Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-09-28T02:37:46.996Z Has data issue: false hasContentIssue false

Section IV - Emotional Learning and Memory

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Agren, T. (2014). Human reconsolidation: A reactivation and update. Brain Research Bulletin, 105, 70–82.CrossRefGoogle ScholarPubMed
Åhs, F., Frans, O., Tibblin, B., Kumlien, E., & Fredrikson, M. (2010). The effects of medial temporal lobe resections on verbal threat and fear conditioning. Biological Psychology, 83, 41–46.Google ScholarPubMed
Åhs, F., Kragel, P. A., Zielinski, D. J., Brady, R., & LaBar, K. S. (2015). Medial prefrontal pathways for the contextual regulation of extinguished fear in humans. NeuroImage, 122, 262–271.CrossRefGoogle ScholarPubMed
Alvarez, R. P., Biggs, A., Chen, G., Pine, D. S., & Grillon, C. (2008). Contextual fear conditioning in humans: Cortical-hippocampal and amygdala contributions. Journal of Neuroscience, 28, 6211–6219.CrossRefGoogle ScholarPubMed
Armony, J. L., & Dolan, R. J. (2001). Modulation of auditory neural responses by a visual context in human fear conditioning. Neuroreport, 12, 3407–3411.CrossRefGoogle ScholarPubMed
Baeuchl, C., Meyer, P., Hoppstadter, M., Diener, C., & Flor, H. (2015). Contextual fear conditioning in humans using feature-identical contexts. Neurobiology of Learning and Memory, 121, 1–11.CrossRefGoogle ScholarPubMed
Battaglia, S., Garofalo, S., di Pellegrino, G., & Starita, F. (2020). Revaluing the role of vmPFC in the acquisition of Pavlovian threat conditioning in humans. Journal of Neuroscience, 40, 8491–8500.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 1115–1118.CrossRefGoogle Scholar
Biggs, E. E., Timmers, I., Meulders, A., Vlaeyen, J. W. S., Goebel, R., & Kaas, A. L. (2020). The neural correlates of pain-related fear: A meta-analysis comparing fear conditioning studies using painful and non-painful stimuli. Neuroscience & Biobehavioral Reviews, 119, 52–65.CrossRefGoogle Scholar
Bocchio, M., Nabavi, S., & Capogna, M. (2017). Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron, 94, 731–743.CrossRefGoogle ScholarPubMed
Boll, S., Gamer, M., Gluth, S., Finsterbusch, J., & Buchel, C. (2013). Separate amygdala subregions signal surprise and predictiveness during associative fear learning in humans. European Journal of Neuroscience, 37, 758–767.CrossRefGoogle ScholarPubMed
Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin, 114, 80–99.CrossRefGoogle ScholarPubMed
Braem, S., De Houwer, J., Demanet, J., Yuen, K. S. L., Kalisch, R., & Brass, M. (2017). Pattern analyses reveal separate experience-based fear memories in the human right amygdala. Journal of Neuroscience, 37, 8116–8130.CrossRefGoogle ScholarPubMed
Buchel, C., Morris, J., Dolan, R. J., & Friston, K. J. (1998). Brain systems mediating aversive conditioning: An event-related fMRI study. Neuron, 20, 947–957.CrossRefGoogle ScholarPubMed
Chen, S., Tan, Z., Xia, W., Gomes, C. A., Zhang, X., Zhou, W., … Wang, L. (2021). Theta oscillations synchronize human medial prefrontal cortex and amygdala during fear learning. Science Advances, 7, eabf4198.CrossRefGoogle ScholarPubMed
Cheng, D. T., Knight, D. C., Smith, C. N., Stein, E. A., & Helmstetter, F. J. (2003). Functional MRI of human amygdala activity during Pavlovian fear conditioning: Stimulus processing versus response expression. Behavioral Neuroscience, 117, 3–10.CrossRefGoogle ScholarPubMed
Coelho, C. A. O., Dunsmoor, J. E., & Phelps, E. A. (2015). Compound stimulus extinction reduces spontaneous recovery in humans. Learning & Memory, 22, 589–593.CrossRefGoogle ScholarPubMed
Coppens, E., van Paesschen, W., Vandenbulcke, M., & Vansteenwegen, D. (2010). Fear conditioning following a unilateral anterior temporal lobectomy: Reduced autonomic responding and stimulus contingency knowledge. Acta Neurologica Belgica, 110, 36–48.Google ScholarPubMed
Craske, M. G., Hermans, D., & Vervliet, B. (2018). State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philosophical Transactions of the Royal Society B. Biological Sciences, 373, 20170025.Google ScholarPubMed
Delgado, M. R., Li, J., Schiller, D., & Phelps, E. A. (2008). The role of the striatum in aversive learning and aversive prediction errors. Philosophical Transactions of the Royal Society B. Biological Sciences, 363, 3787–3800.CrossRefGoogle ScholarPubMed
de Voogd, L. D., Murray, Y. P. J., Barte, R. M., van der Heide, A., Fernandez, G., Doeller, C. F., & Hermans, E. J. (2020). The role of hippocampal spatial representations in contextualization and generalization of fear. NeuroImage, 206, 116308.CrossRefGoogle ScholarPubMed
Di Giandomenico, S., Masi, R., Cassandrini, D., El-Hachem, M., De Vito, R., Bruno, C., & Santorelli, F. M. (2006). Lipoid proteinosis: Case report and review of the literature. Acta Otorhinolaryngologica Italica, 26, 162–167.Google ScholarPubMed
Dowd, E. W., Mitroff, S. R., & LaBar, K. S. (2016). Fear generalization gradients in visuospatial attention. Emotion, 16, 1011–1018.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E, Åhs, F., Zielinski, D. J., & LaBar, K. S. (2014). Extinction under multiple virtual reality contexts diminishes fear reinstatement in humans. Neurobiology of Learning and Memory, 113, 157–164.CrossRefGoogle Scholar
Dunsmoor, J., & Schmajuk, N. (2009). Interpreting patterns of brain activation in human fear conditioning with an attentional-associative learning model. Behavioral Neuroscience, 123, 851–855.CrossRefGoogle Scholar
Dunsmoor, J. E., Kragel, P. A., Martin, A., & LaBar, K. S. (2014). Aversive learning modulates cortical representations of object categories. Cerebral Cortex, 24, 2859–2872.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Martin, A., & LaBar, K. S. (2012). Role of conceptual knowledge in learning and retention of conditioned fear. Biological Psychology, 89, 300–305.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Mitroff, S. R., & LaBar, K. S. (2009). Generalization of conditioned fear along a dimension of increasing fear intensity. Learning & Memory, 16, 460–469.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Murty, V. P., Davachi, L., & Phelps, E. A. (2015). Emotional learning selectively and retroactively strengthens memories for related events. Nature, 520, 345–348.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Niv, Y., Daw, N., & Phelps, E. A. (2015). Rethinking extinction. Neuron, 88, 47–63.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Prince, S. E., Murty, V. P., Kragel, P. A., & LaBar, K. S. (2011). Neurobehavioral mechanisms of human fear generalization. NeuroImage, 55, 1878–1888.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., White, A. J., & LaBar, K. S. (2011). Conceptual similarity promotes generalization of higher order fear learning. Learning & Memory, 18, 156–160.CrossRefGoogle ScholarPubMed
Fanselow, M. S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychonomic Bulletin and Review, 1, 429–438.CrossRefGoogle ScholarPubMed
Faul, L., Stjepanovic, D., Stivers, J. M., Stewart, G. W., Graner, J. L., Morey, R. A., & LaBar, K. S. (2020). Proximal threats promote enhanced acquisition and persistence of reactive fear-learning circuits. Proceedings of the National Academy of Sciences of the United States of America, 117, 16678–16689.Google ScholarPubMed
Fullana, M. A., Harrison, B. J., Soriano-Mas, C., Vervliet, B., Cardoner, N., Avila-Parcet, A., & Radua, J. (2016). Neural signatures of human fear conditioning: An updated and extended meta-analysis of fMRI studies. Molecular Psychiatry, 21, 500–508.CrossRefGoogle ScholarPubMed
Ghirlanda, S., & Enquist, M. (1999). The geometry of stimulus control. Animal Behaviour, 58, 695–706.CrossRefGoogle ScholarPubMed
Graner, J. L., Stjepanovic, D., & LaBar, K. S. (2020). Extinction learning alters the neural representation of conditioned fear. Cognitive, Affective, & Behavioral Neuroscience, 20, 983–997.CrossRefGoogle ScholarPubMed
Grewe, B. F., Grundemann, J., Kitch, L. J., Lecoq, J. A., Parker, J. G., Marshall, J. D., … Schnitzer, M. J. (2017). Neural ensemble dynamics underlying a long-term associative memory. Nature, 543, 670–675.CrossRefGoogle ScholarPubMed
Haaker, J., Golkar, A., Hermans, D., & Lonsdorf, T. B. (2014). A review on human reinstatement studies: An overview and methodological challenges. Learning & Memory, 21, 424–440.CrossRefGoogle ScholarPubMed
Harrison, B. J., Fullana, M. A., Via, E., Soriano-Mas, C., Vervliet, B., Martinez-Zalacain, I., … Cardoner, N. (2017). Human ventromedial prefrontal cortex and the positive affective processing of safety signals. NeuroImage, 152, 12–18.CrossRefGoogle ScholarPubMed
Hennings, A. C., Cooper, S. E., Lewis-Peacock, J. A., & Dunsmoor, J. E. (2022). Pattern analysis of neuroimaging data reveals novel insights on threat learning and extinction in humans. Neuroscience & Biobehavioral Reviews, 142, 104918.CrossRefGoogle ScholarPubMed
Hermans, D., Baeyens, F., & Vervliet, B. (2013). Generalization of acquired emotional responses. In Robinson, M. D., Watkins, E., & Harmon-Jones, E. (Eds.), Handbook of cognition and emotion (pp. 117–134). Guilford Press.Google Scholar
Hermans, D., Dirikx, T., Vansteenwegenin, D., Baeyens, F., Van den Bergh, O., & Eelen, P. (2005). Reinstatement of fear responses in human aversive conditioning. Behaviour Research and Therapy, 43, 533–551.CrossRefGoogle ScholarPubMed
Herry, C., & Johansen, J. P. (2014). Encoding of fear learning and memory in distributed neuronal circuits. Nature Neuroscience, 17, 1644–1654.CrossRefGoogle ScholarPubMed
Huff, N. C., Zielinski, D. J., Fecteau, M. E., Brady, R., & LaBar, K. S. (2010). Human fear conditioning conducted in full immersion 3-dimensional virtual reality. Journal of Visualized Experiments, 9, 1993.Google Scholar
Klumpers, F., Morgan, B., Terburg, D., Stein, D. J., & van Honk, J. (2015). Impaired acquisition of classically conditioned fear-potentiated startle reflexes in humans with focal bilateral basolateral amygdala damage. Social Cognitive and Affective Neuroscience, 10, 1161–1168.CrossRefGoogle ScholarPubMed
Kolada, E., Bielski, K., Wilk, M., Rymarczyk, K., Bogorodzki, P., Kazulo, P., … Szatkowska, I. (2023). The human centromedial amygdala contributes to negative prediction error signaling during appetitive and aversive Pavlovian gustatory learning. Journal of Neuroscience, 43, 3176–3185.CrossRefGoogle ScholarPubMed
LaBar, K. S. (2023). Neuroimaging of fear extinction. Current Topics in Behavioral Neurosciences, 64, 79–101.CrossRefGoogle ScholarPubMed
LaBar, K. S., Gitelman, D. R., Mesulam, M. M., & Parrish, T. B. (2001). Impact of signal-to-noise on functional MRI of the human amygdala. Neuroreport, 12, 3461–3464.CrossRefGoogle ScholarPubMed
LaBar, K. S., & LeDoux, J. E. (1996). Partial disruption of fear conditioning in rats with unilateral amygdala damage: Correspondence with unilateral temporal lobectomy in humans. Behavioral Neuroscience, 110, 991–997.CrossRefGoogle ScholarPubMed
LaBar, K. S., LeDoux, J. E., Spencer, D. D., & Phelps, E. A. (1995). Impaired fear conditioning following unilateral temporal lobectomy in humans. The Journal of Neuroscience, 15, 6846–6855.CrossRefGoogle ScholarPubMed
LaBar, K. S., & Phelps, E. A. (2005). Reinstatement of conditioned fear in humans is context dependent and impaired in amnesia. Behavioral Neuroscience, 119, 677–686.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2014). Coming to terms with fear. Proceedings of the National Academy of Sciences of the United States of America, 111, 2871–2878.Google ScholarPubMed
Lei, Y., Mei, Y., Dai, Y., & Peng, W. (2020). Taxonomic relations evoke more fear than thematic relations after fear conditioning: An EEG study. Neurobiology of Learning and Memory, 167, 107099.CrossRefGoogle ScholarPubMed
Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw, N. D. (2011a). Differential roles of human striatum and amygdala in associative learning. Nature Neuroscience, 14, 1250–1252.CrossRefGoogle Scholar
Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw, N. D. (2011b). Differential roles of human striatum and amygdala in associative learning. Nature Neuroscience, 14, 1250–1252.CrossRefGoogle Scholar
Lindstrom, B., Haaker, J., & Olsson, A. (2018). A common neural network differentially mediates direct and social fear learning. Neuroimage, 167, 121–129.CrossRefGoogle ScholarPubMed
Lissek, S., Biggs, A. L., Rabin, S. J., Cornwell, B. R., Alvarez, R. P., Pine, D. S., & Grillon, C. (2008). Generalization of conditioned fear-potentiated startle in humans: Experimental validation and clinical relevance. Behaviour Research and Therapy, 46, 678–687.CrossRefGoogle ScholarPubMed
Lissek, S., Bradford, D. E., Alvarez, R. P., Burton, P., Espensen-Sturges, T., Reynolds, R. C., & Grillon, C. (2014). Neural substrates of classically conditioned fear-generalization in humans: A parametric fMRI study. Social Cognitive and Affective Neuroscience, 9, 1134–1142.CrossRefGoogle ScholarPubMed
Manning, E. E., Bradfield, L. A., & Iordanova, M. D. (2021). Adaptive behaviour under conflict: Deconstructing extinction, reversal, and active avoidance learning. Neuroscience & Biobehavioral Reviews, 120, 526–536.CrossRefGoogle ScholarPubMed
Maren, S., Phan, K. L., & Liberzon, I. (2013). The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience, 14, 417–428.CrossRefGoogle ScholarPubMed
Marschner, A., Kalisch, R., Vervliet, B., Vansteenwegen, D., & Buchel, C. (2008). Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. Journal of Neuroscience, 28, 9030–9036.CrossRefGoogle Scholar
Morgan, M. A., Romanski, L. M., & LeDoux, J. E. (1993). Extinction of emotional learning: Contribution of medial prefrontal cortex. Neuroscience Letters, 163, 109–113.CrossRefGoogle ScholarPubMed
Morrison, D. J., Rashid, A. J., Yiu, A. P., Yan, C., Frankland, P. W., & Josselyn, S. A. (2016). Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiology of Learning and Memory, 135, 91–99.CrossRefGoogle ScholarPubMed
Nader, K., Majidishad, P., Amorapanth, P., & LeDoux, J. E. (2001). Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learning & Memory, 8, 156–163.CrossRefGoogle Scholar
Pavlov, I. (1927). Conditioned reflexes. Oxford University Press.Google Scholar
Pearce, J. M., & Bouton, M. E. (2001). Theories of associative learning in animals. Annual Review of Psychology, 52, 111–139.CrossRefGoogle ScholarPubMed
Peters, J., & Buchel, C. (2010). Neural representations of subjective reward value. Behavioural Brain Research, 213, 135–141.CrossRefGoogle ScholarPubMed
Phelps, E. A., LaBar, K. S., Anderson, A. K., O’Connor, K. J., Fulbright, R. K., & Spencer, D. D. (1998). Specifying the contributions of the human amygdala to emotional memory: A case study. Neurocase, 4, 527–540.CrossRefGoogle Scholar
Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 106, 274–285.CrossRefGoogle ScholarPubMed
Pirazzini, G., Starita, F., Ricci, G., Garofalo, S., di Pellegrino, G., Magosso, E., & Ursino, M. (2023). Changes in brain rhythms and connectivity tracking fear acquisition and reversal. Brain Structure and Function, 228, 1259–1281.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A., Greischar, L. L., & Davidson, R. J. (2003). Spatio-temporal dynamics of brain mechanisms in aversive classical conditioning: High-density event-related potential and brain electrical tomography analyses. Neuropsychologia, 41, 184–194.CrossRefGoogle ScholarPubMed
Rudy, J. J. W., & O’Reilly, R. R. C. (2001). Conjunctive representations, the hippocampus, and contextual fear conditioning. Cognitive, Affective & Behavioral Neuroscience, 1, 66–82.CrossRefGoogle ScholarPubMed
Schiele, M. A., Reinhard, J., Reif, A., Domschke, K., Romanos, M., Deckert, J., & Pauli, P. (2016). Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults. Development Psychobiology, 58, 471–481.CrossRefGoogle ScholarPubMed
Schmajuk, N. A., Larrauri, J. A., & Labar, K. S. (2007). Reinstatement of conditioned fear and the hippocampus: An attentional-associative model. Behavioural Brain Research, 177, 242–253.CrossRefGoogle ScholarPubMed
Sehlmeyer, C., Schoning, S., Zwitserlood, P., Pfleiderer, B., Kircher, T., Arolt, V., & Konrad, C. (2009). Human fear conditioning and extinction in neuroimaging: A systematic review. PLoS ONE, 4, e5865.CrossRefGoogle ScholarPubMed
Sevenster, D., Visser, R. M., & D’Hooge, R. (2018). A translational perspective on neural circuits of fear extinction: Current promises and challenges. Neurobiology of Learning and Memory, 155, 113–126.CrossRefGoogle Scholar
Soares, J. J., & Ohman, A. (1993). Backward masking and skin conductance responses after conditioning to nonfeared but fear-relevant stimuli in fearful subjects. Psychophysiology, 30, 460–466.CrossRefGoogle ScholarPubMed
Spencer, D. D., & Spencer, S. S. (1985). Surgery for epilepsy. Neurologic Clinics, 3, 313–330.CrossRefGoogle ScholarPubMed
Starita, F., Pirazzini, G., Ricci, G., Garofalo, S., Dalbagno, D., Degni, L. A. E., … Ursino, M. (2023). Theta and alpha power track the acquisition and reversal of threat predictions and correlate with skin conductance response. Psychophysiology, 60, e14247.CrossRefGoogle ScholarPubMed
Stegmann, Y., Andreatta, M., & Wieser, M. J. (2023). The effect of inherently threatening contexts on visuocortical engagement to conditioned threat. Psychophysiology, 60, e14208.CrossRefGoogle ScholarPubMed
Stout, D. M., Glenn, D. E., Acheson, D. T., Simmons, A. N., & Risbrough, V. B. (2019). Characterizing the neural circuitry associated with configural threat learning. Brain Research, 1719, 225–234.CrossRefGoogle ScholarPubMed
Stout, D. M., Glenn, D. E., Acheson, D. T., Spadoni, A. D., Risbrough, V. B., & Simmons, A. N. (2018). Neural measures associated with configural threat acquisition. Neurobiology of Learn and Memory, 150, 99–106.CrossRefGoogle ScholarPubMed
Tindell, A. J., Smith, K. S., Berridge, K. C., & Aldridge, J. W. (2009). Dynamic computation of incentive salience: “wanting” what was never “liked.” Journal of Neuroscience, 29, 12220–12228.CrossRefGoogle ScholarPubMed
Visser, R. M., Bathelt, J., Scholte, H. S., & Kindt, M. (2021). Robust BOLD responses to faces but not to conditioned threat: Challenging the amygdala’s reputation in human fear and extinction learning. Journal of Neuroscience, 41, 10278–10292.CrossRefGoogle ScholarPubMed
Visser, R. M., Scholte, H. S., Beemsterboer, T., & Kindt, M. (2013). Neural pattern similarity predicts long-term fear memory. Nature Neuroscience, 16, 388–390.CrossRefGoogle ScholarPubMed
Webler, R. D., Berg, H., Fhong, K., Tuominen, L., Holt, D. J., Morey, R. A., … Lissek, S. (2021). The neurobiology of human fear generalization: Meta-analysis and working neural model. Neuroscience & Biobehavioral Reviews, 128, 421–436.CrossRefGoogle ScholarPubMed
Weike, A. I., Hamm, A. O., Schupp, H. T., Runge, U., Schroeder, H. W., & Kessler, C. (2005). Fear conditioning following unilateral temporal lobectomy: Dissociation of conditioned startle potentiation and autonomic learning. Journal of Neuroscience, 25, 11117–11124.CrossRefGoogle ScholarPubMed
Yin, S., Bo, K., Liu, Y., Thigpen, N., Keil, A., & Ding, M. (2020). Fear conditioning prompts sparser representations of conditioned threat in primary visual cortex. Social Cognitive and Affective Neuroscience, 15, 950–964.CrossRefGoogle ScholarPubMed
Zabik, N. L., Peters, C., Iadipaolo, A., Marusak, H. A., & Rabinak, C. A. (2023). Comparison of behavioral and brain indices of fear renewal during a standard vs. novel immersive reality Pavlovian fear extinction paradigm in healthy adults. Behavioral Brain Research, 437, 114154.CrossRefGoogle ScholarPubMed

References

Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693–716.CrossRefGoogle ScholarPubMed
Allen, K.-A., Gray, D. L., Baumeister, R. F., & Leary, M. R. (2022). The need to belong: A deep dive into the origins, implications, and future of a foundational construct. Educational Psychology Review, 34, 1133–1156.CrossRefGoogle ScholarPubMed
Amodio, D. M. (2019). Social cognition 2.0: An interactive memory systems account. Trends in Cognitive Sciences, 23, 21–33.CrossRefGoogle ScholarPubMed
Andrews, J. L., Ahmed, S. P., & Blakemore, S. J. (2021). Navigating the social environment in adolescence: The role of social brain development. Biological Psychiatry, 89, 109–118.CrossRefGoogle ScholarPubMed
Andrews, J. L., Foulkes, L. E., Bone, J. K., & Blakemore, S. J. (2020). Amplified concern for social risk in adolescence: Development and validation of a new measure. Brain Sciences, 10, 397.CrossRefGoogle ScholarPubMed
Aquino, T. G., Minxha, J., Dunne, S., Ross, I. B., Mamelak, A. N., Rutishauser, U., & O’Doherty, J. P. (2020). Value-related neuronal responses in the human amygdala during observational learning. The Journal of Neuroscience, 40, 4761–4772.CrossRefGoogle ScholarPubMed
Arabadzhiyska, D. H., Garrod, O. G. B., Fouragnan, E., De Luca, E., Schyns, P. G., & Philiastides, M. G. (2022). A common neural account for social and nonsocial decisions. Journal of Neuroscience, 42, 9030–9044.CrossRefGoogle ScholarPubMed
Archie, E. A., Tung, J., Clark, M., Altmann, J., & Alberts, S. C. (2014). Social affiliation matters: Both same-sex and opposite-sex relationships predict survival in wild female baboons. Proceedings of the Royal Society B: Biological Sciences, 281, 20141261.Google ScholarPubMed
Báez-Mendoza, R., & Schultz, W. (2013). The role of the striatum in social behavior. Frontiers in Neuroscience, 7, 233.CrossRefGoogle ScholarPubMed
Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117, 497.CrossRefGoogle ScholarPubMed
Biele, G., Rieskamp, J., Krugel, L. K., & Heekeren, H. R. (2011). The neural basis of following advice. PLoS Biology, 9, e1001089.CrossRefGoogle ScholarPubMed
Blakemore, S. J., & Robbins, T. W. (2012). Decision-making in the adolescent brain. Nature Neuroscience, 15, 1184–1191.CrossRefGoogle ScholarPubMed
Boorman, E. D., O’Doherty, J. P., Adolphs, R., & Rangel, A. (2013). The behavioral and neural mechanisms underlying the tracking of expertise. Neuron, 80, 1558–1571.CrossRefGoogle ScholarPubMed
Brudner, E. G., Fareri, D. S., Shehata, S. G., & Delgado, M. R. (2023). Social feedback promotes positive social sharing, trust, and closeness. Emotion, 23, 1536–1548.CrossRefGoogle ScholarPubMed
Burke, C. J., Tobler, P. N., Baddeley, M., & Schultz, W. (2010). Neural mechanisms of observational learning. Proceedings of the National Academy of Sciences of the United States of America, 107, 14431–14436.Google ScholarPubMed
Burke, C. J., Tobler, P. N., Schultz, W., & Baddeley, M. (2010). Striatal BOLD response reflects the impact of Herd information on financial decisions. Frontiers in Human Neuroscience, 4, 48.Google ScholarPubMed
Cacioppo, J. T., & Cacioppo, S. (2018). The growing problem of loneliness. The Lancet, 391, 426.CrossRefGoogle ScholarPubMed
Cao, R., Lin, C., Hodge, J., Li, X., Todorov, A., Brandmeir, N. J., & Wang, S. (2022). A neuronal social trait space for first impressions in the human amygdala and hippocampus. Molecular Psychiatry, 27, 3501–3509.CrossRefGoogle ScholarPubMed
Carcea, I., & Froemke, R. C. (2019). Biological mechanisms for observational learning. Current Opinion in Neurobiology, 54, 178–185.CrossRefGoogle ScholarPubMed
Cascio, C. N., Carp, J., O’Donnell, M. B., Tinney, F. J., Jr., Bingham, C. R., Shope, J. T., … Falk, E. B. (2015). Buffering social influence: Neural correlates of response inhibition predict driving safety in the presence of a peer. Journal of Cognitive Neuroscience, 27, 83–95.CrossRefGoogle ScholarPubMed
Casey, B. J. (2015). Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annual Review of Psychology, 66, 295–319.CrossRefGoogle ScholarPubMed
Chang, L. J., Doll, B. B., van’t Wout, M., Frank, M. J., & Sanfey, A. G. (2010). Seeing is believing: Trustworthiness as a dynamic belief. Cognitive Psychology, 61, 87–105.CrossRefGoogle ScholarPubMed
Charpentier, C. J., & O’Doherty, J. P. (2018). The application of computational models to social neuroscience: Promises and pitfalls. Social Neuroscience, 13, 637–647.CrossRefGoogle ScholarPubMed
Charpentier, C. J., Iigaya, K., & O’Doherty, J. P. (2020). A neuro-computational account of arbitration between choice imitation and goal emulation during human observational learning. Neuron, 106, 687–699.e7.CrossRefGoogle ScholarPubMed
Chein, J., Albert, D., O’Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Developmental Science, 14, F1–F10.CrossRefGoogle ScholarPubMed
Cho, H. J., & Hackel, L. M. (2022). Instrumental learning of social affiliation through outcome and intention. Journal of Experimental Psychology General, 151, 2204–2221.CrossRefGoogle ScholarPubMed
Chung, D., Christopoulos, G. I., King-Casas, B., Ball, S. B., & Chiu, P. H. (2015). Social signals of safety and risk confer utility and have asymmetric effects on observers’ choices. Nature Neuroscience, 18, 912–916.CrossRefGoogle ScholarPubMed
Cialdini, R. B., & Goldstein, N. J. (2004). Social influence: Compliance and conformity. Annual Review of Psychology, 55, 591–621.CrossRefGoogle ScholarPubMed
Ciaramelli, E., De Luca, F., Kwan, D., Mok, J., Bianconi, F., Knyagnytska, V., … Rosenbaum, R. S. (2021). The role of ventromedial prefrontal cortex in reward valuation and future thinking during intertemporal choice. eLife, 10, e67387.CrossRefGoogle ScholarPubMed
Cooper, J. C., Dunne, S., Furey, T., & O’Doherty, J. P. (2012). Human dorsal striatum encodes prediction errors during observational learning of instrumental actions. Journal of Cognitive Neuroscience, 24, 106–118.CrossRefGoogle ScholarPubMed
Cox, J., & Witten, I. B. (2019). Striatal circuits for reward learning and decision-making. Nature Reviews Neuroscience, 20, 482–494.CrossRefGoogle ScholarPubMed
Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69, 1204–1215.CrossRefGoogle ScholarPubMed
De Felice, S., Hamilton, A. F. C., Ponari, M., & Vigliocco, G. (2022). Learning from others is good, with others is better: The role of social interaction in human acquisition of new knowledge. Philosophical Transactions of the Royal Society B: Biological Sciences, 378, 20210357.Google Scholar
Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88.CrossRefGoogle ScholarPubMed
Delgado, M. R., Fareri, D. S., & Chang, L. J. (2023). Characterizing the mechanisms of social connection. Neuron, 111, 3911–3925.CrossRefGoogle ScholarPubMed
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8, 1611–1618.CrossRefGoogle ScholarPubMed
Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D., & Daw, N. D. (2015). Model-based choices involve prospective neural activity. Nature Neuroscience, 18, 767–772.CrossRefGoogle ScholarPubMed
Dunne, S., D’Souza, A., & O’Doherty, J. P. (2016). The involvement of model-based but not model-free learning signals during observational reward learning in the absence of choice. Journal of Neurophysiology, 115, 3195–3203.CrossRefGoogle Scholar
Echterhoff, G., Higgins, E., & Levine, J. (2009). Shared reality: Experiencing commonality with others’ inner states about the world. Perspectives on Psychological Science, 4, 496–521.CrossRefGoogle ScholarPubMed
Engelmann, J. B., Moore, S., Monica Capra, C., & Berns, G. S. (2012). Differential neurobiological effects of expert advice on risky choice in adolescents and adults. Social Cognitive and Affective Neuroscience, 7, 557–567.CrossRefGoogle ScholarPubMed
Fareri, D. S., Chang, L. J., & Delgado, M. R. (2012). Effects of direct social experience on trust decisions and neural reward circuitry. Frontiers in Neuroscience, 6, 148.CrossRefGoogle ScholarPubMed
Fareri, D. S., Chang, L. J., & Delgado, M. R. (2015). Computational substrates of social value in interpersonal collaboration. Journal of Neuroscience, 35, 8170–8180.CrossRefGoogle ScholarPubMed
Fareri, D. S., Hackett, K., Tepfer, L. J., Kelly, V., Henninger, N., Reeck, C., … Smith, D. V. (2022). Age-related differences in ventral striatal and default mode network function during reciprocated trust. NeuroImage, 256, 119267.CrossRefGoogle ScholarPubMed
Fehr, E., Fischbacher, U., & Kosfeld, M. (2005). Neuroeconomic foundations of trust and social preferences: Initial evidence. The American Economic Review, 95, 346–351.CrossRefGoogle ScholarPubMed
Fehr, E., & Schurtenberger, I. (2018). Normative foundations of human cooperation. Nature Human Behaviour, 2, 458–468.CrossRefGoogle ScholarPubMed
FeldmanHall, O., Dalgleish, T., Evans, D., & Mobbs, D. (2015). Empathic concern drives costly altruism. NeuroImage, 105, 347–356.CrossRefGoogle ScholarPubMed
FeldmanHall, O., & Shenhav, A. (2019). Resolving uncertainty in a social world. Nature Human Behaviour, 3, 426–435.CrossRefGoogle Scholar
Fouragnan, E., Chierchia, G., Greiner, S., Neveu, R., Avesani, P., & Coricelli, G. (2013). Reputational priors magnify striatal responses to violations of trust. Journal of Neuroscience, 33, 3602–3611.CrossRefGoogle ScholarPubMed
Gao, S., Assink, M., Cipriani, A., & Lin, K. (2017). Associations between rejection sensitivity and mental health outcomes: A meta-analytic review. Clinical Psychology Review, 57, 59–74.CrossRefGoogle ScholarPubMed
Goodyear, K., Parasuraman, R., Chernyak, S., Madhavan, P., Deshpande, G., & Krueger, F. (2016). Advice taking from humans and machines: An fMRI and effective connectivity study. Frontiers in Human Neuroscience, 10, 542.CrossRefGoogle ScholarPubMed
Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4–26.CrossRefGoogle ScholarPubMed
Hackel, L. M., Zaki, J., & Van Bavel, J. J. (2017). Social identity shapes social valuation: Evidence from prosocial behavior and vicarious reward. Social Cognitive and Affective Neuroscience, 12, 1219–1228.CrossRefGoogle ScholarPubMed
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324, 646–648.CrossRefGoogle ScholarPubMed
Hassabis, D., Spreng, R. N., Rusu, A. A., Robbins, C. A., Mar, R. A., & Schacter, D. L. (2014). Imagine all the people: How the brain creates and uses personality models to predict behavior. Cerebral Cortex, 24, 1979–1987.CrossRefGoogle ScholarPubMed
Havassy, B. E., Hall, S. M., & Wasserman, D. A. (1991). Social support and relapse: Commonalities among alcoholics, opiate users, and cigarette smokers. Addictive Behaviors, 16, 235–246.CrossRefGoogle ScholarPubMed
Hawkley, L. C., & Cacioppo, J. T. (2010). Loneliness matters: A theoretical and empirical review of consequences and mechanisms. Annals of Behavioral Medicine, 40, 218–227.CrossRefGoogle ScholarPubMed
Heilig, M., Epstein, D. H., Nader, M. A., & Shaham, Y. (2016). Time to connect: Bringing social context into addiction neuroscience. Nature Reviews Neuroscience, 17, 592–599.CrossRefGoogle ScholarPubMed
Hertz, U., Bell, V., & Raihani, N. (2021). Trusting and learning from others: Immediate and long-term effects of learning from observation and advice. Proceedings of the Royal Society B: Biological Sciences, 288, 20211414.Google ScholarPubMed
Howard, J. D., & Kahnt, T. (2021). To be specific: The role of orbitofrontal cortex in signaling reward identity. Behavioral Neuroscience, 135, 210–217.CrossRefGoogle ScholarPubMed
Hughes, B. L., Zaki, J., & Ambady, N. (2017). Motivation alters impression formation and related neural systems. Social Cognitive and Affective Neuroscience, 12, 49–60.CrossRefGoogle ScholarPubMed
Inagaki, T. K., Muscatell, K. A., Moieni, M., Dutcher, J. M., Jevtic, I., Irwin, M. R., & Eisenberger, N. I. (2016). Yearning for connection? Loneliness is associated with increased ventral striatum activity to close others. Social Cognitive and Affective Neuroscience, 11, 1096–1101.CrossRefGoogle ScholarPubMed
Joiner, J., Piva, M., Turrin, C., & Chang, S. W. C. (2017). Social learning through prediction error in the brain. NPJ Science of Learning, 2, 8.CrossRefGoogle ScholarPubMed
Kim, M. J., Mende-Siedlecki, P., Anzellotti, S., & Young, L. (2021). Theory of mind following the violation of strong and weak prior beliefs. Cerebral Cortex, 31, 884–898.CrossRefGoogle ScholarPubMed
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308, 78–83.CrossRefGoogle Scholar
Kobayashi, K., Kable, J. W., Hsu, M., & Jenkins, A. C. (2022). Neural representations of others’ traits predict social decisions. Proceedings of the National Academy of Sciences of the United States of America, 119, e2116944119.Google ScholarPubMed
Kwon, S.-J., & Telzer, E. H. (2022). Social contextual risk taking in adolescence. Nature Reviews Psychology, 1, 393–406.CrossRefGoogle Scholar
Levorsen, M., Ito, A., Suzuki, S., & Izuma, K. (2021). Testing the reinforcement learning hypothesis of social conformity. Human Brain Mapping, 42, 1328–1342.CrossRefGoogle ScholarPubMed
Levy, D. J., & Gilmcher, P. W. (2012). The root of all value: A neural common currency for choice. Current Opinion in Neurology, 22, 1027–1038.Google ScholarPubMed
Li, J., Delgado, M. R., & Phelps, E. A. (2011). How instructed knowledge modulates the neural systems of reward learning. Proceedings of the National Academy of Sciences of the United States of America, 108, 55–60.Google ScholarPubMed
Lieberman, M. D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review Psychology, 58, 259–289.CrossRefGoogle ScholarPubMed
Lindström, B., Bellander, M., Schultner, D., Chang, A., Tobler, P. N., & Amodio, D. M. (2021). A computational reward learning account of social media engagement. Nature Communications, 12, 1311.Google ScholarPubMed
Lockwood, P. L., & Klein-Flugge, M. C. (2021). Computational modelling of social cognition and behaviour–a reinforcement learning primer. Social Cognitive and Affective Neuroscience, 16, 761–771.Google ScholarPubMed
Lockwood, P. L., Klein-Flugge, M. C., Abdurahman, A., & Crockett, M. J. (2020). Model-free decision making is prioritized when learning to avoid harming others. Proceedings of the National Academy of Sciences of the United States of America, 117, 27719–27730.Google ScholarPubMed
Lockwood, P. L., O’Nell, K. C., & Apps, M. A. J. (2020). Anterior cingulate cortex: A brain system necessary for learning to reward others? PLoS Biology, 18, e3000735.CrossRefGoogle ScholarPubMed
Lowe, R., Rittmo, J., Carlsson, R., & Gander, P. (2021). Vicarious value learning by differential outcomes training: A social transfer of control methodology. MethodsX, 8, 101294.CrossRefGoogle ScholarPubMed
Marsh, A. A., Stoycos, S. A., Brethel-Haurwitz, K. M., Robinson, P., VanMeter, J. W., & Cardinale, E. M. (2014). Neural and cognitive characteristics of extraordinary altruists. Proceedings of the National Academy of Sciences of the United States of America, 111, 15036–15041.Google ScholarPubMed
Mende-Siedlecki, P., Cai, Y., & Todorov, A. (2013). The neural dynamics of updating person impressions. Social Cognitive and Affective Neuroscience, 8, 623–631.CrossRefGoogle ScholarPubMed
Mennella, R., Bavard, S., Mentec, I., & Grezes, J. (2022). Spontaneous instrumental avoidance learning in social contexts. Scientific Reports, 12, 17528.CrossRefGoogle ScholarPubMed
Meshi, D., Biele, G., Korn, C. W., & Heekeren, H. R. (2012). How expert advice influences decision making. PLoS ONE, 7, e49748.CrossRefGoogle ScholarPubMed
Meshi, D., Tamir, D. I., & Heekeren, H. R. (2015). The emerging neuroscience of social media. Trends in Cognitive Sciences, 19, 771–782.CrossRefGoogle ScholarPubMed
Morgan, T. J., Rendell, L. E., Ehn, M., Hoppitt, W., & Laland, K. N. (2012). The evolutionary basis of human social learning. Proceedings of the Royal Society B. Biological Sciences, 279, 653–662.CrossRefGoogle ScholarPubMed
Murayama, K., Matsumoto, M., Izuma, K., & Matsumoto, K. (2010). Neural basis of the undermining effect of monetary reward on intrinsic motivation. Proceedings of the National Academy of Sciences of the United States of America, 107, 20911–20916.Google ScholarPubMed
Niv, Y., & Schoenbaum, G. (2008). Dialogues on prediction errors. Trends in Cognitive Sciences, 12, 265–272.CrossRefGoogle ScholarPubMed
O’Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769–776.CrossRefGoogle ScholarPubMed
Olsson, A., Knapska, E., & Lindström, B. (2020). The neural and computational systems of social learning. Nature Reviews Neuroscience, 21, 197–212.CrossRefGoogle ScholarPubMed
Panizza, F., Vostroknutov, A., & Coricelli, G. (2021). How conformity can lead to polarised social behaviour. PLoS Computational Biology, 17, e1009530.CrossRefGoogle ScholarPubMed
Park, B., Fareri, D., Delgado, M., & Young, L. (2021). The role of right temporoparietal junction in processing social prediction error across relationship contexts. Social Cognitive and Affective Neuroscience, 16, 772–781.CrossRefGoogle ScholarPubMed
Park, B., & Young, L. (2020). An association between biased impression updating and relationship facilitation: A behavioral and fMRI investigation. Journal of Experimental Social Psychology, 87, 103916.CrossRefGoogle ScholarPubMed
Parkinson, C., & Wheatley, T. (2015). The repurposed social brain. Trends in Cognitive Sciences, 19, 133–141.CrossRefGoogle ScholarPubMed
Pedersen, C. A. (2004). Biological aspects of social bonding and the roots of human violence. Annals of the New York Academy of Sciences, 1036, 106–127.CrossRefGoogle ScholarPubMed
Pickett, C. L., & Gardner, W. L. (2005). The social monitoring system: Enhanced sensitivity to social cues as an adaptive response to social exclusion. In Williams, K. D., Forgas, J. P., & Von Hippel, W. (Eds.), The social outcast: Ostracism, social exclusion, rejection, and bullying (Ch. 13). Psychology Press.Google Scholar
Qiao-Tasserit, E., Corradi-Dell’Acqua, C., & Vuilleumier, P. (2018). The good, the bad, and the suffering. Transient emotional episodes modulate the neural circuits of pain and empathy. Neuropsychologia, 116, 99–116.CrossRefGoogle ScholarPubMed
Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience, 9, 545–556.CrossRefGoogle ScholarPubMed
Rhoads, S. A., Cutler, J., & Marsh, A. A. (2021). A feature-based network analysis and fMRI meta-analysis reveal three distinct types of prosocial decisions. Social Cognitive and Affective Neuroscience, 16, 1214–1233.CrossRefGoogle ScholarPubMed
Rim, S., Uleman, J. S., & Trope, Y. (2009). Spontaneous trait inference and construal level theory: Psychological distance increases nonconscious trait thinking. Journal of Experimental Social Psychology, 45, 1088–1097.CrossRefGoogle ScholarPubMed
Rittmo, J., Carlsson, R., Gander, P., & Lowe, R. (2020). Vicarious value learning: Knowledge transfer through affective processing on a social differential outcomes task. Acta Psychologica, 209, 103134.CrossRefGoogle ScholarPubMed
Rohde, N., D’Ambrosio, C., Tang, K. K., & Rao, P. (2016). Estimating the mental health effects of social isolation. Applied Research in Quality of Life, 11, 853–869.CrossRefGoogle Scholar
Rolls, E. T. (2019). The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function, 224, 3001–3018.CrossRefGoogle ScholarPubMed
Rolls, E. T., Deco, G., Huang, C.-C., & Feng, J. (2022). The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: Emotion, memory, and action. Cerebral Cortex, 33, 330–356.CrossRefGoogle ScholarPubMed
Ruff, C. C., & Fehr, E. (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 15, 549–562.CrossRefGoogle ScholarPubMed
Sahani, V., Hurd, Y. L., & Bachi, K. (2021). Neural underpinnings of social stress in substance use disorders. In Miczek, K. A. & Sinha, R. (Eds.), Neuroscience of social stress. Current topics in behavioral neurosciences, vol. 54 (pp. 483–515). Springer.Google Scholar
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind.” NeuroImage, 19, 1835–1842.CrossRefGoogle ScholarPubMed
Schilbach, L., Eickhoff, S. B., Schultze, T., Mojzisch, A., & Vogeley, K. (2013). To you I am listening: Perceived competence of advisors influences judgment and decision-making via recruitment of the amygdala. Social Neuroscience, 8, 189–202.CrossRefGoogle Scholar
Schiller, D., Freeman, J. B., Mitchell, J. P., Uleman, J. S., & Phelps, E. A. (2009). A neural mechanism of first impressions. Nature Neuroscience, 12, 508–514.CrossRefGoogle ScholarPubMed
Schneider, K. N., Sciarillo, X. A., Nudelman, J. L., Cheer, J. F., & Roesch, M. R. (2020). Anterior cingulate cortex signals attention in a social paradigm that manipulates reward and shock. Current Biology, 30, 3724–3735.e2.CrossRefGoogle Scholar
Schnuerch, R., & Gibbons, H. (2014). A review of neurocognitive mechanisms of social conformity. Social Psychology, 45, 466–478.CrossRefGoogle Scholar
Schreuders, E., Klapwijk, E. T., Will, G. J., & Guroglu, B. (2018). Friend versus foe: Neural correlates of prosocial decisions for liked and disliked peers. Cognitive, Affective, & Behavioral Neuroscience, 18, 127–142.CrossRefGoogle ScholarPubMed
Schurz, M., Radua, J., Tholen, M. G., Maliske, L., Margulies, D. S., Mars, R. B., … Kanske, P. (2021). Toward a hierarchical model of social cognition: A neuroimaging meta-analysis and integrative review of empathy and theory of mind. Psychological Bulletin, 147, 293–327.CrossRefGoogle Scholar
Schultz, W. (2016). Dopamine reward prediction-error signaling: A two-component response. Nature Reviews Neuroscience, 17, 183–195.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.CrossRefGoogle ScholarPubMed
Singer, T., & Klimecki, O. M. (2014). Empathy and compassion. Current Biology, 24, R875–R878.CrossRefGoogle ScholarPubMed
Smith, A. R., Rosenbaum, G. M., Botdorf, M. A., Steinberg, L., & Chein, J. M. (2018). Peers influence adolescent reward processing, but not response inhibition. Cognitive, Affective, & Behavioral Neuroscience, 18, 284–295.CrossRefGoogle Scholar
Smith, D. V., Clithero, J. A., Boltuck, S. E., & Huettel, S. A. (2014). Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards. Social Cognitive and Affective Neuroscience, 9, 2017–2025.CrossRefGoogle ScholarPubMed
Smith, D. V., Hayden, B. Y., Truong, T.-K., Song, A. W., Platt, M. L., & Huettel, S. A. (2010). Distinct value signals in anterior and posterior ventromedial prefrontal cortex. Journal of Neuroscience, 30, 2490–2495.CrossRefGoogle ScholarPubMed
Somerville, L. H., Haddara, N., Sasse, S. F., Skwara, A. C., Moran, J. M., & Figner, B. (2019). Dissecting “peer presence” and “decisions” to deepen understanding of peer influence on adolescent risky choice. Child Development, 90, 2086–2103.CrossRefGoogle ScholarPubMed
Spunt, R. P., & Adolphs, R. (2019). The neuroscience of understanding the emotions of others. Neuroscience Letters, 693, 44–48.CrossRefGoogle ScholarPubMed
Stallen, M., & Sanfey, A. G. (2015). The neuroscience of social conformity: Implications for fundamental and applied research. Frontiers in Neuroscience, 9, 337.CrossRefGoogle ScholarPubMed
Stanley, D. A. (2016). Getting to know you: General and specific neural computations for learning about people. Social Cognitive and Affective Neuroscience, 11, 525–536.CrossRefGoogle ScholarPubMed
Starcke, K., & Brand, M. (2012). Decision making under stress: A selective review. Neuroscience & Biobehavioral Reviews, 36, 1228–1248.CrossRefGoogle ScholarPubMed
Steinberg, L. (2007). Risk taking in adolescents. Current Directions in Psychological Science, 16, 55–59.Google Scholar
Strombach, T., Weber, B., Hangebrauk, Z., Kenning, P., Karipidis, II, Tobler, P. N., & Kalenscher, T. (2015). Social discounting involves modulation of neural value signals by temporoparietal junction. Proceedings of the National Academy of Science of United States of America, 112, 1619–1624.Google ScholarPubMed
Suzuki, S., Jensen, E. L., Bossaerts, P., & O’Doherty, J. P. (2016). Behavioral contagion during learning about another agent’s risk-preferences acts on the neural representation of decision-risk. Proceedings of the National Academy of Science of United States of America, 113, 3755–3760.Google ScholarPubMed
Tholen, M. G., Trautwein, F. M., Bockler, A., Singer, T., & Kanske, P. (2020). Functional magnetic resonance imaging (fMRI) item analysis of empathy and theory of mind. Human Brain Mapping, 41, 2611–2628.CrossRefGoogle ScholarPubMed
Todorov, A., Olivola, C. Y., Dotsch, R., & Mende-Siedlecki, P. (2015). Social attributions from faces: determinants, consequences, accuracy, and functional significance. Annual Review of Psychology, 66, 519–545.CrossRefGoogle ScholarPubMed
Tomova, L., Wang, K. L., Thompson, T., Matthews, G. A., Takahashi, A., Tye, K. M., & Saxe, R. (2020). Acute social isolation evokes midbrain craving responses similar to hunger. Nature Neuroscience, 23, 1597–1605.CrossRefGoogle ScholarPubMed
Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship between social support and physiological processes: A review with emphasis on underlying mechanisms and implications for health. Psychological Bulletin, 119, 488–531.CrossRefGoogle ScholarPubMed
van de Groep, S., Zanolie, K., & Crone, E. A. (2020). Familiarity and audience effects on giving: A functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 32, 1577–1589.CrossRefGoogle ScholarPubMed
Venniro, M., Russell, T. I., Zhang, M., & Shaham, Y. (2019). Operant social reward decreases incubation of heroin craving in male and female rats. Biological Psychiatry, 86, 848–856.CrossRefGoogle ScholarPubMed
Vuilleumier, P. (2005). How brains beware: neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9, 585–594.CrossRefGoogle ScholarPubMed
Wu, H., Luo, Y., & Feng, C. (2016). Neural signatures of social conformity: A coordinate-based activation likelihood estimation meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 71, 101–111.CrossRefGoogle ScholarPubMed
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670.CrossRefGoogle ScholarPubMed
Yu, H., Siegel, J. Z., Clithero, J. A., & Crockett, M. J. (2021). How peer influence shapes value computation in moral decision-making. Cognition, 211, 104641.CrossRefGoogle ScholarPubMed
Zaki, J., & Ochsner, K. N. (2012). The neuroscience of empathy: Progress, pitfalls and promise. Nature Neuroscience, 15, 675–680.CrossRefGoogle ScholarPubMed
Zha, R., Li, P., Liu, Y., Alarefi, A., Zhang, X., & Li, J. (2022). The orbitofrontal cortex represents advantageous choice in the Iowa gambling task. Human Brain Mapping, 43, 3840–3856.CrossRefGoogle ScholarPubMed
Zhang, L., & Gläser, J. (2020). A brain network supporting social influences in human decision-making. Science Advances, 6, eabb4159.Google ScholarPubMed

References

Ahn, H. M., Kim, S. A., Hwang, I. J., Jeong, J. W., Kim, H. T., Hamann, S., & Kim, S. H. (2015). The effect of cognitive reappraisal on long-term emotional experience and emotional memory. Journal of Neuropsychology, 9, 64–76.CrossRefGoogle ScholarPubMed
Allard, E. S., & Kensinger, E. A. (2014). Age-related differences in functional connectivity during cognitive emotion regulation. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 69, 852–860.Google ScholarPubMed
Anderson, M. C. (2003). Rethinking interference theory: Executive control and the mechanisms of forgetting. Journal of Memory and Language, 49, 415–445.CrossRefGoogle Scholar
Anderson, N. D., Craik, F. I. M., & Naveh-Benjamin, M. (1998). The attentional demands of encoding and retrieval in younger and older adults: I. Evidence from divided attention costs. Psychology and Aging, 13, 405–423.CrossRefGoogle ScholarPubMed
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417–423.CrossRefGoogle ScholarPubMed
Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95, 709–721.e5.CrossRefGoogle ScholarPubMed
Barber, S. J., & Mather, M. (2012). Forgetting in context: The effects of age, emotion, and social factors on retrieval-induced forgetting. Memory & Cognition, 40, 874–888.CrossRefGoogle ScholarPubMed
Barnacle, G. E., Montaldi, D., Talmi, D., & Sommer, T. (2016). The list-composition effect in memory for emotional and neutral pictures: Differential contribution of ventral and dorsal attention networks to successful encoding. Neuropsychologia, 90, 125–135.CrossRefGoogle ScholarPubMed
Bäuml, K.-H., Pastötter, B., & Hanslmayr, S. (2010). Binding and inhibition in episodic memory – Cognitive, emotional, and neural processes. Neuroscience and Biobehavioral Reviews, 34, 1047–1054.CrossRefGoogle ScholarPubMed
Bergado, J. A., Lucas, M., & Richter-Levin, G. (2011). Emotional tagging – a simple hypothesis in a complex reality. Progress in neurobiology, 94, 64–76.CrossRefGoogle Scholar
Binder, J., de Quervain, D. J., Friese, M., Luechinger, R., Boesiger, P., & Rasch, B. (2012). Emotion suppression reduces hippocampal activity during successful memory encoding. NeuroImage, 63, 525–532.CrossRefGoogle ScholarPubMed
Bisby, J. A., & Burgess, N. (2014). Negative affect impairs associative memory but not item memory. Learning & Memory, 21, 21–27.CrossRefGoogle Scholar
Bowen, H. J., Kark, S. M., & Kensinger, E. A. (2018). NEVER Forget: Negative emotional valence enhances recapitulation. Psychonomic Bulletin & Review, 25, 870–891.CrossRefGoogle ScholarPubMed
Bozzola, E., Spina, G., Agostiniani, R., Barni, S., Russo, R., Scarpato, E., … Staiano, A. (2022). The use of social media in children and adolescents: Scoping review on the potential risks. International Journal of Environmental Research and Public Health, 19, 9960.CrossRefGoogle ScholarPubMed
Bröckelmann, A. K., Steinberg, C., Elling, L., Zwanzger, P., Pantev, C., & Junghöfer, M. (2011). Emotion-associated tones attract enhanced attention at early auditory processing: Magnetoencephalographic correlates. The Journal of Neuroscience, 31, 7801–7810.CrossRefGoogle ScholarPubMed
Brown, R., & Kulik, J. (1977). Flashbulb memories. Cognition, 5, 73–99.CrossRefGoogle Scholar
Cahill, L. (2010). Sex influences on brain and emotional memory: The burden of proof has shifted. Progress in Brain Research, 186, 29–40.CrossRefGoogle ScholarPubMed
Clewett, D., & Murty, V. P. (2019). Echoes of emotions past: How neuromodulators determine what we recollect. eNeuro, 6, ENEURO.0108-18.2019.CrossRefGoogle ScholarPubMed
Colombo, D., Serino, S., Suso-Ribera, C., Fernández-Álvarez, J., Cipresso, P., García-Palacios, A., … Botella, C. (2021). The moderating role of emotion regulation in the recall of negative autobiographical memories. International Journal of Environmental Research and Public Health, 18, 7122.CrossRefGoogle ScholarPubMed
Cong, Y. Q., Keltner, D., & Sauter, D. (2022). Cultural variability in appraisal patterns for nine positive emotions. Journal of Cultural Cognitive Science, 6, 51–75.CrossRefGoogle Scholar
Conway, M. A., & Pleydell-Pearce, C. W. (2000). The construction of autobiographical memories in the self-memory system. Psychological Review, 107, 261–288.CrossRefGoogle ScholarPubMed
Dahlgren, K., Ferris, C., & Hamann, S. (2020). Neural correlates of successful emotional episodic encoding and retrieval: An SDM meta-analysis of neuroimaging studies. Neuropsychologia, 143, 107495.CrossRefGoogle ScholarPubMed
Daley, R., Ford, J., & Kensinger, E. (2023). ‘Older adult mPFC-to-MTL resting state functional connectivity correlates with emotional memory accuracy and vividness’. Poster presented at the Dallas Aging and Cognition Conference, Dallas, TX, 25–27 February 2023.Google Scholar
Danker, J. F., & Anderson, J. R. (2010). The ghosts of brain states past: Remembering reactivates the brain regions engaged during encoding. Psychological Bulletin, 136, 87–102.CrossRefGoogle ScholarPubMed
Del Palacio-Gonzalez, A., & Berntsen, D. (2019). The tendency for experiencing involuntary future and past mental time travel is robustly related to thought suppression: An exploratory study. Psychological Research, 83, 788–804.CrossRefGoogle ScholarPubMed
Denkova, E., Dolcos, S., & Dolcos, F. (2013). The effect of retrieval focus and emotional valence on the medial temporal lobe activity during autobiographical recollection. Frontiers in Behavioral Neuroscience, 7, 109.Google ScholarPubMed
Dillon, D. G., & Pizzagalli, D. A. (2013). Evidence of successful modulation of brain activation and subjective experience during reappraisal of negative emotion in unmedicated depression. Psychiatry Research, 212, 99–107.Google ScholarPubMed
Dörfel, D., Lamke, J. P., Hummel, F., Wagner, U., Erk, S., & Walter, H. (2014). Common and differential neural networks of emotion regulation by detachment, reinterpretation, distraction, and expressive suppression: A comparative fMRI investigation. NeuroImage, 101, 298–309.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Murty, V. P., Clewett, D., Phelps, E. A., & Davachi, L. (2022). Tag and capture: how salient experiences target and rescue nearby events in memory. Trends in Cognitive Sciences, 26, 782–795.CrossRefGoogle ScholarPubMed
Dunsmoor, J., Murty, V., Davachi, L., & Phelps, E. A. (2015). Emotional learning selectively and retroactively strengthens memories for related events. Nature, 520, 345–348.CrossRefGoogle ScholarPubMed
Emmerdinger, K. J., Kuhbandner, C., & Berchtold, F. (2018). Testing emotional memories: Does negative emotional significance influence the benefit received from testing? Cognition and Emotion, 32, 852–859.CrossRefGoogle ScholarPubMed
Engen, H. G., & Anderson, M. C. (2018). Memory control: A fundamental mechanism of emotion regulation. Trends in Cognitive Sciences, 22(11), 982–995. https://doi.org/10.1016/j.tics.2018.07.015CrossRefGoogle ScholarPubMed
Fallot, R. D. (1979). The impact on mood of verbal reminiscing in later adulthood. International Journal of Aging & Human Development, 10, 385–400.Google ScholarPubMed
Ford, J. H., Fields, E. C., Garcia, S. M., Cunningham, T. J., & Kensinger, E. A. (2023). Perceived event resolution-rather than time-allows older adults to reduce the negativity of their memories. Memory, 31, 421–427.CrossRefGoogle ScholarPubMed
Ford, J. H., Garcia, S. M., Fields, E. C., Cunningham, T. J., & Kensinger, E. A. (2021). Older adults remember more positive aspects of the COVID-19 pandemic. Psychology and Aging, 36, 694–699.CrossRefGoogle ScholarPubMed
Ford, J. H., & Kensinger, E. A. (2017). Prefrontally-mediated alterations in the retrieval of negative events: Links to memory vividness across the adult lifespan. Neuropsychologia, 102, 82–94.CrossRefGoogle ScholarPubMed
Frattaroli, J. (2006). Experimental disclosure and its moderators: A meta-analysis. Psychological Bulletin, 132, 823–865.CrossRefGoogle ScholarPubMed
Frodl, T., Janowitz, D., Schmaal, L., Tozzi, L., Dobrowolny, H., Stein, D. J., … Grabe, H. J. (2017). Childhood adversity impacts on brain subcortical structures relevant to depression. Journal of Psychiatric Research, 86, 58–65.CrossRefGoogle ScholarPubMed
Golchert, J., Smallwood, J., Jefferies, E., Seli, P., Huntenburg, J. M., Liem, F., … Margulies, D. S. (2017). Individual variation in intentionality in the mind-wandering state is reflected in the integration of the default-mode, fronto-parietal, and limbic networks. NeuroImage, 146, 226–235.CrossRefGoogle ScholarPubMed
Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63, 577–586.CrossRefGoogle ScholarPubMed
Gotlib, I. H., & Joormann, J. (2010). Cognition and depression: Current status and future directions. Annual Review of Clinical Psychology, 6, 285–312.CrossRefGoogle ScholarPubMed
Grandjean, D., Sander, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). The voices of wrath: Brain responses to angry prosody in meaningless speech. Nature Neuroscience, 8, 145–146.CrossRefGoogle ScholarPubMed
Gross, J. J. (2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26, 1–26.CrossRefGoogle Scholar
Gutchess, A., Garner, L., Ligouri, L., Konuk, A. I., & Boduroglu, A. (2018). Culture impacts the magnitude of the emotion-induced memory trade-off effect. Cognition & Emotion, 32, 1339–1346.CrossRefGoogle ScholarPubMed
Hamann, S. (2001). Cognitive and neural mechanisms of emotional memory. Trends in Cognitive Sciences, 5, 394–400.CrossRefGoogle ScholarPubMed
Hayes, J. P., Morey, R. A., Petty, C. M., Seth, S., Smoski, M. J., McCarthy, G., & Labar, K. S. (2010). Staying cool when things get hot: Emotion regulation modulates neural mechanisms of memory encoding. Frontiers in Human Neuroscience, 4, 230.CrossRefGoogle ScholarPubMed
Heffer, N., Dennie, E., Ashwin, C., Petrini, K., & Karl, A. (2023). Multisensory processing of emotional cues predicts intrusive memories after virtual reality trauma. Virtual Reality, 27, 2043–2057.CrossRefGoogle ScholarPubMed
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? The Behavioral and Brain Sciences, 33, 61–135.CrossRefGoogle ScholarPubMed
Hitchcock, C., Newby, J., Timm, E., Howard, R. M., Golden, A. M., Kuyken, W., & Dalgleish, T. (2020). Memory category fluency, memory specificity, and the fading affect bias for positive and negative autobiographical events: Performance on a good day-bad day task in healthy and depressed individuals. Journal of Experimental Psychology: General, 149, 198–206.Google ScholarPubMed
Ho, S. M. Y., Cheng, J., Dai, D. W. T., Tam, T., & Hui, O. (2018). The effect of positive and negative memory bias on anxiety and depression symptoms among adolescents. Journal of Clinical Psychology, 74, 1509–1525.CrossRefGoogle ScholarPubMed
Holland, A. C., & Kensinger, E. A. (2010). Emotion and autobiographical memory. Physics of Life Reviews, 7, 88–131.CrossRefGoogle ScholarPubMed
Holland, A. C., & Kensinger, E. A. (2013a). An fMRI investigation of the cognitive reappraisal of negative memories. Neuropsychologia, 51, 2389–2400.CrossRefGoogle Scholar
Holland, A. C., & Kensinger, E. A. (2013b). The neural correlates of cognitive reappraisal during emotional autobiographical memory recall. Journal of Cognitive Neuroscience, 25, 87–108.CrossRefGoogle Scholar
Holland, A. C., Tamir, M., & Kensinger, E. A. (2010). The effect of regulation goals on emotional event-specific knowledge. Memory, 18, 504–521.CrossRefGoogle ScholarPubMed
Houle, I., & Philippe, F. L. (2020). Is the negative always that bad? Or how emotion regulation and integration of negative memories can positively affect well-being. Journal of Personality, 88, 965–977.CrossRefGoogle Scholar
Houle, I., Philippe, F. L., Lecours, S., & Roulez, J. (2018). Networks of self-defining memories as a contributing factor to emotional openness. Cognition & Emotion, 32, 363–370.CrossRefGoogle ScholarPubMed
John, O. P., & Gross, J. J. (2004). Healthy and unhealthy emotion regulation: Personality processes, individual differences, and life span development. Journal of Personality, 72, 1301–1333.CrossRefGoogle ScholarPubMed
Josephson, B. R., Singer, J. A., & Salovey, P. (1996). Mood regulation and memory: Repairing sad moods with happy memories. Cognition and Emotion, 10, 437–444.CrossRefGoogle Scholar
Kark, S. M., & Kensinger, E. A. (2019). Physiological arousal and visuocortical connectivity predict subsequent vividness of negative memories. Neuroreport, 30, 800–804.CrossRefGoogle ScholarPubMed
Katsumi, Y., & Dolcos, S. (2020). Suppress to feel and remember less: Neural correlates of explicit and implicit emotional suppression on perception and memory. Neuropsychologia, 145, 106683.CrossRefGoogle ScholarPubMed
Kensinger, E. A. (2004). Remembering emotional experiences: The contribution of valence and arousal. Reviews in the Neurosciences, 15, 241–251.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Corkin, S. (2004). Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the National Academy of Sciences of the United States of America, 101, 3310–3315.Google ScholarPubMed
Kensinger, E. A., & Ford, J. H. (2020). Retrieval of emotional events from memory. Annual Review of Psychology, 71, 251–272.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Ford, J. H. (2021). Guiding the emotion in emotional memories: The role of the dorsomedial prefrontal cortex. Current Directions in Psychological Science, 30, 111–119.CrossRefGoogle Scholar
Kim, H., Kim, B. H., Kim, M. K., Eom, H., & Kim, J. J. (2022). Alteration of resting-state functional connectivity network properties in patients with social anxiety disorder after virtual reality-based self-training. Frontiers in Psychiatry, 13, 959696.CrossRefGoogle ScholarPubMed
Kim, J., Wang, J., Wedell, D. H., & Shinkareva, S. V. (2016). Identifying core affect in individuals from fMRI responses to dynamic naturalistic audiovisual stimuli. PLoS ONE, 11, e0161589.Google ScholarPubMed
Kitayama, S., & Park, J. (2010). Cultural neuroscience of the self: Understanding the social grounding of the brain. Social Cognitive and Affective Neuroscience, 5, 111–129.CrossRefGoogle ScholarPubMed
Klasen, M., Kreifelts, B., Chen, Y. H., Seubert, J., & Mathiak, K. (2014). Neural processing of emotion in multimodal settings. Frontiers in Human Neuroscience, 8, 822.CrossRefGoogle ScholarPubMed
Krans, J., Naring, G., Becker, E. S., & Holmes, E. A. (2009). Intrusive trauma memory: A review and functional analysis. Applied Cognitive Psychology, 23, 1076–1088.CrossRefGoogle Scholar
Kuhbandner, C., Bäuml, K.-H., & Stiedl, F. C. (2009). Retrieval-induced forgetting of negative stimuli: The role of emotional intensity. Cognition and Emotion, 23, 817–830.CrossRefGoogle Scholar
Lalanne, J., Gallarda, T., & Piolino, P. (2015). “The Castle of Remembrance”: New insights from a cognitive training programme for autobiographical memory in Alzheimer’s disease. Neuropsychological Rehabilitation, 25, 254–282.CrossRefGoogle ScholarPubMed
Lee, T. W., & Xue, S. W. (2018). Does emotion regulation engage the same neural circuit as working memory? A meta-analytical comparison between cognitive reappraisal of negative emotion and 2-back working memory task. PLoS ONE, 13, e0203753.Google ScholarPubMed
Levine, L. J., Lench, H. C., & Safer, M. A. (2009). Functions of remembering and misremembering emotion. Applied Cognitive Psychology, 23, 1059–1075.CrossRefGoogle Scholar
Loftus, E. F. (2005). Planting misinformation in the human mind: A 30-year investigation of the malleability of memory. Learning & Memory, 12, 361–366.CrossRefGoogle ScholarPubMed
Long, N. M., Danoff, M. S., & Kahana, M. J. (2015). Recall dynamics reveal the retrieval of emotional context. Psychonomic Bulletin & Review, 22, 1328–1333.CrossRefGoogle ScholarPubMed
MacLeod, J., Stewart, B. M., Newman, A. J., & Arnell, K. M. (2017). Do emotion-induced blindness and the attentional blink share underlying mechanisms? An event-related potential study of emotionally-arousing words. Cognitive, Affective & Behavioral Neuroscience, 17, 592–611.CrossRefGoogle ScholarPubMed
Mather, M. (2016). Commentary: Modulation of prepulse inhibition and startle reflex by emotions: A comparison between young and older adults. Frontiers in Aging Neuroscience, 8, 106.CrossRefGoogle ScholarPubMed
Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9, 496–502.CrossRefGoogle ScholarPubMed
Mather, M., & Sutherland, M. R. (2011). Arousal-biased competition in perception and memory. Perspectives on Psychological Science, 6, 114–133.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2000). Memory – A century of consolidation. Science, 287, 248–251.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28.CrossRefGoogle ScholarPubMed
Moore, S. A., & Zoellner, L. A. (2012). The effects of expressive and experiential suppression on memory accuracy and memory distortion in women with and without PTSD. Journal of Experimental Psychopathology, 3, 368–392.CrossRefGoogle ScholarPubMed
Morris, J. A., Leclerc, C. M., & Kensinger, E. A. (2014). Effects of valence and divided attention on cognitive reappraisal processes. Social Cognitive and Affective Neuroscience, 9, 1952–1961.CrossRefGoogle ScholarPubMed
Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: The hippocampus and neocortex in transformation. Annual Review of Psychology, 67, 105–134.CrossRefGoogle Scholar
Murty, V. P., Ritchey, M., Adcock, R. A., & LaBar, K. S. (2010). fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia, 48, 3459–3469.CrossRefGoogle ScholarPubMed
Nielsen, S. E., Ahmed, I., & Cahill, L. (2013). Sex and menstrual cycle phase at encoding influence emotional memory for gist and detail. Neurobiology of Learning and Memory, 106, 56–65.CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3, 400–424.CrossRefGoogle ScholarPubMed
Nørby, S. (2019). Mnemonic emotion regulation: A three-process model. Cognition & Emotion, 33, 959–975.CrossRefGoogle ScholarPubMed
Otto, B., Misra, S., Prasad, A., & McRae, K. (2014). Functional overlap of top-down emotion regulation and generation: An fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions. Cognitive, Affective & Behavioral Neuroscience, 14, 923–938.CrossRefGoogle ScholarPubMed
Parks, C. M., Mohawk, K. D., Werner, L. L. S., & Kiley, C. (2022). The time window of reconsolidation: A replication. Psychonomic Bulletin & Review, 29, 2008–2013.CrossRefGoogle ScholarPubMed
Parrott, W. G., & Sabini, J. P. (1990). Mood and memory under natural conditions: Evidence for mood incongruent recall. Journal of Personality and Social Psychology, 59, 321–336.CrossRefGoogle Scholar
Peelen, M. V., Atkinson, A. P., & Vuilleumier, P. (2010). Supramodal representations of perceived emotions in the human brain. Journal of Neuroscience, 30, 10127–10134.CrossRefGoogle ScholarPubMed
Philippe, F. L., & Bernard-Desrosiers, L. (2017). The odyssey of episodic memories: Identifying the paths and processes through which they contribute to well-being. Journal of Personality, 85, 518–529.CrossRefGoogle ScholarPubMed
Pittenger, C. (2013). Disorders of memory and plasticity in psychiatric disease. Dialogues in Clinical Neuroscience, 15, 455–463.CrossRefGoogle ScholarPubMed
Prati, A., & Senik, C. (2022). Feeling good is feeling better. Psychological Science, 33, 1828–1841.CrossRefGoogle ScholarPubMed
Rasmussen, A. S., & Berntsen, D. (2009). Emotional valence and the functions of autobiographical memories: Positive and negative memories serve different functions. Memory & Cognition, 37, 477–492.CrossRefGoogle ScholarPubMed
Reed, A. E., & Carstensen, L. L. (2012). The theory behind the age-related positivity effect. Frontiers in Psychology, 3, 339.CrossRefGoogle ScholarPubMed
Reggente, N., Essoe, J. K., Aghajan, Z. M., Tavakoli, A. V., McGuire, J. F., Suthana, N. A., & Rissman, J. (2018). Enhancing the ecological validity of fMRI memory research using virtual reality. Frontiers in Neuroscience, 12, 408.CrossRefGoogle ScholarPubMed
Richards, J. M., & Gross, J. J. (2006). Personality and emotional memory: How regulating emotion impairs memory for emotional events. Journal of Research in Personality, 40, 631–651.CrossRefGoogle Scholar
Richter-Levin, G., & Akirav, I. (2003). Emotional tagging of memory formation – In the search for neural mechanisms. Brain Research Reviews, 43, 247–256.CrossRefGoogle ScholarPubMed
Roediger, H. L., 3rd, & Butler, A. C. (2011). The critical role of retrieval practice in long-term retention. Trends in Cognitive Sciences, 15, 20–27.CrossRefGoogle ScholarPubMed
Ross, M. (1989). Relation of implicit theories to the construction of personal histories. Psychological Review, 96, 341–357.CrossRefGoogle Scholar
Rugg, M. D., Johnson, J. D., Park, H., & Uncapher, M. R. (2008). Encoding-retrieval overlap in human episodic memory: A functional neuroimaging perspective. Progress in Brain Research, 169, 339–352.CrossRefGoogle Scholar
Ryan, R. M., & Deci, E. L. (2001). On happiness and human potentials: A review of research on hedonic and eudaimonic well-being. Annual Review of Psychology, 52, 141–166.CrossRefGoogle ScholarPubMed
Samide, R., & Ritchey, M. (2021). Reframing the past: Role of memory processes in emotion regulation. Cognitive Therapy and Research, 45, 848–857.CrossRefGoogle Scholar
Satpute, A. B., Kang, J., Bickart, K. C., Yardley, H., Wager, T. D., & Barrett, L. F. (2015). Involvement of sensory regions in affective experience: A meta-analysis. Frontiers in Psychology, 6, 1860.CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews. Neuroscience, 8, 657–661.CrossRefGoogle ScholarPubMed
Scherer, K. R. (1997). The role of culture in emotion-antecedent appraisal. Journal of Personality and Social Psychology, 73, 902–922.CrossRefGoogle Scholar
Scherer, L. D., & Larsen, R. J. (2011). Cross-modal evaluative priming: Emotional sounds influence the processing of emotion words. Emotion, 11, 203–208.CrossRefGoogle ScholarPubMed
Schupp, H. T., Stockburger, J., Codispoti, M., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2007). Selective visual attention to emotion. The Journal of Neuroscience, 27, 1082–1089.CrossRefGoogle ScholarPubMed
Sekeres, M. J., Winocur, G., & Moscovitch, M. (2018). The hippocampus and related neocortical structures in memory transformation. Neuroscience Letters, 680, 39–53.CrossRefGoogle ScholarPubMed
Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107, 11020–11025.Google ScholarPubMed
Siegel, A. L. M., Schwartz, S. T., & Castel, A. D. (2021). Selective memory disrupted in intra-modal dual-task encoding conditions. Memory & Cognition, 49, 1453–1472.CrossRefGoogle ScholarPubMed
Smith, S. M., & Vela, E. (2001). Environmental context-dependent memory: A review and meta-analysis. Psychonomic Bulletin & Review, 8, 203–220.CrossRefGoogle ScholarPubMed
Soto, J. A., Perez, C. R., Kim, Y. H., Lee, E. A., & Minnick, M. R. (2011). Is expressive suppression always associated with poorer psychological functioning? A cross-cultural comparison between European Americans and Hong Kong Chinese. Emotion, 11, 1450–1455.CrossRefGoogle ScholarPubMed
Speer, M. E., Bhanji, J. P., & Delgado, M. R. (2014). Savoring the past: Positive memories evoke value representations in the striatum. Neuron, 84, 847–856.CrossRefGoogle ScholarPubMed
Speer, M. E., & Delgado, M. R. (2017). Reminiscing about positive memories buffers acute stress responses. Nature Human Behaviour, 1, 0093.CrossRefGoogle ScholarPubMed
Speer, M. E., Ibrahim, S., Schiller, D., & Delgado, M. R. (2021). Finding positive meaning in memories of negative events adaptively updates memory. Nature Communications, 12, 6601.CrossRefGoogle ScholarPubMed
Sprecher, S. (1999). “I love you more today than yesterday”: Romantic partners’ perceptions of changes in love and related affect over time. Journal of Personality and Social Psychology, 76, 46–53.CrossRefGoogle Scholar
Stone, C. B., Barnier, A. J., Sutton, J., & Hirst, W. (2013). Forgetting our personal past: Socially shared retrieval-induced forgetting of autobiographical memories. Journal of Experimental Psychology: General, 142, 1084–1099.Google ScholarPubMed
Sutherland, M. R., & Mather, M. (2012). Negative arousal amplifies the effects of saliency in short-term memory. Emotion, 12, 1367–1372.CrossRefGoogle ScholarPubMed
Takashima, A., van der Ven, F., Kroes, M. C., & Fernández, G. (2016). Retrieved emotional context influences hippocampal involvement during recognition of neutral memories. NeuroImage, 143, 280–292.CrossRefGoogle ScholarPubMed
Talmi, D. (2013). Enhanced emotional memory: Cognitive and neural mechanisms. Current Directions in Psychological Science, 22, 430–436.CrossRefGoogle Scholar
Talmi, D., Anderson, A. K., Riggs, L., Caplan, J. B., & Moscovitch, M. (2008). Immediate memory consequences of the effect of emotion on attention to pictures. Learning and Memory, 15, 172–182.CrossRefGoogle ScholarPubMed
Talmi, D., Lohnas, L. J., & Daw, N. D. (2019). A retrieved context model of the emotional modulation of memory. Psychological Review, 126, 455–485.CrossRefGoogle ScholarPubMed
Tamir, M. (2016). Why do people regulate their emotions? A taxonomy of motives in emotion regulation. Personality and Social Psychology Review, 20, 199–222.CrossRefGoogle ScholarPubMed
Tartar, J. L., de Almeida, K., McIntosh, R. C., Rosselli, M., & Nash, A. J. (2012). Emotionally negative pictures increase attention to a subsequent auditory stimulus. International Journal of Psychophysiology, 83, 36–44.CrossRefGoogle ScholarPubMed
Thakral, P. P., Bottary, R., & Kensinger, E. A. (2022). Representing the good and bad: fMRI signatures during the encoding of multisensory positive, negative, and neutral events. Cortex, 151, 240–258.CrossRefGoogle ScholarPubMed
Tronson, N. C., & Keiser, A. A. (2019). A dynamic memory systems framework for sex differences in fear memory. Trends in Neurosciences, 42, 680–692.CrossRefGoogle ScholarPubMed
Tulving, E. (1985). Memory and consciousness. Canadian Psychology / Psychologie canadienne, 26, 1–12.CrossRefGoogle Scholar
Tulving, E., & Thomson, D. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352–373.CrossRefGoogle Scholar
Venkatraman, V., & Huettel, S. A. (2012). Strategic control in decision-making under uncertainty. The European Journal of Neuroscience, 35, 1075–1082.CrossRefGoogle ScholarPubMed
Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9, 585–594.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron, 30, 829–841.CrossRefGoogle ScholarPubMed
Williams, S. E., Ford, J. H., & Kensinger, E. A. (2022). The power of negative and positive episodic memories. Cognitive, Affective & Behavioral Neuroscience, 22, 869–903.CrossRefGoogle ScholarPubMed
Wu, J. Q., Szpunar, K. K., Godovich, S. A., Schacter, D. L., & Hofmann, S. G. (2015). Episodic future thinking in generalized anxiety order. Journal of Anxiety Disorders, 36, 1–8.CrossRefGoogle Scholar
Yonelinas, A. P., & Ritchey, M. (2015). The slow forgetting of emotional episodic memories: An emotional binding account. Trends in Cognitive Sciences, 19, 259–267.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×