D. S. (2016). Using neuroscience to help understand fear and anxiety: A two-system framework. The American Journal of Psychiatry, 173, 1083–1093.CrossRefGoogle ScholarPubMed
Liao, W. B., Jiang, Y., Li, D. Y., Jin, L., Zhong, M. J., Qi, Y., … Kotrschal, A. (2022). Cognition contra camouflage: How the brain mediates predator-driven crypsis evolution. Science Advances, 8, eabq1878.CrossRefGoogle ScholarPubMed
Lima, S. L., & Dill, L. M. (1990). Behavioural decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology, 68, 619–640.CrossRefGoogle Scholar
Lovett-Barron, M., Chen, R., Bradbury, S., Andalman, A. S., Wagle, M., Guo, S., & Deisseroth, K. (2020). Multiple convergent hypothalamus–brainstem circuits drive defensive behavior. Nature Neuroscience, 23, 959–967.CrossRefGoogle ScholarPubMed
MacIver, M. A., & Finlay, B. L. (2022). The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philosophical Transactions of the Royal Society B, 377, 20200523.CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman and Company.Google Scholar
Miller, W. B. (2016). Cognition, information fields and hologenomic entanglement: Evolution in light and shadow. Biology, 5, 21.CrossRefGoogle ScholarPubMed
Milinski, M. (1984). A predator’s costs of overcoming the confusion-effect of swarming prey. Animal Behaviour, 32, 1157–1162.CrossRefGoogle Scholar
Mobbs, D. (2018). The ethological deconstruction of fear(s). Current Opinion in Behavioral Sciences, 24, 32–37.CrossRefGoogle ScholarPubMed
Mobbs, D., Adolphs, R., Fanselow, M. S., Barrett, L. F., LeDoux, J. E., Ressler, K., & Tye, K. M. (2019). Viewpoints: Approaches to defining and investigating fear. Nature Neuroscience, 22, 1205–1216.CrossRefGoogle ScholarPubMed
Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B., & Prevost, C. (2015). The ecology of human fear: Survival optimization and the nervous system. Frontiers in Neuroscience, 9, 55.CrossRefGoogle ScholarPubMed
Mobbs, D., Headley, D., Ding, W., & Dayan, P. (2020). Space, time, and fear: Survival computations along defensive circuits. Trends in Cognitive Science, 24, 228–241.CrossRefGoogle ScholarPubMed
Mobbs, D., & Kim, J. J. (2015). Neuroethological studies of fear and risky decision-making in rat and humans. Current Opinion in Behavioral Sciences, 5, 8–15.CrossRefGoogle Scholar
Mobbs, D., & LeDoux, J. L. (2018). Editorial overview: Survival behaviors and circuits. Current Opinion in Behavioral Sciences, 24, 168–171.CrossRefGoogle Scholar
Mobbs, D., Marchant, J., Hassabis, D., Seymour, B., Gray, M., Tan, G., … Frith, C. D. (2009). From threat to fear: The neural organization of defensive fear systems in humans. Journal of Neuroscience, 39, 12236–12243.Google Scholar
Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N., Seymour, B., … Frith, C. D. (2007). When fear is near: Threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science, 317, 1079–1083.CrossRefGoogle ScholarPubMed
Mobbs, D., Trimmer, P., Blumstein, D. T., & Dayan, P. (2018). Foraging for foundations in decision neuroscience: Insights from ethology. Nature Reviews Neuroscience, 19, 419–427.CrossRefGoogle ScholarPubMed
Mobbs, D., Wise, T., Suthana, N., Guzman, N., Kriegeskorte, N., & Leibo, J. (2021). The promises and challenges of human computational ethology. Neuron, 109, 2224–2238.CrossRefGoogle ScholarPubMed
Mobbs, D., Yu, R., Rowe, J., Eich, H., Feldmanhall, O., & Dalgleish, T. (2010). Neural activity associated with monitoring the oscillating threat value of a tarantula. Proceedings of the National Academy of Sciences of the United States of America, 107, 20582–20586.Google ScholarPubMed
Namburi, P., Beyeler, A., Yorozu, S., Calhoon, G. G., Halbert, S. A., Wichmann, R., … Tye, K. M. (2015). A circuit mechanism for differentiating positive and negative associations. Nature, 520, 675–678.CrossRefGoogle ScholarPubMed
Nashold, B. S., Wilson, W. P., & Slaughter, D. G. (1969). Sensations evoked by stimulation in the midbrain of man. Journal of Neurosurgery, 30, 14–24.CrossRefGoogle ScholarPubMed
O’Neill, P.-K., Gore, F., & Salzman, C. D. (2018). Basolateral amygdala circuitry in positive and negative valence. Current Opinion in Neurobiology, 49, 175–183.CrossRefGoogle ScholarPubMed
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.CrossRefGoogle Scholar
Pierson, L. M., & Trout, M. (2017). What is consciousness for? New Ideas in Psychology, 47, 62–71.CrossRefGoogle Scholar
Qi, S., Hassabis, D., Sun, J., Guo, F., Daw, N., & Mobbs, D. (2018). How cognitive and reactive fear circuits optimize escape decisions in humans. Proceedings of the National Academy of Sciences of the United States of America, 115, 3186–3191.Google ScholarPubMed
Rempel-Clower, N. L., & Barbas, H. (1998). Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. The Journal of Comparative Neurology, 398, 393–419.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Sengupta, A., Yau, J. O. Y., Jean-Richard-Dit-Bressel, P., Liu, Y., Millan, E. Z., Power, J. M., & McNally, G. P. (2018). Basolateral amygdala neurons maintain aversive emotional salience. Journal of Neuroscience, 38, 3001–3012.CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1906). The integrative action of the nervous system. Yale University Press.Google Scholar
Sih, A. (1980). Optimal behavior: Can foragers balance two conflicting demands? Science, 210, 1041–1043.CrossRefGoogle ScholarPubMed
Smith, D., Schlaepfer, P., Major, K., Dyble, M., Page, A. E., Thompson, J., Migliano, A. B. (2017). Cooperation and the evolution of hunter-gatherer storytelling. Nature Communications, 8, 1853.CrossRefGoogle ScholarPubMed
Silston, B., Wise, T., Qi, S., Sui, X., Dayan, P., & Mobbs, D. (2021). Neural encoding of socially adjusted value during competitive and hazardous foraging. Nature Communications, 12, 5478.CrossRefGoogle Scholar
Stankowich, T., & Blumstein, D. T. (2005). Fear in animals: A meta-analysis and review of risk assessment. Proceedings. Biological Sciences, 272, 2627–2634.Google ScholarPubMed
Sternson, S. M. (2013). Hypothalamic survival circuits: Blueprints for purposive behaviors. Neuron, 77, 810–824.CrossRefGoogle ScholarPubMed
Tashjian, S. M., Zbozinek, T. D., & Mobbs, D. (2021). A decision architecture for safety computations. Trends in Cognitive Sciences, 25, 342–354.CrossRefGoogle ScholarPubMed
Terburg, D., Scheggia, D., Triana del Rio, R., Klumpers, F., Ciobanu, A. C., Morgan, B., … van Honk, J. (2018). The basolateral amygdala is essential for rapid escape: A human and rodent study. Cell, 175, 723–735.e16.CrossRefGoogle ScholarPubMed
Treit, D., & Fundytus, M. (1988). Thigmotaxis as a test for anxiolytic activity in rats. Pharmacology, Biochemistry, and Behavior, 31, 959–962.CrossRefGoogle ScholarPubMed
Verma, D., Wood, J., Lach, G., Herzog, H., Sperk, G., & Tasan, R. (2016). Hunger promotes fear extinction by activation of an amygdala microcircuit. Neuropsychopharmacology, 41, 431–439.CrossRefGoogle ScholarPubMed
Walker, D. L., Miles, L. A., & Davis, M. (2009). Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33, 1291–1308.CrossRefGoogle ScholarPubMed
Wang, W., Schuette, P. J., Nagai, J., Tobias, B. C., Cuccovia, V., Reis, F. M., … Adhikari, A. (2021). Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats. Neuron, 109, 1848–1860.e8.CrossRefGoogle ScholarPubMed
Willems, E. P., & van Schaik, C. P. (2017). The social organization of Homo ergaster: Inferences from anti-predator responses in extant primates. Journal of Human Evolution, 109, 11–21.CrossRefGoogle ScholarPubMed
Xu, C., Krabbe, S., Gründemann, J., Botta, P., Fadok, J. P., Osakada, F., … Lüthi, A. (2016). Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell, 167, 961–972.e16.CrossRefGoogle ScholarPubMed
Ydenberg, R. C., & Dill, L. M. (1986). The economics of fleeing from predators. Advances in the Study of Behavior, 16, 229–249.CrossRefGoogle Scholar
Yu, K., Garcia da Silva, P., Albeanu, D. F., & Li, B. (2016). Central amygdala somatostatin neurons gate passive and active defensive behaviors. The Journal of Neuroscience, 36, 6488–6496.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×