Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-rz4zl Total loading time: 0 Render date: 2025-10-01T10:56:58.430Z Has data issue: false hasContentIssue false

Section III - Emotion Perception and Elicitation

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Adolphs, R. (2002). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1, 21–62.CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., & Damasio, A. R. (2003). Dissociable neural systems for recognizing emotions. Brain and Cognition, 52, 61–69.CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.CrossRefGoogle Scholar
Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33, 717–746.CrossRefGoogle ScholarPubMed
Aviezer, H., Hassin, R. R., Ryan, J., Grady, C., Susskind, J., Anderson, A., … Bentin, S. (2008). Angry, disgusted, or afraid? Studies on the malleability of emotion perception. Psychological Science, 19, 724–732.CrossRefGoogle ScholarPubMed
Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M., & Pollak, S. D. (2019). Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements. Psychological Science in the Public Interest, 20, 1–68.CrossRefGoogle ScholarPubMed
Barrett, L. F., Lindquist, K. A., & Gendron, M. (2007). Language as a context for the perception of emotion. Trends in Cognitive Sciences, 11, 327–332.CrossRefGoogle ScholarPubMed
Bayet, L., & Nelson, C. A. (2020). The neural architecture and developmental course of face processing. In Rakic, P. & Rubenstein, J. (Eds.), Comprehensive developmental neuroscience, 2nd ed (pp. 435–465). Elsevier Press.Google Scholar
Bayet, L., Quinn, P. C., Laboissière, R., Caldara, R., Lee, K., & Pascalis, O. (2017). Fearful but not happy expressions boost face detection in human infants. Proceedings of the Royal Society of London B, 284, 20171054.Google Scholar
Bedny, M., & Saxe, R. (2012). Insights into the origins of knowledge from the cognitive neuroscience of blindness. Cognitive Neuropsychology, 29, 56–84.CrossRefGoogle ScholarPubMed
Bernstein, M., & Yovel, G. (2015). Two neural pathways of face processing: A critical evaluation of current models. Neuroscience & Biobehavioral Reviews, 55, 536–546.CrossRefGoogle ScholarPubMed
Binetti, N., Roubtsova, N., Carlisi, C., Cosker, D., Viding, E., & Mareschal, I. (2022). Genetic algorithms reveal profound individual differences in emotion recognition. Proceedings of the National Academy of Sciences of the United States of America, 119, e2201380119.Google ScholarPubMed
Blais, C., Jack, R. E., Scheepers, C., Fiset, D., & Caldara, R. (2008). Culture shapes how we look at faces. PLoS ONE, 3, e3022.CrossRefGoogle Scholar
Brooks, J. A., Chikazoe, J., Sadato, N., & Freeman, J. B. (2019). The neural representation of facial-emotion categories reflects conceptual structure. Proceedings of the National Academy of Sciences of the United States of America, 116, 15861–15870.Google ScholarPubMed
Bruce, V., & Young, A. W. (1986). Understanding face recognition. British Journal of Psychology, 77, 305–327.CrossRefGoogle ScholarPubMed
Burnett, S., & Blakemore, S. J. (2009). Functional connectivity during a social emotion task in adolescents and in adults. European Journal of Neuroscience, 29, 1294–1301.CrossRefGoogle ScholarPubMed
Caldara, R. (2017). Culture reveals a flexible system for face processing. Current Directions in Psychological Science, 26, 249–255.CrossRefGoogle Scholar
Calder, A. J., Keane, J., Manes, F., Antoun, N., & Young, A. W. (2000). Impaired recognition and experience of disgust following brain injury. Nature Neuroscience, 3, 1077–1078.CrossRefGoogle ScholarPubMed
Calvo, M. G., & Marrero, H. (2009). Visual search of emotional faces: The role of affective content and featural distinctiveness. Cognition & Emotion, 23, 782–806.CrossRefGoogle Scholar
Caspi, A., Taylor, A., Moffitt, T. E., & Plomin, R. (2000). Neighbourhood deprivation affects children’s mental health: Environmental risks identified in a genetic design. Psychological Science, 11, 338–342.CrossRefGoogle Scholar
Chiao, J. Y., Iidaka, T., Gordon, H. L., Nogawa, J., Bar, M., Aminoff, E., … Ambady, N. (2008). Cultural specificity in amygdala response to fear faces. Journal of Cognitive Neuroscience, 20, 2167–2174.CrossRefGoogle ScholarPubMed
Christie, F., & Bruce, V. (1998). The role of dynamic information in the recognition of unfamiliar faces. Memory & Cognition, 26, 780–790.CrossRefGoogle ScholarPubMed
Cohn, J. F., & Ekman, P. (2005). Measuring facial action. In Harrigan, J. A., Rosenthal, R. & Scherer, K. R. (Eds.), The new handbook of methods in nonverbal behavior research (series in affective science) (pp. 9–64). Oxford University Press.Google Scholar
Darwin, C. (1998/1872). The expression of the emotions in man and animals, 3rd ed. Oxford University Press.CrossRefGoogle Scholar
de Heering, A., & Rossion, B. (2015). Rapid categorization of natural face images in the infant right hemisphere. eLife, 4, e06564.CrossRefGoogle ScholarPubMed
Denham, S. A., Blair, K. A., DeMulder, E., Levitas, J., Sawyer, K., Auerbach‐Major, S., & Queenan, P. (2003). Preschool emotional competence: Pathway to social competence. Child Development, 74, 238–256.CrossRefGoogle ScholarPubMed
Dobs, K., Bulthoff, I., & Schultz, J. (2018). Use and usefulness of dynamic face stimuli for face perception studies-a review of behavioral findings and methodology. Frontiers in Psychology, 9, 1355.CrossRefGoogle ScholarPubMed
Duchaine, B., & Yovel, G. (2015). A revised neural framework for face processing. Annual Review of Vision Science, 1, 393–416.CrossRefGoogle ScholarPubMed
Ekman, P. (1994). Strong evidence for universals in facial expressions: A reply to Russell’s mistaken critique. Psychological Bulletin, 115, 268–287.CrossRefGoogle ScholarPubMed
Ekman, P., & Friesen, W. V. (1976). Pictures of facial affect. Consulting Psychological Press.Google Scholar
Ekman, P., & Friesen, W. V. (1978). Facial action coding system. Consulting Psychological Press.Google Scholar
Ekman, P., Friesen, W. V., O’Sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., Heider, K., … Tzavaras, A. (1987). Universals and cultural differences in the judgments of facial expressions of emotion. Journal of Personality and Social Psychology, 53, 712–717.CrossRefGoogle ScholarPubMed
Ekman, P., Sorenson, E. R., & Friesen, W. V. (1969). Pan-cultural elements in facial displays of emotion. Science, 164, 86–88.CrossRefGoogle ScholarPubMed
Farroni, T., Menon, E., Rigato, S., & Johnson, M. H. (2007). The perception of facial expressions in newborns. European Journal of Developmental Psychology, 4, 2–13.CrossRefGoogle ScholarPubMed
Field, T. M., Woodson, R., Greenberg, R., & Cohen, D. (1982). Discrimination and imitation of facial expression by neonates. Science, 218, 179–181.CrossRefGoogle ScholarPubMed
Fiorentini, C., & Viviani, P. (2011). Is there a dynamic advantage for facial expressions? Journal of Vision, 11, 17.CrossRefGoogle Scholar
Fiset, D., Blais, C., Royer, J., Richoz, A.-R., Dugas, G., & Caldara, R. (2017). Mapping the impairment in decoding static facial expressions of emotion in prosopagnosia. Social Cognitive and Affective Neuroscience, 12, 1334–1341.CrossRefGoogle ScholarPubMed
Fridlund, A. J. (1994). Human facial expression: An evolutionary view. Academic Press.Google Scholar
Frith, C. (2009). Role of facial expressions in social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 3453–3458.CrossRefGoogle ScholarPubMed
Garvert, M. M., Friston, K. J., Dolan, R. J., & Garrido, M. I. (2014). Subcortical amygdala pathways enable rapid face processing. NeuroImage, 102, 309–316.CrossRefGoogle ScholarPubMed
Geangu, E., Ichikawa, H., Lao, J., Kanazawa, S., Yamaguchi, M. K., Caldara, R., & Turati, C. (2016). Culture shapes 7 month olds perceptual strategies in discriminating facial expressions of emotion. Current Biology, 26, R663–R664.CrossRefGoogle ScholarPubMed
Gold, J. M., Barker, J. D., Barr, S., Bittner, J. L., Bromfield, W. D., Chu, N., … Srinath, A. (2013). The efficiency of dynamic and static facial expression recognition. Journal of Vision, 13, 23.CrossRefGoogle ScholarPubMed
Goodyer, I. M. (2002). Social adversity and mental functions in adolescents at high risk of psychopathology. British Journal of Psychiatry, 181, 383–386.CrossRefGoogle ScholarPubMed
Grainger, S. A., Henry, J. D., Phillips, L. H., Vanman, E. J., & Allen, R. (2015). Age deficits in facial affect recognition: The influence of dynamic cues. Journals of Gerontology: Psychological Sciences, 72, 622–632.Google Scholar
Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., … Davidson, R. J. (2015). Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biological Psychiatry, 77, 314–323.CrossRefGoogle ScholarPubMed
Harada, T., Mano, Y., Komeda, H., Hechtman, L. A., Pornpattananangkul, N., Parrish, T. B., … Chiao, J. Y. (2020). Cultural influences on neural systems of intergroup emotion perception: An fMRI study. Neuropsychologia, 137, 107254.CrossRefGoogle ScholarPubMed
Hauschild, K. M., Felsman, P., Keifer, C. M., & Lerner, M. D. (2020). Evidence of an own-age bias in facial emotion recognition for adolescents With and without autism spectrum disorder. Frontiers in Psychiatry, 11, 428.CrossRefGoogle ScholarPubMed
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4, 223–233.CrossRefGoogle ScholarPubMed
Herba, C. M., & Philips, M. (2004). Annotation: Development of facial expression recognition from childhood to adolescence: Behavioural and neurological perspectives. Journal of Child Psychology and Psychiatry, 45, 1185–1198.CrossRefGoogle ScholarPubMed
Humphreys, G. W., Donnelly, N., & Riddoch, M. J. (1993). Expression is computed separately from facial identity, and it is computed separately for moving and static faces: Neuropsychological evidence. Neuropsychologia, 31, 173–181.CrossRefGoogle ScholarPubMed
Izard, C. E. (1971). The face of emotion. Appleton-Century-Crofts.Google Scholar
Jack, R. E., Blais, C., Scheepers, C., Schyns, P. G., & Caldara, R. (2009). Cultural confusions show that facial expressions are not universal. Current Biology, 19, 1543–1548.CrossRefGoogle Scholar
Jack, R. E., Caldara, R., & Schyns, P. G. (2012). Internal representations reveal cultural diversity in expectations of facial expressions of emotion. Journal of Experimental Psychology: General, 141, 19–25.Google ScholarPubMed
Jack, R. E., Garrod, O. G., & Schyns, P. G. (2014). Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time. Current Biology, 24, 187–192.CrossRefGoogle ScholarPubMed
Jack, R., Garrod, O., Yu, H., Caldara, R., & Schyns, P. G. (2012). Facial expressions of emotion are not culturally universal. Proceedings of the National Academy of Sciences of the United States of America, 109, 7241–7244.Google Scholar
Jack, R. E., & Schyns, P. G. (2015). The human face as a dynamic tool for social communication. Current Biology, 25, R621–R634.CrossRefGoogle ScholarPubMed
Johnston, P., Mayes, A., Hughes, M., & Young, A. W. (2013). Brain networks subserving the evaluation of static and dynamic facial expressions. Cortex, 49, 2462–2472.CrossRefGoogle ScholarPubMed
Kadosh, K. C., & Johnson, M. H. (2007). Developing a cortex specialized for face perception. Trends in Cognitive Sciences, 11, 367–369.Google Scholar
Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3, 759–763.CrossRefGoogle ScholarPubMed
Keltner, D., Sauter, D., Tracy, J., & Cowen, A. (2019). Emotional expression: Advances in basic emotion theory. Journal of Nonverbal Behavior, 43, 133–160.CrossRefGoogle ScholarPubMed
Kessler, H., Doyen-Waldecker, C., Hofer, C., Hoffmann, H., Traue, H. C., & Abler, B. (2011). Neural correlates of the perception of dynamic versus static facial expressions of emotion. Psychosocial Medicine, 8, Doc03.Google ScholarPubMed
Krumhuber, E. G., Kappas, A., & Manstead, A. S. (2013). Effects of dynamic aspects of facial expressions: A review. Emotion Review, 5, 41–46.CrossRefGoogle Scholar
Leppänen, J. M., & Nelson, C. A. (2009). Tuning the developing brain to social signals of emotions. Nature Reviews Neuroscience, 10, 37–47.CrossRefGoogle ScholarPubMed
Leppänen, J. M., Richmond, J., Vogel-Farley, V. K., Moulson, M. C., & Nelson, C. A., (2009). Categorical representation of facial expressions in the infant brain. Infancy, 14, 346e362.CrossRefGoogle ScholarPubMed
Liang, L., Zhang, Z., Li, J., Wu, J., Wang, L., Huang, W., … Gao, S. (2017). Direct binding of RNF8 to SUMO2/3 promotes cell survival following DNA damage. Molecular Medicine Reports, 16, 8385–8391.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Jackson, J. C., Leshin, J., Satpute, A. B., & Gendron, M. (2022). The cultural evolution of emotion. Nature Reviews Psychology, 1, 669–681.CrossRefGoogle Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121–143.CrossRefGoogle ScholarPubMed
Lobaugh, N. J., Gibson, E., & Taylor, M. J. (2006). Children recruit distinct neural systems for implicit emotional face processing. Neuroreport, 17, 215–219.CrossRefGoogle ScholarPubMed
Matsumoto, D., & Willingham, B. (2009). Spontaneous facial expressions of emotion of congenitally and noncongenitally blind individuals. Journal of Personality and Social Psychology, 96, 1–10.CrossRefGoogle ScholarPubMed
Moore, W. E., Pfeifer, J. H., Masten, C. L., Mazziotta, J. C., Iacoboni, M., & Dapretto, M., (2012). Facing puberty: Associations between pubertal development and neural responses to affective facial displays. Social Cognitive and Affective Neuroscience, 7, 35e43.CrossRefGoogle ScholarPubMed
Namba, S., Kabir, R. S., Miyatani, M., & Nakao, T. (2018). Dynamic displays enhance the ability to discriminate genuine and posed facial expressions of emotion. Frontiers in Psychology, 9, 672.CrossRefGoogle ScholarPubMed
Nelson, N. L., & Russell, J. A. (2011). Putting motion in emotion: Do dynamic presentations increase preschooler’s recognition of emotion? Cognitive Development, 26, 248–259.CrossRefGoogle Scholar
Paparelli, A., Sokhn, N., Stacchi, L., Coutrot, A., Richoz, A. R., & Caldara, R. (2024). Idiosyncratic fixation patterns generalize across dynamic and static facial expression recognition. Scientific Reports, 14, 16193.CrossRefGoogle ScholarPubMed
Park, B., Tsai, J. L., Chim, L., Blevins, E., & Knutson, B. (2016). Neural evidence for cultural differences in the valuation of positive facial expressions. Social Cognitive and Affective Neuroscience, 14, 243–252.Google Scholar
Parkinson, B. (2005). Do facial movements express emotions or communicate motives? Personality and Social Psychology Review, 9, 278–311.CrossRefGoogle ScholarPubMed
Peelen, M. V., Wiggett, A. J., & Downing, P. E. (2006). Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion. Neuron, 49, 815–822.CrossRefGoogle ScholarPubMed
Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a ‘low road’ to ‘many roads’ of evaluating biological significance. Nature Reviews Neuroscience, 11, 773–782.CrossRefGoogle ScholarPubMed
Phillips, M. L., Young, A. W., Senior, C., Brammer, M., Andrew, C., Calder, A. J., … David, A. S. (1997). A specific neural substrate for perceiving facial expressions of disgust. Nature, 389, 495–498.CrossRefGoogle ScholarPubMed
Pollak, S. D., & Kistler, D. (2002). Early experience alters categorical representations for facial expressions of emotion. Proceedings of the National Academy of Sciences of the United States of America, 99, 9072–9076.Google ScholarPubMed
Poncet, F., Leleu, A., Rekow, D., Damon, F., Dzhelyova, M., Schaal, B., … Baudouin, J. Y. (2022). A neural marker of rapid discrimination of facial expression in 3.5-and 7-month-old infants. Frontiers in Neuroscience, 16, 901013.CrossRefGoogle ScholarPubMed
Puce, A., & Perrett, D. (2003). Electrophysiology and brain imaging of biological motion. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358, 435–445.CrossRefGoogle ScholarPubMed
Quesque, F., Coutrot, A., Cox, S., de Souza, L. C., Baez, S., Cardona, J. F., … Bertoux, M. (2022). Does culture shape our understanding of others’ thoughts and emotions? An investigation across 12 countries. Neuropsychology, 36, 664–682.CrossRefGoogle ScholarPubMed
Reissland, N., Francis, B., Mason, J., & Lincoln, K. (2011.) Do facial expressions develop before birth? PLoS ONE, 6, e24081.CrossRefGoogle ScholarPubMed
Richoz, A. R., Jack, R. E., Garrod, O. G., Schyns, P. G., & Caldara, R. (2015). Reconstructing dynamic mental models of facial expressions in prosopagnosia reveals distinct representations for identity and expression. Cortex, 65, 50–64.CrossRefGoogle ScholarPubMed
Richoz, A.-R., Lao, J., Pascalis, O., & Caldara, R. (2018). Tracking the recognition of static and dynamic facial expressions of emotion across the life span. Journal of Vision, 18, 5.Google ScholarPubMed
Richoz, A.-R., Stacchi, L., Schaller, P., Lao, J., Papinutto, M., Ticcinelli, V., & Caldara, R. (2024). Recognizing facial expressions of emotion amidst noise: A dynamic advantage. Journal of Vision, 24, 7.CrossRefGoogle Scholar
Rodger, H., Lao, J., & Caldara, R. (2018). Quantifying facial expression signal and intensity use during development. Journal of Experimental Child Psychology, 174, 41–59.CrossRefGoogle ScholarPubMed
Rodger, H., Lao, J., Stoll, C., Richoz, A. R., Pascalis, O., Dye, M., & Caldara, R. (2021). The recognition of facial expressions of emotion in deaf and hearing individuals. Heliyon, 7, e07018.CrossRefGoogle ScholarPubMed
Rodger, H., Sokhn, N., Lao, J., Liu, Y., & Caldara, R. (2023). Developmental eye movement strategies for decoding facial expressions of emotion. Journal of Experimental Child Psychology, 229, 105622.CrossRefGoogle ScholarPubMed
Rodger, H., Vizioli, L., Ouyang, X., & Caldara, R. (2015). Mapping the development of facial expression recognition. Developmental Science, 18, 926–939.CrossRefGoogle ScholarPubMed
Ruba, A. L., & Repacholi, B. M. (2020). Do preverbal infants understand discrete facial expressions of emotion? Emotion Review, 12, 235–250.CrossRefGoogle Scholar
Ruffman, T., Kong, Q., Lim, H. M., Du, K., & Tiainen, E. (2023). Recognition of facial emotions across the lifespan: 8-year-olds resemble older adults. British Journal of Developmental Psychology, 41, 128–139.CrossRefGoogle ScholarPubMed
Russell, J. A. (1994). Is there universal recognition of emotion from facial expression? A review of the cross-cultural studies. Psychological Bulletin, 115, 102–141.CrossRefGoogle ScholarPubMed
Safar, K., Kusec, A., & Moulson, M. C. (2017). Face experience and the attentional bias for fearful expressions in 6- and 9-month-old infants. Frontiers in Psychology, 8, 1575.CrossRefGoogle ScholarPubMed
Said, C. P., Haxby, J. V., & Todorov, A. (2011). Brain systems for assessing the affective value of faces. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366, 1660–1670.Google ScholarPubMed
Schaefer, K. L., Baumann, J., Rich, B. A., Luckenbaugh, D. A., & Zarate, C. A., Jr. (2010). Perception of facial emotion in adults with bipolar or unipolar depression and controls. Journal of Psychiatric Research, 44, 1229–1235.CrossRefGoogle ScholarPubMed
Smith, M. L., Gosselin, F., Cottrell, G. W., & Schyns, P. G. (2005). Transmitting and decoding facial expressions. Psychological Science, 16, 753–761.CrossRefGoogle ScholarPubMed
Smith, K. E., & Pollak, S. D. (2021) Re-thinking concepts and categories for understanding the neurodevelopmental effects of childhood adversity. Perspectives on Psychological Science, 16, 67–93.CrossRefGoogle Scholar
Sorger, B., Goebel, R., Schiltz, C., & Rossion, B. (2007). Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage, 35, 836–852.CrossRefGoogle ScholarPubMed
Stacchi, L., Ramon, M., Lao, J., & Caldara, R. (2019). Neural representations of faces are tuned to eye movements. Journal of Neuroscience, 39, 4113–4123.CrossRefGoogle ScholarPubMed
Stoll, C., Rodger, H., Lao, J., Richoz, A.-R. J., Pascalis, O., Dye, M. W. G., & Caldara, R. (2019). Quantifying facial expression intensity and signal use in deaf signers. Journal of Deaf Studies and Deaf Education, 24, 346–355.CrossRefGoogle ScholarPubMed
Susskind, J. M., Lee, D. H., Cusi, A., Feiman, R., Grabski, W., & Anderson, A. K. (2008). Expressing fear enhances sensory acquisition. Nature Reviews Neuroscience, 11, 843–850.Google ScholarPubMed
Teicher, M., Samson, J., Anderson, C. & Ohashi, K. (2016). The effects of childhood maltreatment on brain structure, function and connectivity. Nature Reviews Neuroscience, 17, 652–666.CrossRefGoogle ScholarPubMed
Thomas, K. M., Drevets, W. C., Whalen, P. J., Eccard, C. H., Dahl, R. E., Ryan, M. D., & Casey, B. J. (2001). Amygdala response to facial expressions in children and adults. Biological Psychiatry, 49, 309e316.CrossRefGoogle ScholarPubMed
Tracy, J. L., & Matsumoto, D. (2008). The spontaneous expression of pride and shame: Evidence for biologically innate nonverbal displays. Proceedings of the National Academy of Sciences of the United States of America, 105, 11655–11660.Google ScholarPubMed
Trautmann, S. A., Domínguez-Borràs, J., Escera, C., Herrmann, M., & Fehr, T. (2013). The perception of dynamic and static facial expressions of happiness and disgust investigated by ERPs and fMRI constrained source analysis. PLoS ONE, 8, e66997.Google Scholar
Trautmann, S. A., Fehr, T., & Herrmann, M. (2009). Emotions in motion: Dynamic compared to static facial expressions of disgust and happiness reveal more widespread emotion-specific activations. Brain Research, 1284, 100–115.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and function of the human insula. Journal of Clinical Neurophysiology, 34, 300.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6, 624–631.CrossRefGoogle ScholarPubMed
Vuilleumier, P., & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia, 45, 174–194.CrossRefGoogle ScholarPubMed
Widen, S. C., & Russell, J. A. (2015). Do dynamic facial expressions convey emotions to children better than do static ones? Journal of Cognition and Development, 16, 802–811.CrossRefGoogle Scholar
Wyssen, A., Lao, J., Rodger, H., Humbel, N., Lennertz, J., Schuck, K., … Munsch, S. (2019). Facial emotion recognition abilities in women suffering from eating disorders. Psychosomatic Medicine: Journal of Behavioral Medicine, 81, 155–164.CrossRefGoogle Scholar
Xie, W., McCormick, S. A., Westerlund, A., Bowman, L. C., & Nelson, C. A. (2018). Neural correlates of facial emotion processing in infancy. Developmental Science, 22, e12758.Google ScholarPubMed
Xu, P., Peng, S., Luo, Y. J., & Gong, G. (2021). Facial expression recognition: A meta-analytic review of theoretical models and neuroimaging evidence. Neuroscience & Biobehavioral Reviews, 127, 820–836.CrossRefGoogle ScholarPubMed
Yitzhak, N., Gilaie-Dotan, S., & Aviezer, H. (2018). The contribution of facial dynamics to subtle expression recognition in typical viewers and developmental visual agnosia. Neuropsychologia, 117, 26–35.CrossRefGoogle ScholarPubMed
Yitzhak, N., Pertzov, Y., Guy, N., & Aviezer, H. (2020). Many ways to see your feelings: Successful facial expression recognition occurs with diverse patterns of fixation distributions. Emotion, 22, 844–860.Google ScholarPubMed
Yuki, M., Maddux, W. W., & Masuda, T. (2007). Are the windows to the soul the same in the East and West? Cultural differences in using the eyes and mouth as cues to recognize emotions in Japan and the United States. Journal of Experimental Social Psychology, 43, 303–311.CrossRefGoogle Scholar
Zloteanu, M., Krumhuber, E. G., & Richardson, D. C. (2018). Detecting genuine and deliberate displays of surprise in static and dynamic faces. Frontiers in Psychology, 9, 1184.CrossRefGoogle ScholarPubMed

References

Abramson, L., Marom, I., Petranker, R., & Aviezer, H. (2016). Is fear in your head? A comparison of instructed and real-life expressions of emotion in the face and body. Emotion, 17, 557–565.Google Scholar
Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33, 717–746.CrossRefGoogle ScholarPubMed
Atkinson, A. P., Tunstall, M. L., & Dittrich, W. H. (2007). Evidence for distinct contributions of form and motion information to the recognition of emotions from body gestures. Cognition, 104, 59–72.CrossRefGoogle Scholar
Aviezer, H., Ensenberg, N., & Hassin, R. R. (2017). The inherently contextualized nature of facial emotion perception. Current Opinion in Psychology, 17, 47–54.CrossRefGoogle ScholarPubMed
Aviezer, H., Messinger, D. S., Zangvil, S., Mattson, W. I., Gangi, D. N., & Todorov, A. (2015). Thrill of victory or agony of defeat? Perceivers fail to utilize information in facial movements. Emotion, 15, 791–797.CrossRefGoogle ScholarPubMed
Aviezer, H., Trope, Y., & Todorov, A. (2012). Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science, 338, 1225–1229.CrossRefGoogle Scholar
Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M., & Pollak, S. D. (2019). Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements. Psychological Science in the Public Interest, 20, 1–68.CrossRefGoogle ScholarPubMed
Chronaki, G., Hadwin, J. A., Garner, M., Maurage, P., & Sonuga‐Barke, E. J. (2015). The development of emotion recognition from facial expressions and non‐linguistic vocalizations during childhood. British Journal of Developmental Psychology, 33, 218–236.CrossRefGoogle ScholarPubMed
Cowen, A. S., & Keltner, D. (2020). What the face displays: Mapping 28 emotions conveyed by naturalistic expression. American Psychologist, 75, 349.CrossRefGoogle ScholarPubMed
Cowen, A. S., Keltner, D., Schroff, F., Jou, B., Adam, H., & Prasad, G. (2021). Sixteen facial expressions occur in similar contexts worldwide. Nature, 589, 251–257.CrossRefGoogle ScholarPubMed
Crivelli, C., Russell, J. A., Jarillo, S., & Fernández-Dols, J.-M. (2016). The fear gasping face as a threat display in a Melanesian society. Proceedings of the National Academy of Sciences of the United States of America, 113, 12403–12407.Google Scholar
Darwin, C. (1872). The expression of the emotions of man and animals. John Murray.CrossRefGoogle Scholar
Dael, N., Bianchi-Berthouze, N., Kleinsmith, A., & Mohr, C. (2016). Measuring body movement: Current and future directions in proxemics and kinesics. In Matsumoto, D., Hwang, H. C., & Frank, M. G. (Eds.), APA handbook of nonverbal communication (pp. 551–587). American Psychological Association.Google Scholar
de Gelder, B. (2009). Why bodies? Twelve reasons for including bodily expressions in affective neuroscience. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 3475–3484.CrossRefGoogle ScholarPubMed
de Gelder, B., Snyder, J., Greve, D., Gerard, G., & Hadjikhani, N. (2004). Fear fosters flight: A mechanism for fear contagion when perceiving emotion expressed by a whole body. Proceedings of the National Academy of Sciences of the United States of America, 101, 16701–16706.Google ScholarPubMed
de Gelder, B., & Van den Stock, J. (2011). The Bodily Expressive Action Stimulus Test (BEAST). Construction and validation of a stimulus basis for measuring perception of whole body expression of emotions. Frontiers in Psychology, 2, 181.CrossRefGoogle ScholarPubMed
de Gelder, B., Van den Stock, J., Meeren, H. K., Sinke, C. B., Kret, M. E., & Tamietto, M. (2010). Standing up for the body. Recent progress in uncovering the networks involved in the perception of bodies and bodily expressions. Neuroscience & Biobehavioral Reviews, 34, 513–527.CrossRefGoogle ScholarPubMed
de Meijer, M. (1989). The contribution of general features of body movement to the attribution of emotions. Journal of Nonverbal Behavior, 13, 247–268.CrossRefGoogle Scholar
Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science, 293, 2470–2473.CrossRefGoogle ScholarPubMed
Ekman, P. (1965). Differential communication of affect by head and body cues. Journal of Personality and Social Psychology, 2, 726.CrossRefGoogle ScholarPubMed
Ekman, P. & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17, 124.CrossRefGoogle ScholarPubMed
Elfenbein, H. A., Beaupré, M., Lévesque, M., & Hess, U. (2007). Toward a dialect theory: cultural differences in the expression and recognition of posed facial expressions. Emotion, 7, 131.CrossRefGoogle Scholar
Fernández-Dols, J.-M., & Crivelli, C. (2013). Emotion and expression: Naturalistic studies. Emotion Review, 5, 24–29.CrossRefGoogle Scholar
Fernández-Dols, J.-M., & Ruiz-Belda, M.-A. (1995). Are smiles a sign of happiness? Gold medal winners at the Olympic Games. Journal of Personality and Social Psychology, 69, 1113–1119.CrossRefGoogle Scholar
Ferrari, C., Ciricugno, A., Urgesi, C., & Cattaneo, Z. (2022). Cerebellar contribution to emotional body language perception: A TMS study. Social Cognitive and Affective Neuroscience, 17, 81–90.CrossRefGoogle ScholarPubMed
Grèzes, J., Adenis, M. S., Pouga, L., & Armony, J. L. (2013). Self-relevance modulates brain responses to angry body expressions. Cortex, 48, 2210–2220.Google Scholar
Grosbras, M. H., & Paus, T. (2006). Brain networks involved in viewing angry hands or faces. Cerebral Cortex, 16, 1087–1096.CrossRefGoogle ScholarPubMed
Hadjikhani, N., & de Gelder, B. (2003). Seeing fearful body expressions activates the fusiform cortex and amygdala. Current Biology, 13, 2201–2205.CrossRefGoogle ScholarPubMed
Heck, A., Chroust, A., White, H., Jubran, R., & Bhatt, R. S. (2018). Development of body emotion perception in infancy: From discrimination to recognition. Infant Behavior and Development, 50, 42–51.CrossRefGoogle ScholarPubMed
Herba, C. M., Landau, S., Russell, T., Ecker, C., & Phillips, M. L. (2006). The development of emotion‐processing in children: Effects of age, emotion, and intensity. Journal of Child Psychology and Psychiatry, 47, 1098–1106.CrossRefGoogle ScholarPubMed
Hinzman, L., & Kelly, S. D. (2013). Effects of emotional body language on rapid out-group judgments. Journal of Experimental Social Psychology, 49, 152–155.CrossRefGoogle Scholar
Hu, Y. & O’Toole, A. (2022). Integrating faces and bodies in social trait perception. Journal of Vision, 22, 3942.CrossRefGoogle Scholar
James, W. T. (1932). A study of the expression of bodily posture. The Journal of General Psychology, 7, 405–437.CrossRefGoogle Scholar
Kleinsmith, A., De Silva, P. R., & Bianchi-Berthouze, N. (2006). Cross-cultural differences in recognizing affect from body posture. Interacting with Computers, 18, 1371–1389.CrossRefGoogle Scholar
Koppensteiner, M., Stephan, P., & Jäschke, J. P. M. (2016). Moving speeches: Dominance, trustworthiness and competence in body motion. Personality and Individual Differences, 94, 101–106.CrossRefGoogle Scholar
Kret, M., Pichon, S., Grèzes, J., & de Gelder, B. (2011). Similarities and differences in perceiving threat from dynamic faces and bodies. An fMRI study. Neuroimage, 54, 1755–1762.CrossRefGoogle ScholarPubMed
Kret, M., Stekelenburg, J. J., Roelofs, K., & de Gelder, B. (2013). Perception of face and body expressions using electromyography, pupillometry and gaze measures. Frontiers in Psychology, 4, 28.CrossRefGoogle ScholarPubMed
Kudoh, T., & Matsumoto, D. (1985). Cross-cultural examination of the semantic dimensions of body postures. Journal of Personality and Social Psychology, 48, 1440.CrossRefGoogle ScholarPubMed
Lecker, M., & Aviezer, H. (2021). More than words? Semantic emotion labels boost context effects on faces. Affective Science, 2, 163–170.CrossRefGoogle ScholarPubMed
Lecker, M., Dotsch, R., Bijlstra, G., & Aviezer, H. (2020). Bidirectional contextual influence between faces and bodies in emotion perception. Emotion, 20, 1154.CrossRefGoogle ScholarPubMed
Matsumoto, D., & Kudoh, T. (1987). Cultural similarities and differences in the semantic dimensions of body postures. Journal of Nonverbal Behavior, 11, 166–179.CrossRefGoogle Scholar
Meeren, H. K., Hadjikhani, N., Ahlfors, S. P., Hämäläinen, M. S., & de Gelder, B. (2016). Early preferential responses to fear stimuli in human right dorsal visual stream—a MEG study. Scientific Reports, 6, 24831.CrossRefGoogle Scholar
Meeren, H. K. M., van Heijnsbergen, C. C. R. J., & de Gelder, B. (2005). Rapid perceptual integration of facial expression and emotional body language. Proceedings of the National Academy of Sciences of the United States of America, 102, 16518–16523.Google ScholarPubMed
Missana, M., Atkinson, A. P., & Grossmann, T. (2015). Tuning the developing brain to emotional body expressions. Developmental Science, 18, 243–253.CrossRefGoogle ScholarPubMed
Montepare, J., Koff, E., Zaitchik, D., & Albert, M. (1999). The use of body movements and gestures as cues to emotions in younger and older adults. Journal of Nonverbal Behavior, 23, 133–152.CrossRefGoogle Scholar
Motley, M. T., & Camden, C. T. (1988). Facial expression of emotion: A comparison of posed expressions versus spontaneous expressions in an interpersonal communication setting. Western Journal of Communication, 52, 1–22.Google Scholar
Naab, P. J., & Russell, J. A. (2007). Judgments of emotion from spontaneous facial expressions of New Guineans. Emotion, 7, 736–744.CrossRefGoogle ScholarPubMed
Nelson, N. L., & Russell, J. A. (2011). Preschoolers’ use of dynamic facial, bodily, and vocal cues to emotion. Journal of Experimental Child Psychology, 110, 52–61.CrossRefGoogle ScholarPubMed
Peelen, M. V., Atkinson, A. P., Andersson, F., & Vuilleumier, P. (2007). Emotional modulation of body-selective visual areas. Social Cognitive and Affective Neuroscience, 2, 274–283.CrossRefGoogle ScholarPubMed
Peelen, M. V., & Downing, P. E. (2007). The neural basis of visual body perception. Nature Reviews Neuroscience, 8, 636–648.CrossRefGoogle ScholarPubMed
Pichon, S., de Gelder, B., & Grèzes, J. (2008). Two different faces of threat. Comparing the neural systems for recognizing fear and anger in dynamic body expressions. NeuroImage, 47, 1873–1883.Google Scholar
Pichon, S., de Gelder, B., & Grèzes, J. (2009). Emotional modulation of visual and motor areas by dynamic body expressions of anger. Social Neuroscience, 3, 199–212.Google Scholar
Roether, C. L., Omlor, L., Christensen, A., & Giese, M. A. (2009). Critical features for the perception of emotion from gait. Journal of Vision, 9, 15.CrossRefGoogle ScholarPubMed
Ross, P. D., Polson, L., & Grosbras, M.-H. (2012). Developmental changes in emotion recognition from full-light and point-light displays of body movement. PLoS ONE, 7, e44815.CrossRefGoogle ScholarPubMed
Samson, D., Apperly, I. A., Chiavarino, C., & Humphreys, G. W. (2004). Left temporoparietal junction is necessary for representing someone else’s belief. Nature Neuroscience, 7, 499–500.CrossRefGoogle ScholarPubMed
Scherer, K. R., Wallbott, H. G., & Summerfield, A. B. (Eds.) (1986). Experiencing emotion: A cross-cultural study. Cambridge University Press.Google Scholar
Schützwohl, A., & Reisenzein, R. (2012). Facial expressions in response to a highly surprising event exceeding the field of vision: A test of Darwin’s theory of surprise. Evolution and Human Behavior, 33, 657–664.CrossRefGoogle Scholar
Schwarzlose, R. F., Baker, C. I., & Kanwisher, N. (2005). Separate face and body selectivity on the fusiform gyrus. Journal of Neuroscience, 25, 11055–11059.CrossRefGoogle ScholarPubMed
Stark, K. (2019). The ambiguous face of ecstatic delight: Understanding the role of dynamic faces and bodies in emotion recognition. Unpublished Master’s thesis, Humboldt University of Berlin, Berlin, Germany.Google Scholar
Stekelenburg, J. J., & de Gelder, B. (2004). The neural correlates of perceiving human bodies: an ERP study on the body-inversion effect. Neuroreport, 15, 777–780.CrossRefGoogle Scholar
Tamietto, M., Castelli, L., Vighetti, S., Perozzo, P., Geminiani, G., Weiskrantz, L., & de Gelder, B. (2009). Unseen facial and bodily expressions trigger fast emotional reactions. Proceedings of the National Academy of Sciences of the United States of America, 106, 17661–17666.Google ScholarPubMed
Tamietto, M., Geminiani, G., Genero, R., & de Gelder, B. (2007). Seeing fearful body language overcomes attentional deficits in patients with neglect. Journal of Cognitive Neuroscience, 19, 445–454.CrossRefGoogle ScholarPubMed
Thoma, P., Soria Bauser, D., & Suchan, B. (2013). BESST (Bochum Emotional Stimulus Set) – A pilot validation study of a stimulus set containing emotional bodies and faces from frontal and averted views. Psychiatry Research, 209, 98–109.CrossRefGoogle Scholar
Tracy, J. L., & Matsumoto, D. (2008). The spontaneous expression of pride and shame: Evidence for biologically innate nonverbal displays. Proceedings of the National Academy of Sciences of the United States of America, 105, 11655–11660.Google ScholarPubMed
Tracy, J. L., & Robins, R. W. (2008). The nonverbal expression of pride: Evidence for cross-cultural recognition. Journal of Personality and Social Psychology, 94, 516.CrossRefGoogle ScholarPubMed
Tuminello, E. R., & Davidson, D. (2011). What the face and body reveal: In-group emotion effects and stereotyping of emotion in African American and European American children. Journal of Experimental Child Psychology, 110, 258–274.CrossRefGoogle ScholarPubMed
Van den Stock, J., Tamietto, M., Sorger, B., Pichon, S., Grèzes, J., & de Gelder, B. (2011). Cortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (V1). Proceedings of the National Academy of Sciences of the United States of America, 108, 16188–16193.Google ScholarPubMed
van de Riet, W. A. C., Grèzes, J., & de Gelder, B. (2009). Specific and common brain regions involved in the perception of faces and bodies and the representation of their emotional expressions. Social Neuroscience, 4, 101–120.CrossRefGoogle ScholarPubMed
Vuilleumier, P., & Schwartz, S. (2001). Emotional facial expressions capture attention. Neurology, 56, 153–158.CrossRefGoogle ScholarPubMed
Wallbott, H. G. (1998). Bodily expression of emotion. European Journal of Social Psychology, 28, 879–896.3.0.CO;2-W>CrossRefGoogle Scholar
Watson, R., & de Gelder, B. (2020). The representation and plasticity of body emotion expression. Psychological Research, 84, 1400–1406.CrossRefGoogle ScholarPubMed
Weiskrantz, L. (1996). Blindsight revisited. Current Opinion in Neurobiology, 6, 215–220.CrossRefGoogle ScholarPubMed
Wenzler, S., Levine, S., van Dick, R., Oertel-Knöchel, V., & Aviezer, H. (2016). Beyond pleasure and pain: Facial expression ambiguity in adults and children during intense situations. Emotion, 16, 807–814.CrossRefGoogle ScholarPubMed
Wieser, M. J., & Brosch, T. (2012). Faces in context: A review and systematization of contextual influences on affective face processing. Frontiers in Psychology, 3, 471.CrossRefGoogle ScholarPubMed
Willis, J., & Todorov, A. (2006). First impressions: Making up your mind after a 100-ms exposure to a face. Psychological Science, 17, 592–598.CrossRefGoogle ScholarPubMed
Witkower, Z., Tracy, J. L., Pun, A., & Baron, A. S. (2021). Can children recognize bodily expressions of emotion? Journal of Nonverbal Behavior, 45, 505–518.CrossRefGoogle Scholar
Zieber, N., Kangas, A., Hock, A., & Bhatt, R. S. (2014a). The development of intermodal emotion perception from bodies and voices. Journal of Experimental Child Psychology, 126, 68–79.CrossRefGoogle Scholar
Zieber, N., Kangas, A., Hock, A., & Bhatt, R. S. (2014b). Infants’ perception of emotion from body movements. Child Development, 85, 675–684.CrossRefGoogle Scholar

References

Abrams, D. A., Chen, T., Odriozola, P., Cheng, K. M., Baker, A. E., Padmanabhan, A., … Menon, V. (2016). Neural circuits underlying mother’s voice perception predict social communication abilities in children. Proceedings of the National Academy of Sciences of the United States of America, 113, 6295–6300.Google ScholarPubMed
Addington, J., Piskulic, D., Perkins, D., Woods, S. W., Liu, L., & Penn, D. L. (2012). Affect recognition in people at clinical high risk of psychosis. Schizophrenia Research, 140, 87–92.CrossRefGoogle ScholarPubMed
Aguert, M., Laval, V., Lacroix, A., Gil, S., & Le Bigot, L. (2013). Inferring emotions from speech prosody: Not so easy at age five. PloS ONE, 8, e83657–e83657.CrossRefGoogle ScholarPubMed
Allen, R., & Brosgole, L. (1993). Facial and auditory affect recognition in senile geriatrics, the normal elderly and young adults. International Journal of Neuroscience, 68, 33–42.CrossRefGoogle ScholarPubMed
Allgood, R., & Heaton, P. (2015). Developmental change and cross-domain links in vocal and musical emotion recognition performance in childhood. British Journal of Developmental Psychology, 33, 398–403.CrossRefGoogle ScholarPubMed
Amminger, G. P., Schäfer, M. R., Papageorgiou, K., Klier, C. M., Schlögelhofer, M., Mossaheb, N., … McGorry, P. D. (2012). Emotion recognition in individuals at clinical high-risk for schizophrenia. Schizophrenia Bulletin, 38, 1030–1039.CrossRefGoogle ScholarPubMed
Amorim, M., Anikin, A., Mendes, A. J., Lima, C. F., Kotz, S. A., & Pinheiro, A. P. (2021). Changes in vocal emotion recognition across the life span. Emotion, 21, 315–325.CrossRefGoogle ScholarPubMed
Amorim, M., Roberto, M. S., Kotz, S. A., & Pinheiro, A. P. (2021). The perceived salience of vocal emotions is dampened in non-clinical auditory verbal hallucinations. Cognitive Neuropsychiatry, 27, 169–182.Google ScholarPubMed
Anikin, A., & Persson, T. (2017). Nonlinguistic vocalizations from online amateur videos for emotion research: A validated corpus. Behavior Research Methods, 49, 758–771.CrossRefGoogle ScholarPubMed
Arnal, L. H., Flinker, A., Kleinschmidt, A., Giraud, A. L., & Poeppel, D. (2015). Human screams occupy a privileged niche in the communication soundscape. Current Biology, 25, 2051–2056.CrossRefGoogle ScholarPubMed
Aslin, R. N. (1987). Visual and auditory development in infancy. In Osofsky, J. D. (Ed.), Handbook of infant development, 2nd ed. (pp. 5–97). John Wiley & Sons.Google Scholar
Banse, R., & Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70, 614–636.CrossRefGoogle ScholarPubMed
Belin, P., Fecteau, S., & Bédard, C. (2004). Thinking the voice: Neural correlates of voice perception. Trends in Cognitive Sciences, 8, 129–135.CrossRefGoogle ScholarPubMed
Belin, P., Fillion-Bilodeau, S., & Gosselin, F. (2008). The Montreal Affective Voices: A validated set of nonverbal affect bursts for research on auditory affective processing. Behavior Research Methods, 40, 531–539.CrossRefGoogle ScholarPubMed
Belin, P., Zatorre, R., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Nature, 403, 309–312.CrossRefGoogle ScholarPubMed
Bellis, T. J., Nicol, T., & Kraus, N. (2000). Aging affects hemispheric asymmetry in the neural representation of speech sounds. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20, 791–797.CrossRefGoogle ScholarPubMed
Bestelmeyer, P. E. G., Maurage, P., Rouger, J., Latinus, M., & Belin, P. (2014). Adaptation to vocal expressions reveals multistep perception of auditory emotion. Journal of Neuroscience, 34, 8098–8105.CrossRefGoogle ScholarPubMed
Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267–277.CrossRefGoogle ScholarPubMed
Blasi, A., Lloyd-Fox, S., Sethna, V., Brammer, M. J., Mercure, E., Murray, L., … Johnson, M. H. (2015). Atypical processing of voice sounds in infants at risk for autism spectrum disorder. Cortex, 71, 122–133.CrossRefGoogle ScholarPubMed
Blasi, A., Mercure, E., Lloyd-Fox, S., Thomson, A., Brammer, M., Sauter, D., … Murphy, D. G. M. (2011). Early specialization for voice and emotion processing in the infant brain. Current Biology, 21, 1220–1224.CrossRefGoogle ScholarPubMed
Bradley, M. M., & Lang, P. J. (2007). Emotion and motivation. In Cacioppo, J. T., Tassinary, L. G., & Berntston, G. G. (Eds.), Handbook of psychophysiology, 3rd ed. (pp. 581–607). Cambridge University Press.Google Scholar
Brix, N., Ernst, A., Lauridsen, L. L. B., Parner, E., Støvring, H., Olsen, J., … Ramlau-Hansen, C. H. (2019). Timing of puberty in boys and girls: A population-based study. Paediatric and Perinatal Epidemiology, 33, 70–78.CrossRefGoogle Scholar
Brosch, T., Grandjean, D., Sander, D., & Scherer, K. R. (2009). Cross-modal emotional attention: Emotional voices modulate early stages of visual processing. Journal of Cognitive Neuroscience, 21, 1670–1679.CrossRefGoogle ScholarPubMed
Buchanan, T. W., Lutz, K., Mirzazade, S., Specht, K., Shah, N. J., Zilles, K., & Jäncke, L. (2000). Recognition of emotional prosody and verbal components of spoken language: An fMRI study. Cognitive Brain Research, 9, 227–238.CrossRefGoogle ScholarPubMed
Caballero, J. A., Mauchand, M., Jiang, X., & Pell, M. D. (2021). Cortical processing of speaker politeness: Tracking the dynamic effects of voice tone and politeness markers. Social Neuroscience, 16, 423–438.CrossRefGoogle ScholarPubMed
Carstensen, L. L. (1995). Evidence for a life-span theory of socioemotional selectivity. Current Directions in Psychological Science, 4, 151–156.CrossRefGoogle Scholar
Castiajo, P., & Pinheiro, A. P. (2019). Decoding emotions from nonverbal vocalizations: How much voice signal is enough? Motivation and Emotion, 43, 803–813.CrossRefGoogle Scholar
Castiajo, P., & Pinheiro, A. P. (2021a). Acoustic salience in emotional voice perception and its relationship with hallucination proneness. Cognitive, Affective, & Behavioral Neuroscience, 21, 412–425.CrossRefGoogle Scholar
Castiajo, P., & Pinheiro, A. P. (2021b). Attention to voices is increased in non-clinical auditory verbal hallucinations irrespective of salience. Neuropsychologia, 162, 108030.CrossRefGoogle Scholar
Cheng, Y., Lee, S.-Y., Chen, H.-Y., Wang, P.-Y., & Decety, J. (2012). Voice and emotion processing in the human neonatal brain. Journal of Cognitive Neuroscience, 24, 1411–1419.CrossRefGoogle ScholarPubMed
Chieh, K., Sera, M. D., & Yang, Z. (2022). Emotional speech processing in 3- to 12-month-old infants: Influences of emotion categories and acoustic parameters. Journal of Speech, Language, and Hearing Research, 65, 487–500.Google Scholar
Chronaki, G., Benikos, N., Fairchild, G., & Sonuga-Barke, E. J. S. (2015). Atypical neural responses to vocal anger in attention-deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, 56, 477–487.CrossRefGoogle ScholarPubMed
Chronaki, G., Garner, M., Hadwin, J. A., Thompson, M. J. J., Chin, C. Y., & Sonuga-Barke, E. J. S. (2015). Emotion-recognition abilities and behavior problem dimensions in preschoolers: Evidence for a specific role for childhood hyperactivity. Child Neuropsychology, 21, 25–40.CrossRefGoogle ScholarPubMed
Chronaki, G., Hadwin, J. A., Garner, M., Maurage, P., & Sonuga-Barke, E. J. S. (2015). The development of emotion recognition from facial expressions and non-linguistic vocalizations during childhood. British Journal of Developmental Psychology, 33, 218–236.CrossRefGoogle ScholarPubMed
Chronaki, G., Wigelsworth, M., Pell, M. D., & Kotz, S. A. (2018). The development of cross-cultural recognition of vocal emotion during childhood and adolescence. Scientific Reports, 8, 8659.CrossRefGoogle ScholarPubMed
Corvin, S., Fauchon, C., Peyron, R., Reby, D., & Mathevon, N. (2022). Adults learn to identify pain in babies’ cries. Current Biology, 32, R824–R825.CrossRefGoogle ScholarPubMed
Cowen, A. S., Laukka, P., Elfenbein, H. A., Liu, R., & Keltner, D. (2019). The primacy of categories in the recognition of 12 emotions in speech prosody across two cultures. Nature Human Behaviour, 3, 369–382.CrossRefGoogle ScholarPubMed
Darwin, C. (1998). The expression of the emotions in man and animals, 3rd ed. Oxford University Press (Original work published in 1872).CrossRefGoogle Scholar
Demenescu, L. R., Kato, Y., & Mathiak, K. (2015). Neural processing of emotional prosody across the adult lifespan. BioMed Research International, 2015, 590216.CrossRefGoogle ScholarPubMed
Demenescu, L. R., Mathiak, K. A., & Mathiak, K. (2014). Age- and gender-related variations of emotion recognition in pseudowords and faces. Experimental Aging Research, 40, 187–207.CrossRefGoogle ScholarPubMed
Denham, S. A., Bassett, H. H., & Wyatt, T. (2015). The socialization of emotional competence. In Grusec, J. E. & Hastings, P. D. (Eds.), Handbook of socialization: Theory and research, 2nd ed. (pp. 590–613). The Guilford Press.Google Scholar
Doherty, C. P., Fitzsimons, M., Asenbauer, B., & Staunton, H. (1999). Discrimination of prosody and music by normal children. European Journal of Neurology, 6, 221–226.CrossRefGoogle ScholarPubMed
Dupuis, K., & Pichora-Fuller, M. K. (2010). Use of affective prosody by young and older adults. Psychology and Aging, 25, 16–29.CrossRefGoogle ScholarPubMed
Dupuis, K., & Pichora-Fuller, M. K. (2014). Intelligibility of emotional speech in younger and older adults. Ear and Hearing, 35, 695–707.Google ScholarPubMed
Dupuis, K., & Pichora-Fuller, M. K. (2015). Aging affects identification of vocal emotions in semantically neutral sentences. Journal of Speech Language and Hearing Research, 58, 1061.CrossRefGoogle ScholarPubMed
Ecklund-Flores, L., & Turkewitz, G. (1996). Asymmetric headturning to speech and nonspeech in human newborns. Developmental Psychobiology, 29, 205–217.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6, 169–200.CrossRefGoogle Scholar
Erlich, N., Lipp, O. V, & Slaughter, V. (2013). Of hissing snakes and angry voices: Human infants are differentially responsive to evolutionary fear-relevant sounds. Developmental Science, 16, 894–904.CrossRefGoogle ScholarPubMed
Ethofer, T., Bretscher, J., Gschwind, M., Kreifelts, B., Wildgruber, D., & Vuilleumier, P. (2012). Emotional voice areas: Anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cerebral Cortex, 22, 191–200.CrossRefGoogle ScholarPubMed
Fecteau, S., Armony, J. L., Joanette, Y., & Belin, P. (2005). Judgment of emotional nonlinguistic vocalizations: Age-related differences. Applied Neuropsychology, 12, 40–48.CrossRefGoogle ScholarPubMed
Fecteau, S., Belin, P., Joanette, Y., & Armony, J. L. (2007). Amygdala responses to nonlinguistic emotional vocalizations. NeuroImage, 36, 480–487.CrossRefGoogle ScholarPubMed
Filippa, M., Lima, D., Grandjean, A., Labbé, C., Coll, S. Y., Gentaz, E., & Grandjean, D. M. (2022). Emotional prosody recognition enhances and progressively complexifies from childhood to adolescence. Scientific Reports, 12, 17144.CrossRefGoogle ScholarPubMed
Fitch, W. T., & Giedd, J. (1999). Morphology and development of the human vocal tract: A study using magnetic resonance imaging. The Journal of the Acoustical Society of America, 106, 1511–1522.CrossRefGoogle ScholarPubMed
Fitch, W. T., Neubauer, J., & Herzel, H. (2002). Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour, 63, 407–418.CrossRefGoogle Scholar
Flom, R., & Bahrick, L. E. (2007). The development of infant discrimination of affect in multimodal and unimodal stimulation: The role of intersensory redundancy. Developmental Psychology, 43, 238–252.CrossRefGoogle ScholarPubMed
Fouquet, M., Pisanski, K., Mathevon, N., & Reby, D. (2016). Seven and up: Individual differences in male voice fundamental frequency emerge before puberty and remain stable throughout adulthood. Royal Society Open Science, 3, 160395.CrossRefGoogle ScholarPubMed
Frere, P. B., Vetter, N. C., Artiges, E., Filippi, I., Miranda, R., Vulser, H., … Lemaître, H. (2020). Sex effects on structural maturation of the limbic system and outcomes on emotional regulation during adolescence. NeuroImage, 210, 116441.CrossRefGoogle ScholarPubMed
Friend, M. (2000). Developmental changes in sensitivity to vocal paralanguage. Developmental Science, 3, 148–162.CrossRefGoogle ScholarPubMed
Frühholz, S., & Grandjean, D. (2013). Processing of emotional vocalizations in bilateral inferior frontal cortex. Neuroscience and Biobehavioral Reviews, 37, 2847–2855.CrossRefGoogle ScholarPubMed
Frühholz, S., Hofstetter, C., Cristinzio, C., Saj, A., Seeck, M., Vuilleumier, P., & Grandjean, D. (2015). Asymmetrical effects of unilateral right or left amygdala damage on auditory cortical processing of vocal emotions. Proceedings of the National Academy of Sciences of the United States of America, 112, 1583–1588.Google ScholarPubMed
Frühholz, S., Trost, W., & Kotz, S. A. (2016). The sound of emotions – Towards a unifying neural network perspective of affective sound processing. Neuroscience and Biobehavioral Reviews, 68, 96–110.CrossRefGoogle ScholarPubMed
Gandour, J., Wong, D., Dzemidzic, M., Lowe, M., Tong, Y., & Li, X. (2003). A cross-linguistic fMRI study of perception of intonation and emotion in Chinese. Human Brain Mapping, 18, 149–157.CrossRefGoogle ScholarPubMed
Garrido-Vásquez, P., Pell, M. D., Paulmann, S., Strecker, K., Schwarz, J., & Kotz, S. A. (2013). An ERP study of vocal emotion processing in asymmetric Parkinson’s disease. Social Cognitive and Affective Neuroscience, 8, 918–927.CrossRefGoogle ScholarPubMed
Gingras, J. L., Mitchell, E. A., & Grattan, K. E. (2005). Fetal homologue of infant crying. Archives of Disease in Childhood – Fetal and Neonatal Edition, 90, F415–F418.CrossRefGoogle ScholarPubMed
Giordano, B. L., Whiting, C., Kriegeskorte, N., Kotz, S. A., Gross, J., & Belin, P. (2021). The representational dynamics of perceived voice emotions evolve from categories to dimensions. Nature Human Behaviour, 5, 1203–1213.CrossRefGoogle ScholarPubMed
Goldstein, M. H., & Schwade, J. A. (2008). Social feedback to infants’ babbling facilitates rapid phonological learning. Psychological Science, 19, 515–523.CrossRefGoogle ScholarPubMed
Goldstein, U. G. (1980). An articulatory model for the vocal tracts of growing children. Massachusetts Institute of Technology.Google Scholar
Gordon, R. A., & Arvey, R. D. (2004). Age bias in laboratory and field settings: A meta-analytic investigation. Journal of Applied Social Psychology, 34, 468–492.CrossRefGoogle Scholar
Goy, H., Pichora-Fuller, M. K., & van Lieshout, P. (2016). Effects of age on speech and voice quality ratings. The Journal of the Acoustical Society of America, 139, 1648–1659.CrossRefGoogle ScholarPubMed
Grandjean, D., Sander, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). The voices of wrath: Brain responses to angry prosody in meaningless speech. Nature Neuroscience, 8, 145–146.CrossRefGoogle ScholarPubMed
Grosbras, M. H., Ross, P. D., & Belin, P. (2018). Categorical emotion recognition from voice improves during childhood and adolescence. Scientific Reports, 8, 14791.CrossRefGoogle ScholarPubMed
Grossmann, T., Oberecker, R., Koch, S. P., & Friederici, A. D. (2010). The developmental origins of voice processing in the human brain. Neuron, 65, 852–858.CrossRefGoogle ScholarPubMed
Grossmann, T., Striano, T., & Friederici, A. D. (2006). Crossmodal integration of emotional information from face and voice in the infant brain. Developmental Science, 9, 309–315.CrossRefGoogle ScholarPubMed
Harries, M. L. L., Walker, J. M., Williams, D. M., Hawkins, S., & Hughes, I. A. (1997). Changes in the male voice at puberty. Archives of Disease in Childhood, 77, 445–447.CrossRefGoogle Scholar
Hart, H. C., Palmer, A. R., & Hall, D. A. (2003). Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex, 13, 773–781.CrossRefGoogle ScholarPubMed
Hawk, S. T., van Kleef, G. A., Fischer, A. H., & van der Schalk, J. (2009). “Worth a thousand words”: Absolute and relative decoding of nonlinguistic affect vocalizations. Emotion, 9, 293–305.CrossRefGoogle ScholarPubMed
Hodges-Simeon, C. R., Gurven, M., Cárdenas, R. A., & Gaulin, S. J. C. (2013). Voice change as a new measure of male pubertal timing: A study among Bolivian adolescents. Annals of Human Biology, 40, 209–219.CrossRefGoogle ScholarPubMed
Hollien, H. (1987). “Old voices”: What do we really know about them? Journal of Voice, 1, 2–17.CrossRefGoogle Scholar
Hornak, J., Rolls, E. T., & Wade, D. (1996). Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia, 34, 247–261.CrossRefGoogle ScholarPubMed
Hunter, E. M., Phillips, L. H., & MacPherson, S. E. (2010). Effects of age on cross-modal emotion perception. Psychology and Aging, 25, 779–787.CrossRefGoogle ScholarPubMed
Isaacowitz, D. M., Löckenhoff, C. E., Lane, R. D., Wright, R., Sechrest, L., Riedel, R., & Costa, P. T. (2007). Age differences in recognition of emotion in lexical stimuli and facial expressions. Psychology and Aging, 22, 147–159.CrossRefGoogle ScholarPubMed
Izard, C. E., Schultz, D., Fine, S. E., Youngstrom, E., & Ackerman, B. P. (2000). Temperament, cognitive ability, emotion knowledge, and adaptive social behavior. Imagination, Cognition and Personality, 19, 305–330.CrossRefGoogle Scholar
Jiang, X., & Pell, M. D. (2016). Neural responses towards a speaker’s feeling of (un)knowing. Neuropsychologia, 81, 79–93.CrossRefGoogle ScholarPubMed
Juslin, P. N., & Laukka, P. (2003). Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129, 770–814.CrossRefGoogle ScholarPubMed
Juul, A., Magnusdottir, S., Scheike, T., Prytz, S., & Skakkebæk, N. E. (2007). Age at voice break in Danish boys: Effects of pre-pubertal body mass index and secular trend. International Journal of Andrology, 30, 537–542.CrossRefGoogle Scholar
Kahana-Kalman, R., & Walker-Andrews, A. S. (2001). The role of person familiarity in young infants’ perception of emotional expressions. Child Development, 72, 352–369.CrossRefGoogle Scholar
Knight, S., Lavan, N., Torre, I., & McGettigan, C. (2021). The influence of perceived vocal traits on trusting behaviours in an economic game. Quarterly Journal of Experimental Psychology, 74, 1747–1754.CrossRefGoogle Scholar
Kotz, S. A, Kalberlah, C., Bahlmann, J., Friederici, A. D., & Haynes, J.-D. (2013). Predicting vocal emotion expressions from the human brain. Human Brain Mapping, 34, 1971–1981.CrossRefGoogle ScholarPubMed
Kotz, S. A., Meyer, M., Alter, K., Besson, M., Von Cramon, D. Y., & Friederici, A. D. (2003). On the lateralization of emotional prosody: An event-related functional MR investigation. Brain and Language, 86, 366–376.CrossRefGoogle ScholarPubMed
Kotz, S. A., & Paulmann, S. (2007). When emotional prosody and semantics dance cheek to cheek: ERP evidence. Brain Research, 1151, 107–118.CrossRefGoogle ScholarPubMed
Kotz, S. A., & Paulmann, S. (2011). Emotion, language, and the brain. Linguistics and Language Compass, 5, 108–125.CrossRefGoogle Scholar
Kreiman, J., & Sidtis, D. (2011). Foundations of voice studies: An interdisciplinary approach to voice production and perception. Wiley-Blackwell.CrossRefGoogle Scholar
Lamar, M., & Resnick, S. M. (2004). Aging and prefrontal functions: Dissociating orbitofrontal and dorsolateral abilities. Neurobiology of Aging, 25, 553–558.CrossRefGoogle ScholarPubMed
Lambrecht, L., Kreifelts, B., & Wildgruber, D. (2012). Age-related decrease in recognition of emotional facial and prosodic expressions. Emotion, 12, 529–539.CrossRefGoogle ScholarPubMed
Laukka, P. (2005). Categorical perception of vocal emotion expressions. Emotion, 5, 277–295.CrossRefGoogle ScholarPubMed
Laukka, P., & Juslin, P. N. (2007). Similar patterns of age-related differences in emotion recognition from speech and music. Motivation and Emotion, 31, 182–191.CrossRefGoogle Scholar
Lavan, N., Knight, S., & McGettigan, C. (2019). Listeners form average-based representations of individual voice identities. Nature Communications, 10, 2404.CrossRefGoogle ScholarPubMed
Leipold, S., Abrams, D. A., Karraker, S., & Menon, V. (2022). Neural decoding of emotional prosody in voice-sensitive auditory cortex predicts social communication abilities in children. Cerebral Cortex, 33, 709–728.Google Scholar
Lima, C. F., Alves, T., Scott, S. K., & Castro, S. L. (2014). In the ear of the beholder: How age shapes emotion processing in nonverbal vocalizations. Emotion, 14, 145–160.CrossRefGoogle ScholarPubMed
Lima, C. F., Castro, S. L., & Scott, S. K. (2013). When voices get emotional: A corpus of nonverbal vocalizations for research on emotion processing. Behavior Research Methods, 45, 1234–1245.CrossRefGoogle ScholarPubMed
Liu, T., Pinheiro, A. P., Deng, G., Nestor, P. G., McCarley, R. W., & Niznikiewicz, M. A. (2012). Electrophysiological insights into processing nonverbal emotional vocalizations. NeuroReport, 23, 108–112.CrossRefGoogle ScholarPubMed
Maggio, R., Zappulla, C., & Pace, U. (2016). The relationship between emotion knowledge, emotion regulation and adjustment in preschoolers: A mediation model. Journal of Child and Family Studies, 25, 2626–2635.CrossRefGoogle Scholar
Mampe, B., Friederici, A. D., Christophe, A., & Wermke, K. (2009). Newborns’ cry melody is shaped by their native language. Current Biology, 19, 1994–1997.CrossRefGoogle ScholarPubMed
Markova, D., Richer, L., Pangelinan, M., Schwartz, D. H., Leonard, G., Perron, M., … Paus, T. (2016). Age-and sex-related variations in vocal-tract morphology and voice acoustics during adolescence. Hormones and Behavior, 81, 84–96.CrossRefGoogle ScholarPubMed
Mastropieri, D., & Turkewitz, G. (1999). Prenatal experience and neonatal responsiveness to vocal expressions of emotion. Developmental Psychobiology, 35, 204–214.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Mather, M. (2012). The emotion paradox in the aging brain. Annals of the New York Academy of Sciences, 1251, 33–49.CrossRefGoogle ScholarPubMed
Matsumoto, D., & Kishimoto, H. (1983). Developmental characteristics in judgments of emotion from nonverbal vocal cues. International Journal of Intercultural Relations, 7, 415–424.CrossRefGoogle Scholar
Mauchand, M., & Zhang, S. (2023). Disentangling emotional signals in the brain: An ALE meta-analysis of vocal affect perception. Cognitive, Affective, & Behavioral Neuroscience, 23, 17–29.CrossRefGoogle Scholar
McAllister, A., Sederholm, E., Sundberg, J., & Gramming, P. (1994). Relations between voice range profiles and physiological and perceptual voice characteristics in ten-year-old children. Journal of Voice, 8, 230–239.CrossRefGoogle ScholarPubMed
McAllister, A., & Sjölander, P. (2013). Children’s voice and voice disorders. Seminars in Speech Language, 34, 71–79.Google ScholarPubMed
McClure, E. B., & Nowicki, S. (2001). Associations between social anxiety and nonverbal processing skill in preadolescent boys and girls. Journal of Nonverbal Behavior, 25, 3–19.CrossRefGoogle Scholar
Mill, A., Allik, J., Realo, A., & Valk, R. (2009). Age-related differences in emotion recognition ability: A cross-sectional study. Emotion, 9, 619–630.CrossRefGoogle ScholarPubMed
Missana, M., Altvater-Mackensen, N., & Grossmann, T. (2017). Neural correlates of infants’ sensitivity to vocal expressions of peers. Developmental Cognitive Neuroscience, 26, 39–44.CrossRefGoogle ScholarPubMed
Mitchell, R. L. C., Elliott, R., Barry, M., Cruttenden, A., & Woodruff, P. W. R. (2003). The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia, 41, 1410–1421.CrossRefGoogle ScholarPubMed
Mitchell, R. L. C., Kingston, R. A., & Barbosa Bouças, S. L. (2011). The specificity of age-related decline in interpretation of emotion cues from prosody. Psychology and Aging, 26, 406–414.CrossRefGoogle ScholarPubMed
Morningstar, M., Dirks, M. A., & Huang, S. (2017). Vocal cues underlying youth and adult portrayals of socio-emotional expressions. Journal of Nonverbal Behavior, 41, 155–183.CrossRefGoogle Scholar
Morningstar, M., Dirks, M. A., Rappaport, B. I., Pine, D. S., & Nelson, E. E. (2019). Associations between anxious and depressive symptoms and the recognition of vocal socioemotional expressions in youth. Journal of Clinical Child & Adolescent Psychology, 48, 491–500.CrossRefGoogle ScholarPubMed
Morningstar, M., Ly, V. Y., Feldman, L., & Dirks, M. A. (2018). Mid-adolescents’ and adults’ recognition of vocal cues of emotion and social intent: Differences by expression and speaker age. Journal of Nonverbal Behavior, 42, 237–251.CrossRefGoogle Scholar
Morningstar, M., Mattson, W. I., Singer, S., Venticinque, J. S., & Nelson, E. E. (2020). Children and adolescents’ neural response to emotional faces and voices: Age-related changes in common regions of activation. Social Neuroscience, 15, 613–629.CrossRefGoogle ScholarPubMed
Morningstar, M., Nelson, E. E., & Dirks, M. A. (2018). Maturation of vocal emotion recognition: Insights from the developmental and neuroimaging literature. Neuroscience and Biobehavioral Reviews, 90, 221–230.CrossRefGoogle ScholarPubMed
Morningstar, M., Nowland, R., Dirks, M. A., & Qualter, P. (2020). Loneliness and the recognition of vocal socioemotional expressions in adolescence. Cognition and Emotion, 34, 970–976.CrossRefGoogle ScholarPubMed
Morris, J. S., Scott, S. K., & Dolan, R. J. (1999). Saying it with feeling: Neural responses to emotional vocalizations. Neuropsychologia, 37, 1155–1163.CrossRefGoogle ScholarPubMed
Narayanan, D. Z., Takahashi, D. Y., Kelly, L. M., Hlavaty, S. I., Huang, J., & Ghazanfar, A. A. (2022). Prenatal development of neonatal vocalizations. eLife, 11, e78485.CrossRefGoogle ScholarPubMed
Neves, L., Martins, M., Correia, A. I., Castro, S. L., & Lima, C. F. (2022). Associations between vocal emotion recognition and socio-emotional adjustment in children. Royal Society Open Science, 8, 211412.Google Scholar
Ogren, M., Burling, J. M., & Johnson, S. P. (2018). Family expressiveness relates to happy emotion matching among 9-month-old infants. Journal of Experimental Child Psychology, 174, 29–40.CrossRefGoogle ScholarPubMed
Orbelo, D. M., Grim, M. A., Talbott, R. E., & Ross, E. D. (2005). Impaired comprehension of affective prosody in elderly subjects is not predicted by age-related hearing loss or age-related cognitive decline. Journal of Geriatric Psychiatry and Neurology, 18, 25–32.CrossRefGoogle ScholarPubMed
Otte, R. A., Donkers, F. C. L., Braeken, M. A. K. A., & Van den Bergh, B. R. H. (2015). Multimodal processing of emotional information in 9-month-old infants II: Prenatal exposure to maternal anxiety. Brain and Cognition, 95, 107–117.Google ScholarPubMed
Owren, M. J., Berkowitz, M., & Bachorowski, J.-A. (2007). Listeners judge talker sex more efficiently from male than from female vowels. Perception & Psychophysics, 69, 930–941.CrossRefGoogle ScholarPubMed
Palama, A., Malsert, J., & Gentaz, E. (2018). Are 6-month-old human infants able to transfer emotional information (happy or angry) from voices to faces? An eye-tracking study. PLoS ONE, 13, e0194579.CrossRefGoogle ScholarPubMed
Pannese, A., Grandjean, D., & Frühholz, S. (2015). Subcortical processing in auditory communication. Hearing Research, 328, 67–77.CrossRefGoogle ScholarPubMed
Pannese, A., Grandjean, D., & Frühholz, S. (2016). Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions. Cortex, 85, 116–125.CrossRefGoogle ScholarPubMed
Paulmann, S, Bleichner, M., & Kotz, S. (2013). Valence, arousal, and task effects in emotional prosody processing. Frontiers in Psychology, 4, 345.CrossRefGoogle ScholarPubMed
Paulmann, S, & Kotz, S. A. (2008). Early emotional prosody perception based on different speaker voices. Neuroreport, 19, 209–213.CrossRefGoogle ScholarPubMed
Paulmann, S, Ott, D. V. M., & Kotz, S. A. (2011). Emotional speech perception unfolding in time: The role of the basal ganglia. PLoS ONE, 6, e17694.CrossRefGoogle ScholarPubMed
Paulmann, S, Seifert, S., & Kotz, S. A. (2010). Orbito-frontal lesions cause impairment during late but not early emotional prosodic processing. Social Neuroscience, 5, 59–75.CrossRefGoogle Scholar
Paulmann, S., Pell, M. D., & Kotz, S. A. (2008). How aging affects the recognition of emotional speech. Brain and Language, 104, 262–269.CrossRefGoogle ScholarPubMed
Pell, M. D., & Kotz, S. A. (2011). On the time course of vocal emotion recognition. PLoS ONE, 6, e27256.CrossRefGoogle ScholarPubMed
Pell, M. D., & Leonard, C. L. (2003). Processing emotional tone from speech in Parkinson’s disease: A role for the basal ganglia. Cognitive, Affective, & Behavioral Neuroscience, 3, 275–288.CrossRefGoogle ScholarPubMed
Pell, M. D., Rothermich, K., Liu, P., Paulmann, S., Sethi, S., & Rigoulot, S. (2015). Preferential decoding of emotion from human non-linguistic vocalizations versus speech prosody. Biological Psychology, 111, 14–25.CrossRefGoogle ScholarPubMed
Phillips, M. L., Young, A. W., Scott, S. K., Calder, A. J., Andrew, C., Giampietro, V., … Gray, J. A. (1998). Neural responses to facial and vocal expressions of fear and disgust. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265, 1809–1817.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Anikin, A., Conde, T., Sarzedas, J., Chen, S., Scott, S. K., & Lima, C. F. (2021). Emotional authenticity modulates affective and social trait inferences from voices. Philosophical Transactions of the Royal Society B: Biological Sciences, 376, 20200402.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Barros, C., Dias, M., & Kotz, S. A. (2017). Laughter catches attention! Biological Psychology, 130, 11–21.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Barros, C., & Pedrosa, J. (2016). Salience in a social landscape: Electrophysiological effects of task-irrelevant and infrequent vocal change. Social Cognitive and Affective Neuroscience, 11, 127–139.CrossRefGoogle Scholar
Pinheiro, A. P., Barros, C., Vasconcelos, M., Obermeier, C., & Kotz, S. A. (2017). Is laughter a better vocal change detector than a growl? Cortex, 92, 233–248.CrossRefGoogle Scholar
Pinheiro, A. P., del Re, E., Mezin, J., Nestor, P. G., Rauber, A., McCarley, R. W., … Niznikiewicz, M. A. (2013). Sensory-based and higher-order operations contribute to abnormal emotional prosody processing in schizophrenia: An electrophysiological investigation. Psychological Medicine, 43, 603–618.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Lima, D., Albuquerque, P. B., Anikin, A., & Lima, C. F. (2019). Spatial location and emotion modulate voice perception. Cognition and Emotion, 33, 1577–1586.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., & Niznikiewicz, M. (2019). Altered attentional processing of happy prosody in schizophrenia. Schizophrenia Research, 206, 217–224.CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Rezaii, N., Rauber, A., Liu, T., Nestor, P. G., McCarley, R. W., … Niznikiewicz, M. A. (2014). Abnormalities in the processing of emotional prosody from single words in schizophrenia. Schizophrenia Research, 152, 235–241.CrossRefGoogle ScholarPubMed
Pisanski, K., Bryant, G. A., Cornec, C., Anikin, A., & Reby, D. (2022). Form follows function in human nonverbal vocalisations. Ethology Ecology & Evolution, 34, 303–321.CrossRefGoogle Scholar
Purhonen, M., Kilpeläinen-Lees, R., Valkonen-Korhonen, M., Karhu, J., & Lehtonen, J. (2004). Cerebral processing of mother’s voice compared to unfamiliar voice in 4-month-old infants. International Journal of Psychophysiology, 52, 257–266.CrossRefGoogle ScholarPubMed
Rauschecker, J. P. (1998). Cortical processing of complex sounds. Current Opinion in Neurobiology, 8, 516–521.CrossRefGoogle ScholarPubMed
Reissland, N., Francis, B., Buttanshaw, L., Austen, J. M., & Reid, V. (2016). Do fetuses move their lips to the sound that they hear? An observational feasibility study on auditory stimulation in the womb. Pilot and Feasibility Studies, 2, 14.CrossRefGoogle Scholar
Robb, M. P., & Saxman, J. H. (1985). Developmental trends in vocal fundamental frequency of young children. Journal of Speech, Language, and Hearing Research, 28, 421–427.CrossRefGoogle ScholarPubMed
Rojas, S., Kefalianos, E., & Vogel, A. (2020). How does our voice change as we age? A systematic review and meta-analysis of acoustic and perceptual voice data from healthy adults over 50 years of age. Journal of Speech, Language, and Hearing Research, 63, 533–551.CrossRefGoogle Scholar
Rosen, S., & Iverson, P. (2007). Constructing adequate non-speech analogues: What is special about speech anyway? Developmental Science, 10, 165–168.CrossRefGoogle ScholarPubMed
Ross, E. D., & Monnot, M. (2011). Affective prosody: What do comprehension errors tell us about hemispheric lateralization of emotions, sex and aging effects, and the role of cognitive appraisal. Neuropsychologia, 49, 866–877.CrossRefGoogle ScholarPubMed
Roux, P., Christophe, A., & Passerieux, C. (2010). The emotional paradox: Dissociation between explicit and implicit processing of emotional prosody in schizophrenia. Neuropsychologia, 48, 3642–3649.CrossRefGoogle ScholarPubMed
Ruffman, T., Halberstadt, J., & Murray, J. (2009). Recognition of facial, auditory, and bodily emotions in older adults. Journals of Gerontology – Series B Psychological Sciences and Social Sciences, 64, 696–703.Google ScholarPubMed
Ruffman, T., Henry, J. D., Livingstone, V., & Phillips, L. H. (2008). A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neuroscience and Biobehavioral Reviews, 32, 863–881.CrossRefGoogle ScholarPubMed
Ruffman, T., Sullivan, S., & Dittrich, W. (2009). Older adults’ recognition of bodily and auditory expressions of emotion. Psychology and Aging, 24, 614–622.CrossRefGoogle ScholarPubMed
Ryan, M., Murray, J., & Ruffman, T. (2010). Aging and the perception of emotion: Processing vocal expressions alone and with faces. Experimental Aging Research, 36, 1–22.Google ScholarPubMed
Sander, D., Grandjean, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). Emotion and attention interactions in social cognition: Brain regions involved in processing anger prosody. NeuroImage, 28, 848–858.CrossRefGoogle ScholarPubMed
Sauter, D. A., & Eimer, M. (2010). Rapid detection of emotion from human vocalizations. Journal of Cognitive Neuroscience, 22, 474–481.CrossRefGoogle ScholarPubMed
Sauter, D. A., Eisner, F., Ekman, P., & Scott, S. K. (2010). Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proceedings of the National Academy of Sciences of the United States of America, 107, 2408–2412.Google ScholarPubMed
Sauter, D. A., Panattoni, C., & Happé, F. (2013). Children’s recognition of emotions from vocal cues. British Journal of Developmental Psychology, 31, 97–113.CrossRefGoogle ScholarPubMed
Sauter, D. A., & Scott, S. K. (2007). More than one kind of happiness: Can we recognize vocal expressions of different positive states? Motivation and Emotion, 31, 192–199.CrossRefGoogle Scholar
Scheibe, S., & Blanchard-Fields, F. (2009). Effects of regulating emotions on cognitive performance: What is costly for young adults is not so costly for older adults. Psychology and Aging, 24, 217–223.CrossRefGoogle Scholar
Scheibe, S., & Carstensen, L. L. (2010). Emotional aging: Recent findings and future trends. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 65B, 135–144.Google ScholarPubMed
Scherer, K. R. (2003). Vocal communication of emotion: A review of research paradigms. Speech Communication, 40, 227–256.CrossRefGoogle Scholar
Scherer, K. R., Banse, R., & Wallbott, H. G. (2001). Emotion inferences from vocal expression correlate across languages and cultures. Journal of Cross-Cultural Psychology, 32, 76–92.CrossRefGoogle Scholar
Schirmer, A., & Adolphs, R. (2017). Emotion perception from face, voice, and touch: Comparisons and convergence. Trends in Cognitive Sciences, 21, 216–228.CrossRefGoogle ScholarPubMed
Schirmer, A., Escoffier, N., Zysset, S., Koester, D., Striano, T., & Friederici, A. D. (2008). When vocal processing gets emotional: On the role of social orientation in relevance detection by the human amygdala. NeuroImage, 40, 1402–1410.CrossRefGoogle ScholarPubMed
Schirmer, A., & Kotz, S. A. (2006). Beyond the right hemisphere: Brain mechanisms mediating vocal emotional processing. Trends in Cognitive Sciences, 10, 24–30.CrossRefGoogle ScholarPubMed
Schirmer, A., Striano, T., & Friederici, A. D. (2005). Sex differences in the preattentive processing of vocal emotional expressions. NeuroReport, 16, 635–639.CrossRefGoogle ScholarPubMed
Schirmer, A., Zysset, S., Kotz, S. A., & Von Cramon, D. Y. (2004). Gender differences in the activation of inferior frontal cortex during emotional speech perception. NeuroImage, 21, 1114–1123.CrossRefGoogle ScholarPubMed
Schröder, M. (2003). Experimental study of affect bursts. Speech Communication, 40, 99–116.CrossRefGoogle Scholar
Sen, A., Isaacowitz, D., & Schirmer, A. (2018). Age differences in vocal emotion perception: On the role of speaker age and listener sex. Cognition and Emotion, 32, 1189–1204.CrossRefGoogle ScholarPubMed
Shahidullah, S., & Hepper, P. G. (1994). Frequency discrimination by the fetus. Early Human Development, 36, 13–26.CrossRefGoogle ScholarPubMed
Shipp, T., Qi, Y., Huntley, R., & Hollien, H. (1992). Acoustic and temporal correlates of perceived age. Journal of Voice, 6, 211–216.CrossRefGoogle Scholar
Soken, N. H., & Pick, A. D. (1999). Infants’ perception of dynamic affective expressions: Do infants distinguish specific expressions? Child Development, 70, 1275–1282.CrossRefGoogle ScholarPubMed
Stathopoulos, E. T., Huber, J. E., & Sussman, J. E. (2011). Changes in acoustic characteristics of the voice across the life span: Measures from individuals 4–93 years of age. Journal of Speech, Language, and Hearing Research, 54, 1011–1021.CrossRefGoogle ScholarPubMed
Stern, D. (1985). The interpersonal world of the infant. Basic Books.Google Scholar
Sulpizio, S., Doi, H., Bornstein, M. H., Cui, J., Esposito, G., & Shinohara, K. (2018). fNIRS reveals enhanced brain activation to female (versus male) infant directed speech (relative to adult directed speech) in young human infants. Infant Behavior and Development, 52, 89–96.CrossRefGoogle Scholar
Sussman, J. E., & Sapienza, C. (1994). Articulatory, developmental, and gender effects on measures of fundamental frequency and jitter. Journal of Voice, 8, 145–156.CrossRefGoogle ScholarPubMed
Thompson, L. A., Aidinejad, M. R., & Ponte, J. (2001). Aging and the effects of facial and prosodic cues on emotional intensity ratings and memory reconstructions. Journal of Nonverbal Behavior, 25, 101–125.CrossRefGoogle Scholar
Tisserand, D. J., Pruessner, J. C., Sanz Arigita, E. J., van Boxtel, M. P. J., Evans, A. C., Jolles, J., & Uylings, H. B. M. (2002). Regional frontal cortical volumes decrease differentially in aging: An MRI study to compare volumetric approaches and voxel-based morphometry. NeuroImage, 17, 657–669.CrossRefGoogle ScholarPubMed
Titze, I. R. (1989). Physiologic and acoustic differences between male and female voices. The Journal of the Acoustical Society of America, 85, 1699–1707.CrossRefGoogle ScholarPubMed
Tonks, J., Williams, W. H., Frampton, I., Yates, P., & Slater, A. (2007). Assessing emotion recognition in 9–15-years olds: Preliminary analysis of abilities in reading emotion from faces, voices and eyes. Brain Injury, 21, 623–629.CrossRefGoogle ScholarPubMed
Trevor, C., Arnal, L. H., & Frühholz, S. (2020). Terrifying film music mimics alarming acoustic feature of human screams. The Journal of the Acoustical Society of America, 147, EL540–EL545.CrossRefGoogle ScholarPubMed
Vaillant-Molina, M., Bahrick, L. E., & Flom, R. (2013). Young infants match facial and vocal emotional expressions of other infants. Infancy, 18, E97–E111.CrossRefGoogle ScholarPubMed
Vasconcelos, M., Dias, M., Soares, A. P., & Pinheiro, A. P. (2017). What is the melody of that voice? Probing unbiased recognition accuracy with the montreal affective voices. Journal of Nonverbal Behavior, 41, 239–267.CrossRefGoogle Scholar
Vidas, D., Dingle, G. A., & Nelson, N. L. (2018). Children’s recognition of emotion in music and speech. Music & Science, 1, 1–10.CrossRefGoogle Scholar
Warlaumont, A. S., Richards, J. A., Gilkerson, J., & Oller, D. K. (2014). A social feedback loop for speech development and its reduction in autism. Psychological Science, 25, 1314–1324.CrossRefGoogle ScholarPubMed
Whiteside, S. P., & Hodgson, C. (2000). Some acoustic characteristics in the voices of 6- to 10-year-old children and adults: A comparative sex and developmental perspective. Logopedics Phoniatrics Vocology, 25, 122–132.CrossRefGoogle ScholarPubMed
Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., & Williams, L. M. (2007). Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology. Human Brain Mapping, 28, 228–237.CrossRefGoogle ScholarPubMed
Wieck, C., & Kunzmann, U. (2017). Age differences in emotion recognition: A question of modality? Psychology and Aging, 32, 401–411.CrossRefGoogle ScholarPubMed
Wildgruber, D., Ackermann, H., Kreifelts, B., & Ethofer, T. (2006). Cerebral processing of linguistic and emotional prosody: fMRI studies. Progress in Brain Research, 156, 249–268.CrossRefGoogle ScholarPubMed
Wu, Y., Muentener, P., & Schulz, L. E. (2017). One- to four-year-olds connect diverse positive emotional vocalizations to their probable causes. Proceedings of the National Academy of Sciences of the United States of America, 114, 11896–11901.Google ScholarPubMed
Xue, S. A., Cheng, R. W. C., & Ng, L. M. (2010). Vocal tract dimensional development of adolescents: An acoustic reflection study. International Journal of Pediatric Otorhinolaryngology, 74, 907–912.CrossRefGoogle ScholarPubMed
Yoo, S. H., Matsumoto, D., & LeRoux, J. A. (2006). The influence of emotion recognition and emotion regulation on intercultural adjustment. International Journal of Intercultural Relations, 30, 345–363.CrossRefGoogle Scholar
Zanto, T. P., & Gazzaley, A. (2014). Attention and ageing. In Nobre, A. C. & Kastner, S. (Eds.), The Oxford handbook of attention (pp. 927–971). Oxford University Press.Google Scholar
Zeskind, P. S., & Marshall, T. R. (1988). The relation between variations in pitch and maternal perceptions of infant crying. Child Development, 59, 193–196.CrossRefGoogle Scholar
Zhao, C., Chronaki, G., Schiessl, I., Wan, M. W., & Abel, K. M. (2019). Is infant neural sensitivity to vocal emotion associated with mother-infant relational experience? PLoS ONE, 14, e0212205.Google ScholarPubMed
Zhao, C., Schiessl, I., Wan, M. W., Chronaki, G., & Abel, K. M. (2021). Development of the neural processing of vocal emotion during the first year of life. Child Neuropsychology, 27, 333–350.CrossRefGoogle ScholarPubMed
Zieber, N., Kangas, A., Hock, A., & Bhatt, R. S. (2014). The development of intermodal emotion perception from bodies and voices. Journal of Experimental Child Psychology, 126, 68–79.CrossRefGoogle ScholarPubMed
Zinchenko, A., Kanske, P., Obermeier, C., Schröger, E., Villringer, A., & Kotz, S. A. (2018). Modulation of cognitive and emotional control in age-related mild-to-moderate hearing loss. Frontiers in Neurology, 9, 783.CrossRefGoogle ScholarPubMed
Zinchenko, A., Obermeier, C., Kanske, P., Schröger, E., Villringer, A., & Kotz, S. A. (2017). The influence of negative emotion on cognitive and emotional control remains intact in aging. Frontiers in Aging Neuroscience, 9, 349.CrossRefGoogle ScholarPubMed

References

Aitchison, L., & Lengyel, M. (2017). With or without you: Predictive coding and Bayesian inference in the brain. Current Opinion in Neurobiology, 46, 219–227.CrossRefGoogle ScholarPubMed
Anderson, S. R., Gianola, M., Medina, N. A., Perry, J. M., Wager, T. D., & Losin, E. A. R. (2022). Doctor trustworthiness influences pain and its neural correlates in virtual medical interactions. Cerebral Cortex, 33, 3421–3436.Google Scholar
Apkarian, A. V., Bushnell, M. C., Treede, R. D., & Zubieta, J. K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9, 463–484.CrossRefGoogle Scholar
Apkarian, A. V., Sosa, Y., Sonty, S., Levy, R. M., Harden, R. N., Parrish, T. B., & Gitelman, D. R. (2004). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. The Journal of Neuroscience, 24, 10410–10415.CrossRefGoogle ScholarPubMed
Atlas, L. Y., Bolger, N., Lindquist, M. A., & Wager, T. D. (2010). Brain mediators of predictive cue effects on perceived pain. The Journal of Neuroscience, 30, 12964–12977.CrossRefGoogle ScholarPubMed
Atlas, L. Y., & Wager, T. D. (2012). How expectations shape pain. Neuroscience Letters, 520, 140–148.CrossRefGoogle ScholarPubMed
Baliki, M. N., Chialvo, D. R., Geha, P. Y., Levy, R. M., Harden, R. N., Parrish, T. B., & Apkarian, A. V. (2006). Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. The Journal of Neuroscience, 26, 12165–12173.CrossRefGoogle ScholarPubMed
Baliki, M. N., Geha, P. Y., Fields, H. L., & Apkarian, A. V. (2010). Predicting value of pain and analgesia: Nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron, 66, 149–160.CrossRefGoogle ScholarPubMed
Baliki, M. N., Petre, B., Torbey, S., Herrmann, K. M., Huang, L., Schnitzer, T. J., … Apkarian, A. V. (2012). Corticostriatal functional connectivity predicts transition to chronic back pain. Nature Neuroscience, 15, 1117–1119.CrossRefGoogle ScholarPubMed
Bashivan, P., Kar, K., & DiCarlo, J. J. (2019). Neural population control via deep image synthesis. Science, 364, eaav9436.CrossRefGoogle ScholarPubMed
Beecher, H. K. (1956). Relationship of significance of wound to pain experienced. Journal of American Medical Association, 161, 1609–1613.CrossRefGoogle ScholarPubMed
Berger, S. E., Branco, P., Vachon-Presseau, E., Abdullah, T. B., Cecchi, G., & Apkarian, A. V. (2021). Quantitative language features identify placebo responders in chronic back pain. Pain, 162, 1692–1704.CrossRefGoogle ScholarPubMed
Buchel, C., Geuter, S., Sprenger, C., & Eippert, F. (2014). Placebo analgesia: A predictive coding perspective. Neuron, 81, 1223–1239.CrossRefGoogle ScholarPubMed
Bushnell, M. C., Ceko, M., & Low, L. A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nature Reviews Neuroscience, 14, 502–511.CrossRefGoogle ScholarPubMed
Bushnell, M. C., Duncan, G. H., Hofbauer, R. K., Ha, B., Chen, J. I., & Carrier, B. (1999). Pain perception: Is there a role for primary somatosensory cortex? Proceedings of the National Academy of Sciences of the United States of America, 96, 7705–7709.Google Scholar
Cash, R. F. H., Weigand, A., Zalesky, A., Siddiqi, S. H., Downar, J., Fitzgerald, P. B., & Fox, M. D. (2021). Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biological Psychiatry, 90, 689–700.CrossRefGoogle ScholarPubMed
Ceko, M., Kragel, P. A., Woo, C. W., Lopez-Sola, M., & Wager, T. D. (2022). Common and stimulus-type-specific brain representations of negative affect. Nature Neuroscience, 25, 760–770.CrossRefGoogle ScholarPubMed
Che, X., Cash, R., Chung, S., Fitzgerald, P. B., & Fitzgibbon, B. M. (2018). Investigating the influence of social support on experimental pain and related physiological arousal: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 92, 437–452.CrossRefGoogle ScholarPubMed
Cheng, J. C., Anzolin, A., Berry, M., Honari, H., Paschali, M., Lazaridou, A., … Napadow, V. (2022). Dynamic functional brain connectivity underlying temporal summation of pain in fibromyalgia. Arthritis & Rheumatology, 74, 700–710.CrossRefGoogle ScholarPubMed
Coghill, R. C. (2020). The distributed nociceptive system: A framework for understanding pain. Trends in Neurosciences, 43, 780–794.CrossRefGoogle ScholarPubMed
Coghill, R. C., Sang, C. N., Maisog, J. M., & Iadarola, M. J. (1999). Pain intensity processing within the human brain: A bilateral, distributed mechanism. Journal of Neurophysiology, 82, 1934–1943.CrossRefGoogle ScholarPubMed
Corns, J. (2017). The Routledge handbook of philosophy of pain. Routledge, Taylor & Francis Group.CrossRefGoogle Scholar
Craig, A. D. (2003). A new view of pain as a homeostatic emotion. Trends in Neurosciences, 26, 303–307.Google Scholar
Craig, A. D., Reiman, E. M., Evans, A., & Bushnell, M. C. (1996). Functional imaging of an illusion of pain. Nature, 384, 258–260.CrossRefGoogle ScholarPubMed
Craig, K. D. (2015). Social communication model of pain. Pain, 156, 1198–1199.CrossRefGoogle ScholarPubMed
Dallenbach, K. M. (1939). Pain: History and present status. The American Journal of Psychology, 52, 331–347.CrossRefGoogle Scholar
Derbyshire, S. W. G., Jones, A. K. P., Gyulai, F., Clark, S., Townsend, D., & Firestone, L. L. (1997). Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain, 73, 431–445.CrossRefGoogle ScholarPubMed
Descartes, R. (2024). Treatise on man, Vol. 5. Minerva Heritage Press.Google Scholar
Dobek, C. E., Beynon, M. E., Bosma, R. L., & Stroman, P. W. (2014). Music modulation of pain perception and pain-related activity in the brain, brain stem, and spinal cord: A functional magnetic resonance imaging study. Journal of Pain Research, 15, 1057–1068.Google ScholarPubMed
Dum, R. P., Levinthal, D. J., & Strick, P. L. (2009). The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. The Journal of Neuroscience, 29, 14223–14235.CrossRefGoogle ScholarPubMed
Eisenberger, N. I., Master, S. L., Inagaki, T. K., Taylor, S. E., Shirinyan, D., Lieberman, M. D., & Naliboff, B. D. (2011). Attachment figures activate a safety signal-related neural region and reduce pain experience. Proceedings of the National Academy of Sciences of the United States of America, 108, 11721–11726.Google ScholarPubMed
Eldar, E., Hauser, T. U., Dayan, P., & Dolan, R. J. (2016). Striatal structure and function predict individual biases in learning to avoid pain. Proceedings of the National Academy of Sciences of the United States of America, 113, 4812–4817.Google ScholarPubMed
Elfwing, S., & Seymour, B. (2017). “Parallel reward and punishment control in humans and robots: Safe reinforcement learning using the MaxPain algorithm.” Proceedings of the 2017 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Lisbon, 18–21 September 2017.CrossRefGoogle Scholar
Ellingsen, D. M., Isenburg, K., Jung, C., Lee, J., Gerber, J., Mawla, I., … Napadow, V. (2020). Dynamic brain-to-brain concordance and behavioral mirroring as a mechanism of the patient-clinician interaction. Science Advances, 6, eabc1304.CrossRefGoogle ScholarPubMed
Fanselow, M. S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychonomic Bulletin & Review, 1, 429–438.CrossRefGoogle ScholarPubMed
Farmer, M. A., Baliki, M. N., & Apkarian, A. V. (2012). A dynamic network perspective of chronic pain. Neuroscience Letters, 520, 197–203.CrossRefGoogle ScholarPubMed
Feinstein, J. S., Khalsa, S. S., Salomons, T. V., Prkachin, K. M., Frey-Law, L. A., Lee, J. E., … Rudrauf, D. (2016). Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Structure and Function, 221, 1499–1511.CrossRefGoogle Scholar
Fields, H. (2004). State-dependent opioid control of pain. Nature Reviews Neuroscience, 5, 565–575.CrossRefGoogle ScholarPubMed
Fields, H. L. (2006). ‘A motivation-decision model of pain: the role of opioids,’ in Proceedings of the 11th world congress on pain, Seattle: IASP press, pp. 449–459.Google Scholar
Fields, H. L. (2018). How expectations influence pain. Pain, 159, S3–S10.CrossRefGoogle ScholarPubMed
Goldstein, P., Weissman-Fogel, I., Dumas, G., & Shamay-Tsoory, S. G. (2018). Brain-to-brain coupling during handholding is associated with pain reduction. Proceedings of the National Academy of Sciences of the United States of America, 115, E2528–E2537.Google ScholarPubMed
Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., … Dosenbach, N. U. F. (2017). Precision functional mapping of individual human brains. Neuron, 95, 791–807.e7.CrossRefGoogle ScholarPubMed
Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., … Petersen, S. E. (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron, 98, 439–452.e5.CrossRefGoogle ScholarPubMed
Greenspan, J. D., Lee, R. R., & Lenz, F. A. (1999). Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain, 81, 273–282.CrossRefGoogle ScholarPubMed
Harper, D. E., Shah, Y., Ichesco, E., Gerstner, G. E., & Peltier, S. J. (2016). Multivariate classification of pain-evoked brain activity in temporomandibular disorder. Pain Reports, 1, e572.CrossRefGoogle ScholarPubMed
Hashmi, J. A., Baliki, M. N., Huang, L., Baria, A. T., Torbey, S., Hermann, K. M., … Apkarian, A. V. (2013). Shape shifting pain: Chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain, 136, 2751–2768.CrossRefGoogle ScholarPubMed
Head, H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34, 102–254.CrossRefGoogle Scholar
Hong, Y. W., Yoo, Y., Han, J., Wager, T. D., & Woo, C. W. (2019). False-positive neuroimaging: Undisclosed flexibility in testing spatial hypotheses allows presenting anything as a replicated finding. NeuroImage, 195, 384–395.CrossRefGoogle ScholarPubMed
Horikawa, T., & Kamitani, Y. (2017). Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications, 8, 15037.CrossRefGoogle ScholarPubMed
Huang, G., Xiao, P., Hung, Y. S., Iannetti, G. D., Zhang, Z. G., & Hu, L. (2013). A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. NeuroImage, 81, 283–293.CrossRefGoogle ScholarPubMed
Iannetti, G. D., & Mouraux, A. (2010). From the neuromatrix to the pain matrix (and back). Experimental Brain Research, 205, 1–12.CrossRefGoogle Scholar
Ingvar, M. (1999). Pain and functional imaging. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354, 1347–1358.Google ScholarPubMed
Kastrati, G., Thompson, W. H., Schiffler, B., Fransson, P., & Jensen, K. B. (2022). Brain network segregation and integration during painful thermal stimulation. Cerebral Cortex, 32, 4039–4049.CrossRefGoogle ScholarPubMed
Kim, J., Loggia, M. L., Cahalan, C. M., Harris, R. E., Beissner, F. D. P. N., Garcia, R. G., … Napadow, V. (2015). The somatosensory link in fibromyalgia: Functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis & Rheumatology, 67, 1395–1405.CrossRefGoogle ScholarPubMed
Knecht, S., Kunesch, E., & Schnitzler, A. (1996). Parallel and serial processing of haptic information in man: Effects of parietal lesions on sensorimotor hand function. Neuropsychologia, 34, 669–687.CrossRefGoogle ScholarPubMed
Koban, L., Jepma, M., Geuter, S., & Wager, T. D. (2017). What’s in a word? How instructions, suggestions, and social information change pain and emotion. Neuroscience & Biobehavioral Reviews, 81, 29–42.CrossRefGoogle Scholar
Koban, L., Jepma, M., Lopez-Sola, M., & Wager, T. D. (2019). Different brain networks mediate the effects of social and conditioned expectations on pain. Nature Communications, 10, 4096.CrossRefGoogle ScholarPubMed
Kober, H., Buhle, J., Weber, J., Ochsner, K. N., & Wager, T. D. (2019). Let it be: Mindful acceptance down-regulates pain and negative emotion. Social Cognitive and Affective Neuroscience, 14, 1147–1158.CrossRefGoogle ScholarPubMed
Kong, J., Jensen, K., Loiotile, R., Cheetham, A., Wey, H. Y., Tan, Y., … Gollub, R. L. (2013). Functional connectivity of the frontoparietal network predicts cognitive modulation of pain. Pain, 154, 459–467.CrossRefGoogle ScholarPubMed
Krishnan, A., Woo, C. W., Chang, L. J., Ruzic, L., Gu, X., Lopez-Sola, M., … Wager, T. D. (2016). Somatic and vicarious pain are represented by dissociable multivariate brain patterns. eLife, 5, e15166.CrossRefGoogle ScholarPubMed
Kucyi, A., & Davis, K. D. (2015). The dynamic pain connectome. Trends in Neurosciences, 38, 86–95.CrossRefGoogle ScholarPubMed
Kucyi, A., Salomons, T. V., & Davis, K. D. (2013). Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks. Proceedings of the National Academy of Sciences of the United States of America, 110, 18692–18697.Google ScholarPubMed
Lee, J., Mawla, I., Kim, J., Loggia, M. L., Ortiz, A., Jung, C., … Napadow, V. (2019). Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain, 160, 550–560.CrossRefGoogle ScholarPubMed
Lee, J. J., Kim, H. J., Ceko, M., Park, B. Y., Lee, S. A., Park, H., … Woo, C. W. (2021). A neuroimaging biomarker for sustained experimental and clinical pain. Nature Medicine, 27, 174–182.CrossRefGoogle ScholarPubMed
Lee, J. J., Lee, S., Lee, D. H., & Woo, C. W. (2022). Functional brain reconfiguration during sustained pain. eLife, 11, e74463.CrossRefGoogle ScholarPubMed
Lee, S. W., & Seymour, B. (2019). Decision-making in brains and robots – the case for an interdisciplinary approach. Current Opinion in Behavioral Sciences, 26, 137–145.CrossRefGoogle Scholar
Leknes, S., Berna, C., Lee, M. C., Snyder, G. D., Biele, G., & Tracey, I. (2013). The importance of context: When relative relief renders pain pleasant. Pain, 154, 402–410.CrossRefGoogle ScholarPubMed
Lim, M., O’Grady, C., Cane, D., Goyal, A., Lynch, M., Beyea, S., & Hashmi, J. A. (2020). Threat prediction from schemas as a source of bias in pain perception. Journal of Neuroscience, 40, 1538–1548.CrossRefGoogle ScholarPubMed
Loeser, J. D., & Treede, R. D. (2008). The Kyoto protocol of IASP basic pain terminology. Pain, 137, 473–477.CrossRefGoogle ScholarPubMed
Lopez-Sola, M., Koban, L., & Wager, T. D. (2018). Transforming pain with prosocial meaning: A functional magnetic resonance imaging study. Psychosomatic Medicine, 80, 814–825.CrossRefGoogle ScholarPubMed
Lopez-Sola, M., Woo, C. W., Pujol, J., Deus, J., Harrison, B. J., Monfort, J., & Wager, T. D. (2017). Towards a neurophysiological signature for fibromyalgia. Pain, 158, 34–47.CrossRefGoogle ScholarPubMed
Ma, Q. (2022). A functional subdivision within the somatosensory system and its implications for pain research. Neuron, 110, 749–769.CrossRefGoogle ScholarPubMed
Mano, H., Kotecha, G., Leibnitz, K., Matsubara, T., Sprenger, C., Nakae, A., … Seymour, B. (2018). Classification and characterisation of brain network changes in chronic back pain: A multicenter study. Wellcome Open Research, 3, 19.CrossRefGoogle ScholarPubMed
Mano, H., & Seymour, B. (2015). Pain: A distributed brain information network? PLoS Biology, 13, e1002037.CrossRefGoogle Scholar
Marshall, J. (1951). Sensory disturbances in cortical wounds with special reference to pain. Journal of Neurology, Neurosurgery, and Psychiatry, 14, 187.CrossRefGoogle ScholarPubMed
Matthewson, G. M., Woo, C. W., Reddan, M. C., & Wager, T. D. (2019). Cognitive self-regulation influences pain-related physiology. Pain, 160, 2338–2349.CrossRefGoogle ScholarPubMed
May, E. S., Nickel, M. M., Ta Dinh, S., Tiemann, L., Heitmann, H., Voth, I., … Ploner, M. (2019). Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. Human Brain Mapping, 40, 293–305.CrossRefGoogle ScholarPubMed
Mayr, A., Jahn, P., Deak, B., Stankewitz, A., Devulapally, V., Witkovsky, V., … Schulz, E. (2022). Individually unique dynamics of cortical connectivity reflect the ongoing intensity of chronic pain. Pain, 163, 1987–1998.CrossRefGoogle ScholarPubMed
Mayr, A., Jahn, P., Stankewitz, A., Deak, B., Winkler, A., Witkovsky, V., … Schulz, E. (2022). Patients with chronic pain exhibit individually unique cortical signatures of pain encoding. Human Brain Mapping, 43, 1676–1693.CrossRefGoogle ScholarPubMed
Mazzola, L., Isnard, J., Peyron, R., & Mauguiere, F. (2012). Stimulation of the human cortex and the experience of pain: Wilder Penfield’s observations revisited. Brain, 135, 631–640.CrossRefGoogle ScholarPubMed
Melzack, R. (1990). Phantom limbs and the concept of a neuromatrix. Trends in Neurosciences, 13, 88–92.CrossRefGoogle ScholarPubMed
Melzack, R. (1993). Pain: Past, present and future. Canadian Journal of Experimental Psychology, 47, 615–629.CrossRefGoogle ScholarPubMed
Melzack, R. (1999). From the gate to the neuromatrix. Pain, 82, S121–S126.CrossRefGoogle Scholar
Melzack, R., & Loeser, J. D. (1978). Phantom body pain in paraplegics: Evidence for a central “pattern generating mechanism” for pain. Pain, 4, 195–210.Google ScholarPubMed
Melzack, R., & Wall, P. D. (1962). On the nature of cutaneous sensory mechanisms. Brain, 85, 331–356.CrossRefGoogle ScholarPubMed
Melzack, R., & Wall, P. D. (1965). Pain mechanisms: A new theory. Science, 150, 971–979.CrossRefGoogle ScholarPubMed
Misra, G., Wang, W. E., Archer, D. B., Roy, A., & Coombes, S. A. (2017). Automated classification of pain perception using high-density electroencephalography data. Journal of Neurophysiology, 117, 786–795.CrossRefGoogle ScholarPubMed
Moayedi, M., & Davis, K. D. (2013). Theories of pain: From specificity to gate control. Journal of Neurophysiology, 109, 5–12.CrossRefGoogle ScholarPubMed
Moseley, G. L., & Arntz, A. (2007). The context of a noxious stimulus affects the pain it evokes. Pain, 133, 64–71.CrossRefGoogle ScholarPubMed
Moseley, G. L., & Vlaeyen, J. W. S. (2015). Beyond nociception: The imprecision hypothesis of chronic pain. Pain, 156, 35–38.CrossRefGoogle ScholarPubMed
Mouraux, A., Diukova, A., Lee, M. C., Wise, R. G., & Iannetti, G. D. (2011). A multisensory investigation of the functional significance of the “pain matrix.” NeuroImage, 54, 2237–2249.CrossRefGoogle ScholarPubMed
Mouraux, A., & Iannetti, G. D. (2009). Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. Journal of Neurophysiology, 101, 3258–3269.CrossRefGoogle Scholar
Mouraux, A., & Iannetti, G. D. (2018). The search for pain biomarkers in the human brain. Brain, 141, 3290–3307.CrossRefGoogle ScholarPubMed
Nummenmaa, L., Tuominen, L., Dunbar, R., Hirvonen, J., Manninen, S., Arponen, E., … Sams, M. (2016). Social touch modulates endogenous mu-opioid system activity in humans. NeuroImage, 138, 242–247.CrossRefGoogle ScholarPubMed
Palermo, S., Benedetti, F., Costa, T., & Amanzio, M. (2015). Pain anticipation: An activation likelihood estimation meta-analysis of brain imaging studies. Human Brain Mapping, 36, 1648–1661.CrossRefGoogle ScholarPubMed
Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389–443.CrossRefGoogle Scholar
Perl, E. R. (2011). Pain mechanisms: A commentary on concepts and issues. Progress in Neurobiology, 94, 20–38.CrossRefGoogle ScholarPubMed
Ploner, M., Lee, M. C., Wiech, K., Bingel, U., & Tracey, I. (2011). Flexible cerebral connectivity patterns subserve contextual modulations of pain. Cerebral Cortex, 21, 719–726.CrossRefGoogle ScholarPubMed
Price, D. D., Greenspan, J. D., & Dubner, R. (2003). Neurons involved in the exteroceptive function of pain. Pain, 106, 215–219.CrossRefGoogle ScholarPubMed
Qi, S., Hassabis, D., Sun, J., Guo, F., Daw, N., & Mobbs, D. (2018). How cognitive and reactive fear circuits optimize escape decisions in humans. Proceedings of the National Academy of Sciences of the United States of America, 115, 3186–3191.Google ScholarPubMed
Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., & Bushnell, M. C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277, 968–971.CrossRefGoogle Scholar
Raja, S. N., Carr, D. B., Cohen, M., Finnerup, N. B., Flor, H., Gibson, S., … Vader, K. (2020). The revised international association for the study of pain definition of pain: Concepts, challenges, and compromises. Pain, 161, 1976–1982.CrossRefGoogle Scholar
Reddan, M. C., & Wager, T. D. (2019). Brain systems at the intersection of chronic pain and self-regulation. Neuroscience Letters, 702, 24–33.CrossRefGoogle ScholarPubMed
Reddan, M. C., Young, H., Falkner, J., Lopez-Sola, M., & Wager, T. D. (2020). Touch and social support influence interpersonal synchrony and pain. Social Cognitive and Affective Neuroscience, 15, 1064–1075.CrossRefGoogle ScholarPubMed
Rey, R. (1995). The history of pain. Harvard University Press.Google Scholar
Romero, Y. R., Straube, T., Nitsch, A., Miltner, W. H. R., & Weiss, T. (2013). Interaction between stimulus intensity and perceptual load in the attentional control of pain. Pain, 154, 135–140.CrossRefGoogle ScholarPubMed
Roy, M., Lebuis, A., Peretz, I., & Rainville, P. (2011). The modulation of pain by attention and emotion: A dissociation of perceptual and spinal nociceptive processes. European Journal of Pain, 15, 641.e1–641.e10.Google ScholarPubMed
Roy, M., Piche, M., Chen, J. I., Peretz, I., & Rainville, P. (2009). Cerebral and spinal modulation of pain by emotions. Proceedings of the National Academy of Sciences of the United States of America, 106, 20900–20905.Google ScholarPubMed
Roy, M., Shohamy, D., Daw, N., Jepma, M., Wimmer, G. E., & Wager, T. D. (2014). Representation of aversive prediction errors in the human periaqueductal gray. Nature Neuroscience, 17, 1607–1612.CrossRefGoogle ScholarPubMed
Sajid, N., Ball, P. J., Parr, T., & Friston, K. J. (2021). Active inference: Demystified and compared. Neural Computation, 33, 674–712.CrossRefGoogle ScholarPubMed
Salomons, T. V., Iannetti, G. D., Liang, M., & Wood, J. N. (2016). The “pain matrix” in pain-free individuals. JAMA Neurology, 73, 755–756.CrossRefGoogle Scholar
Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., … Fedorenko, E. (2021). The neural architecture of language: Integrative modeling converges on predictive processing. Proceedings of the National Academy of Sciences of the United States of America, 118, e2105646118.Google ScholarPubMed
Schulz, M. A., Yeo, B. T. T., Vogelstein, J. T., Mourao-Miranada, J., Kather, J. N., Kording, K., … Bzdok, D. (2020). Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nature Communications, 11, 4238.CrossRefGoogle ScholarPubMed
Schwartz, N., Miller, C., & Fields, H. L. (2017). Cortico-accumbens regulation of approach-avoidance behavior is modified by experience and chronic pain. Cell Reports, 19, 1522–1531.CrossRefGoogle ScholarPubMed
Seth, A. K., & Tsakiris, M. (2018). Being a beast machine: The somatic basis of selfhood. Trends in Cognitive Sciences, 22, 969–981.CrossRefGoogle ScholarPubMed
Seymour, B. (2019). Pain: A precision signal for reinforcement learning and control. Neuron, 101, 1029–1041.CrossRefGoogle Scholar
Seymour, B., Daw, N. D., Roiser, J. P., Dayan, P., & Dolan, R. (2012). Serotonin selectively modulates reward value in human decision-making. Journal of Neuroscience, 32, 5833–5842.CrossRefGoogle ScholarPubMed
Seymour, B., & Mancini, F. (2020). Hierarchical models of pain: Inference, information-seeking, and adaptive control. NeuroImage, 222, 117212.CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1906). The integrative action of the nervous system. A. Constable.Google Scholar
Shirvalkar, P., Prosky, J., Chin, G., Ahmadipour, P., Sani, O. G., Desai, M., … Chang, E. F. (2023). First-in-human prediction of chronic pain state using intracranial neural biomarkers. Nature Neuroscience, 26, 1090–1099.CrossRefGoogle ScholarPubMed
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., … Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362, 1140–1144.CrossRefGoogle ScholarPubMed
Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303, 1157–1162.CrossRefGoogle Scholar
Starr, C. J., Sawaki, L., Wittenberg, G. F., Burdette, J. H., Oshiro, Y., Quevedo, A. S., & Coghill, R. C. (2009). Roles of the insular cortex in the modulation of pain: Insights from brain lesions. Journal of Neuroscience, 29, 2684–2694.CrossRefGoogle ScholarPubMed
Ta Dinh, S., Nickel, M. M., Tiemann, L., May, E. S., Heitmann, H., Hohn, V. D., … Ploner, M. (2019). Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain, 160, 2751–2765.CrossRefGoogle ScholarPubMed
Tabor, A., & Burr, C. (2019). Bayesian learning models of pain: A call to action. Current Opinion in Behavioral Sciences, 26, 54–61.CrossRefGoogle Scholar
Tabor, A., Thacker, M. A., Moseley, G. L., & Kording, K. P. (2017). Pain: A statistical account. PLoS Computational Biology, 13, e1005142.CrossRefGoogle Scholar
Tetreault, P., Mansour, A., Vachon-Presseau, E., Schnitzer, T. J., Apkarian, A. V., & Baliki, M. N. (2016). Brain connectivity predicts placebo response across chronic pain clinical trials. PLoS Biology, 14, e1002570.CrossRefGoogle ScholarPubMed
Timmers, I., Park, A. L., Fischer, M. D., Kronman, C. A., Heathcote, L. C., Hernandez, J. M., & Simons, L. E. (2018). Is empathy for pain unique in its neural correlates? A meta-analysis of neuroimaging studies of empathy. Frontiers in Behavioral Neuroscience, 12, 289.CrossRefGoogle ScholarPubMed
Torta, D. M., Legrain, V., Mouraux, A., & Valentini, E. (2017). Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies. Cortex, 89, 120–134.CrossRefGoogle Scholar
Toye, F., Seers, K., Hannink, E., & Barker, K. (2017). A mega-ethnography of eleven qualitative evidence syntheses exploring the experience of living with chronic non-malignant pain. BMC Med Research Methodology, 17, 116.CrossRefGoogle ScholarPubMed
Tracey, I. (2021). Neuroimaging enters the pain biomarker arena. Science Translational Medicine, 13, eabj7358.CrossRefGoogle ScholarPubMed
Tracey, I., & Mantyh, P. W. (2007). The cerebral signature for pain perception and its modulation. Neuron, 55, 377–391.CrossRefGoogle ScholarPubMed
Vachon-Presseau, E., Berger, S. E., Abdullah, T. B., Griffith, J. W., Schnitzer, T. J., & Apkarian, A. V. (2019). Identification of traits and functional connectivity-based neurotraits of chronic pain. PLoS Biology, 17, e3000349.CrossRefGoogle ScholarPubMed
Vachon-Presseau, E., Berger, S. E., Abdullah, T. B., Huang, L., Cecchi, G. A., Griffith, J. W., … Apkarian, A. V. (2018). Brain and psychological determinants of placebo pill response in chronic pain patients. Nature Communications, 9, 3397.CrossRefGoogle ScholarPubMed
Vachon-Presseau, E., Tetreault, P., Petre, B., Huang, L., Berger, S. E., Torbey, S., … Apkarian, A. V. (2016). Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain, 139, 1958–1970.CrossRefGoogle ScholarPubMed
Valentini, E., Shindy, A., Witkovsky, V., Stankewitz, A., & Schulz, E. (2023). Interindividual variability and individual stability of pain- and touch-related neuronal gamma oscillations. Journal of Neurophysiology, 129, 1400–1413.CrossRefGoogle ScholarPubMed
Vanneste, S., Song, J. J., & De Ridder, D. (2018). Thalamocortical dysrhythmia detected by machine learning. Nature Communications, 9, 1103.CrossRefGoogle ScholarPubMed
Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., & Tommerdahl, M. (2013). Role of primary somatosensory cortex in the coding of pain. Pain, 154, 334–344.CrossRefGoogle ScholarPubMed
Vijayakumar, V., Case, M., Shirinpour, S., & He, B. (2017). Quantifying and characterizing tonic thermal pain across subjects from EEG data using random forest models. IEEE Transactions of Biomedical Engineering, 64, 2988–2996.CrossRefGoogle ScholarPubMed
Villemure, C., & Bushnell, M. C. (2009). Mood influences supraspinal pain processing separately from attention. Journal of Neuroscience, 29, 705–715.CrossRefGoogle ScholarPubMed
Vlaeyen, J. W. S., & Linton, S. J. (2012). Fear-avoidance model of chronic musculoskeletal pain: 12 years on. Pain, 153, 1144–1147.CrossRefGoogle Scholar
Wager, T. D., & Atlas, L. Y. (2015). The neuroscience of placebo effects: Connecting context, learning and health. Nature Reviews Neuroscience, 16, 403–418.CrossRefGoogle ScholarPubMed
Wager, T. D., Atlas, L. Y., Leotti, L. A., & Rilling, J. K. (2011). Predicting individual differences in placebo analgesia: Contributions of brain activity during anticipation and pain experience. Journal of Neuroscience, 31, 439–452.CrossRefGoogle ScholarPubMed
Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368, 1388–1397.CrossRefGoogle ScholarPubMed
Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J., … Cohen, J. D. (2004). Placebo-induced changes in FMRI in the anticipation and experience of pain. Science, 303, 1162–1167.CrossRefGoogle ScholarPubMed
Whittington, J. C. R., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N., & Behrens, T. E. J. (2020). The Tolman-Eichenbaum machine: Unifying space and relational memory through generalization in the hippocampal formation. Cell, 183, 1249–1263.e23.CrossRefGoogle ScholarPubMed
Winston, J. S., Vlaev, I., Seymour, B., Chater, N., & Dolan, R. J. (2014). Relative valuation of pain in human orbitofrontal cortex. Journal of Neuroscience, 34, 14526–14535.CrossRefGoogle ScholarPubMed
Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20, 365–377.CrossRefGoogle ScholarPubMed
Woo, C. W., Roy, M., Buhle, J. T., & Wager, T. D. (2015). Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain. PLoS Biology, 13, e1002036.CrossRefGoogle ScholarPubMed
Woo, C. W., Schmidt, L., Krishnan, A., Jepma, M., Roy, M., Lindquist, M. A., … Wager, T. D. (2017). Quantifying cerebral contributions to pain beyond nociception. Nature Communications, 8, 14211.CrossRefGoogle ScholarPubMed
Xu, A., Larsen, B., Baller, E. B., Scott, J. C., Sharma, V., Adebimpe, A., … Satterthwaite, T. D. (2020). Convergent neural representations of experimentally-induced acute pain in healthy volunteers: A large-scale fMRI meta-analysis. Neuroscience & Biobehavioral Reviews, 112, 300–323.CrossRefGoogle ScholarPubMed
Yekkirala, A. S., Roberson, D. P., Bean, B. P., & Woolf, C. J. (2017). Breaking barriers to novel analgesic drug development. Nature Reviews Drug Discovery, 16, 545–564.Google ScholarPubMed
Yoshida, W., Seymour, B., Koltzenburg, M., & Dolan, R. J. (2013). Uncertainty increases pain: Evidence for a novel mechanism of pain modulation involving the periaqueductal gray. Journal of Neuroscience, 33, 5638–5646.CrossRefGoogle ScholarPubMed
Younger, J., Aron, A., Parke, S., Chatterjee, N., & Mackey, S. (2010). Viewing pictures of a romantic partner reduces experimental pain: Involvement of neural reward systems. PLoS ONE, 5, e13309.CrossRefGoogle ScholarPubMed
Zebhauser, P. T., Hohn, V. D., & Ploner, M. (2023). Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: A systematic review. Pain, 164, 1200–1221.CrossRefGoogle ScholarPubMed
Zhang, S., Mano, H., Ganesh, G., Robbins, T., & Seymour, B. (2016). Dissociable learning processes underlie human pain conditioning. Current Biology, 26, 52–58.CrossRefGoogle ScholarPubMed
Zhang, S., Mano, H., Lee, M., Yoshida, W., Kawato, M., Robbins, T. W., & Seymour, B. (2018). The control of tonic pain by active relief learning. eLife, 7, e31949.CrossRefGoogle ScholarPubMed
Zheng, W., Woo, C. W., Yao, Z., Goldstein, P., Atlas, L. Y., Roy, M., … Wager, T. D. (2020). Pain-evoked reorganization in functional brain networks. Cerebral Cortex, 30, 2804–2822.CrossRefGoogle ScholarPubMed
Zunhammer, M., Bingel, U., Wager, T. D., & Placebo Imaging Consortium (2018). Placebo effects on the neurologic pain signature: A meta-analysis of individual participant functional magnetic resonance imaging data. JAMA Neurology, 75, 1321–1330.CrossRefGoogle ScholarPubMed

References

Adolph, D., Schlösser, S., Hawighorst, M., & Pause, B. M. (2010). Chemosensory signals of competition increase the skin conductance response in humans. Physiology & Behavior, 101, 666–671.CrossRefGoogle ScholarPubMed
Aggleton, J. P., & Saunders, R. C. (2000). The amygdala – what’s happened in the last decade? 1.4 The amygdala and olfactory processing. In Aggleton, J. P. (Ed.), The amygdala (pp. 8–15). Oxford University Press.CrossRefGoogle Scholar
Alaoui-Ismaïli, O., Vernet-Maury, E., Dittmar, A., Delhomme, G., & Chanel, J. (1997). Odor hedonics: Connection with emotional response estimated by autonomic parameters. Chemical Senses, 22, 237–248.CrossRefGoogle ScholarPubMed
Albrecht, J., Wiesmann, M., & Witt, M. (2014). Functional anatomy of the olfactory system II: Central relays, pathways, and their function. In Welge-Luessen, A. & Hummel, T. (Eds.), Management of smell and taste disorders (pp. 27–38). Thieme.Google Scholar
Anderson, A. K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D. G., Glover, G., … Sobel, N. (2003). Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience, 6, 196–202.CrossRefGoogle ScholarPubMed
Arshamian, A., Gerkin, R. C., Kruspe, N., Wnuk, E., Floyd, S., O’Meara, C., … Majid, A. (2022). The perception of odor pleasantness is shared across cultures. Current Biology, 32, 2061–2066.CrossRefGoogle ScholarPubMed
Atanasova, B., El-Hage, W., Chabanet, C., Gaillard, P., Belzung, C., & Camus, V. (2010). Olfactory anhedonia and negative olfactory alliesthesia in depressed patients. Psychiatry Research, 176, 190–196.CrossRefGoogle ScholarPubMed
Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research. Brain Research Reviews, 22, 229–244.CrossRefGoogle ScholarPubMed
Bahadori, H., Hosseini Amiri, M., Sharafi, H., & Entezari, A. (2022). The effect of aromatherapy with damask rose on anxiety, accuracy and job stress in operating room nurses. Evidence Based Care, 12, 56–62.Google Scholar
Barkat, S., Poncelet, J., Landis, B. N., Rouby, C., & Bensafi, M. (2008). Improved smell pleasantness after odor-taste associative learning in humans. Neuroscience Letters, 434, 108–112.CrossRefGoogle ScholarPubMed
Bensafi, M., Rinck, F., Schaal, B., & Rouby, C. (2007). Verbal cues modulate hedonic perception of odors in 5-year-old children as well as in adults. Chemical Senses, 32, 855–862.CrossRefGoogle ScholarPubMed
Bensafi, M., Rouby, C., Farget, V., Bertrand, B., Vigouroux, M., & Holley, A. (2002a). Influence of affective and cognitive judgments on autonomic parameters during inhalation of pleasant and unpleasant odors in humans. Neuroscience Letters, 319, 162–166.CrossRefGoogle Scholar
Bensafi, M., Rouby, C., Farget, V., Bertrand, B., Vigouroux, M., & Holley, A. (2002b). Autonomic nervous system responses to odours: The role of pleasantness and arousal. Chemical Senses, 27, 703–709.CrossRefGoogle Scholar
Bensafi, M., Rouby, C., Farget, V., Vigouroux, M., & Holley, A. (2001). Are pleasant and unpleasant odors processed in the same way. Chemical Senses, 26, 786.Google Scholar
Bergmann, O., Liebl, J., Bernard, S., Alkass, K., Yeung, M. S. Y., Steier, P., … Frisén, J. (2012). The age of olfactory bulb neurons in humans. Neuron, 74, 634–639.CrossRefGoogle ScholarPubMed
Boulton, M., Flessner, M., Armstrong, D., Hay, J., & Johnston, M. (1997). Lymphatic drainage of the CNS: Effects of lymphatic diversion/ligation on CSF protein transport to plasma. American Journal of Physiology, 272, R1613–R1619.Google ScholarPubMed
Brunjes, P. C., Kay, R. B., & Arrivillaga, J. P. (2011). The mouse olfactory peduncle. The Journal of Comparative Neurology, 519, 2870–2886.CrossRefGoogle ScholarPubMed
Buschhüter, D., Smitka, M., Puschmann, S., Gerber, J. C., Witt, M., Abolmaali, N. D., & Hummel, T. (2008). Correlation between olfactory bulb volume and olfactory function. Neuroimage, 42, 498–502.CrossRefGoogle ScholarPubMed
Cain, W. S., & Johnson, F., Jr. (1978). Lability of odor pleasantness: Influence of mere exposure. Perception, 7, 459–465.CrossRefGoogle ScholarPubMed
Calvi, E., Quassolo, U., Massaia, M., Scandurra, A., D’Aniello, B., & D’Amelio, P. (2020). The scent of emotions: A systematic review of human intra- and interspecific chemical communication of emotions. Brain and Behavior, 10, e01585.CrossRefGoogle ScholarPubMed
Cardello, A. V. (2017). Hedonic scaling: Assumptions, contexts, and frames of reference. Current Opinion in Food Science, 15, 14–21.CrossRefGoogle Scholar
Carlson, H., Leitão, J., Delplanque, S., Cayeux, I., Sander, D., & Vuilleumier, P. (2020). Sustained effects of pleasant and unpleasant smells on resting state brain activity. Cortex, 132, 386–403.CrossRefGoogle ScholarPubMed
Carmichael, S. T., Clugnet, M. C., & Price, J. L. (1994). Central olfactory connections in the macaque monkey. Journal of Comparative Neurology, 346, 403–434.Google ScholarPubMed
Carmichael, S. T., & Price, J. L. (1995a). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. The Journal of Comparative Neurology, 363, 615–641.Google Scholar
Carmichael, S. T., & Price, J. L. (1995b). Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. The Journal of Comparative Neurology, 363, 642–664.Google Scholar
Carmichael, S. T., & Price, J. L. (1996). Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. The Journal of Comparative Neurology, 371, 179–207.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Cecchetto, C., Lancini, E., Bueti, D., Rumiati, R. I., & Parma, V. (2019). Body odors (even when masked) make you more emotional: Behavioral and neural insights. Scientific Reports, 9, 5489.CrossRefGoogle ScholarPubMed
Cecchetto, C., Rumiati, R. I., & Aiello, M. (2017). Alexithymia and emotional reactions to odors. Scientific Reports, 7, 14097.CrossRefGoogle ScholarPubMed
Chalençon, L., Thevenet, M., Noury, N., Bensafi, M., & Mandairon, N. (2022). Identification of new behavioral parameters to assess odorant hedonic value in humans: A naturalistic approach. Journal of Neuroscience Methods, 366, 109422.CrossRefGoogle ScholarPubMed
Chu, S., & Downes, J. J. (2000). Odour-evoked autobiographical memories: Psychological investigations of Proustian phenomena. Chemical Senses, 25, 111–116.CrossRefGoogle ScholarPubMed
Cleland, T. A., & Linster, C. (2019). Central olfactory structures. In Doty, R. L. (Ed.), Handbook of clinical neurology. Smell and taste, vol. 164 (pp. 79–96). Elsevier.Google Scholar
Croy, I., & Hummel, T. (2017). Olfaction as a marker for depression. Journal of Neurology, 264, 631–638.CrossRefGoogle ScholarPubMed
Croy, I., Negoias, S., Novakova, L., Landis, B. N., & Hummel, T. (2012). Learning about the functions of the olfactory system from people without a sense of smell. PLoS ONE, 7, e33365.CrossRefGoogle ScholarPubMed
Croy, I., Nordin, S., & Hummel, T. (2014). Olfactory disorders and quality of life – An updated review. Chemical Senses, 39, 185–194.CrossRefGoogle ScholarPubMed
Croy, I., Olgun, S., & Joraschky, P. (2011). Basic emotions elicited by odors and pictures. Emotion, 11, 1331.CrossRefGoogle ScholarPubMed
Croy, I., Symmank, A., Schellong, J., Hummel, C., Gerber, J., Joraschky, P., & Hummel, T. (2014). Olfaction as a marker for depression in humans. Journal of Affective Disorders, 160, 80–86.CrossRefGoogle ScholarPubMed
Curtis, M. A., Kam, M., Nannmark, U., Anderson, M. F., Axell, M. Z., Wikkelso, C., … Eriksson, P. S. (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 315, 1243–1249.CrossRefGoogle Scholar
de Groot, J. H. B., Smeets, M. A. M., Kaldewaij, A., Duijndam, M. J. A., & Semin, G. R. (2012). Chemosignals communicate human emotions. Psychological Science, 23, 1417–1424.CrossRefGoogle ScholarPubMed
de Groot, J. H. B., Smeets, M. A. M., Rowson, M. J., Bulsing, P. J., Blonk, C. G., Wilkinson, J. E., & Semin, G. R. (2015). A sniff of happiness. Psychological Science, 26, 684–700.CrossRefGoogle ScholarPubMed
de Groot, J. H. B., Smeets, M. A. M., & Semin, G. R. (2015). Rapid stress system drives chemical transfer of fear from sender to receiver. PLoS ONE, 10, e0118211.CrossRefGoogle ScholarPubMed
de Olmos, J., Hardy, H., & Heimer, L. (1978). The afferent connections of the main and the accessory olfactory bulb formations in the rat: An experimental HRP-study. The Journal of Comparative Neurology, 181, 213–244.CrossRefGoogle ScholarPubMed
Desiato, V. M., Levy, D. A., Byun, Y. J., Nguyen, S. A., Soler, Z. M., & Schlosser, R. J. (2021). The prevalence of olfactory dysfunction in the general population: A systematic review and meta-analysis. American Journal of Rhinology & Allergy, 35, 195–205.CrossRefGoogle ScholarPubMed
Doucette, W., Gire, D. H., Whitesell, J., Carmean, V., Lucero, M. T., & Restrepo, D. (2011). Associative cortex features in the first olfactory brain relay station. Neuron, 69, 1176–1187.CrossRefGoogle ScholarPubMed
Dravnieks, A., Masurat, T., & Lamm, R. A. (1984). Hedonics of odors and odor descriptors. Journal of the Air Pollution Control Association, 34, 752–755.CrossRefGoogle Scholar
Ebrahimi, H., Mardani, A., Basirinezhad, M.H., Hamidzadeh, A., & Eskandari, F. (2021). The effects of lavender and chamomile essential oil inhalation aromatherapy on depression, anxiety and stress in older community-dwelling people: A randomized controlled trial. Explore, 18, 272–278.Google ScholarPubMed
Echevarria-Cooper, S. L., Zhou, G., Zelano, C., Pestilli, F., Parrish, T. B., & Kahnt, T. (2022). Mapping the microstructure and striae of the human olfactory tract with diffusion MRI. The Journal of Neuroscience, 42, 58–68.CrossRefGoogle ScholarPubMed
Ekman, P. (1982). Emotion in the human face. Cambridge University Press.Google Scholar
Fayazi, S., Babashahi, M., & Rezaei, M. (2011). The effect of inhalation aromatherapy on anxiety level of the patients in preoperative period. Iranian Journal of Nursing and Midwifery Research, 16, 278–283.Google Scholar
Feng, G., & Lei, J. (2022). The effect of odor valence on facial attractiveness judgment: A preliminary experiment. Brain Sciences, 12, 665.CrossRefGoogle ScholarPubMed
Ferdenzi, C., Poncelet, J., Rouby, C., & Bensafi, M. (2014). Repeated exposure to odors induces affective habituation of perception and sniffing. Frontiers in Behavioral Neuroscience, 8, 119.CrossRefGoogle ScholarPubMed
Fournel, A., Ferdenzi, C., Sezille, C., Rouby, C., & Bensafi, M. (2016). Multidimensional representation of odors in the human olfactory cortex. Human Brain Mapping, 37, 2161–2172.CrossRefGoogle ScholarPubMed
García-Cabezas, M. Á., & Barbas, H. (2014). A direct anterior cingulate pathway to the primate primary olfactory cortex may control attention to olfaction. Brain Structure & Function, 219, 1735–1754.CrossRefGoogle Scholar
Garcia-Falgueras, A., Junque, C., Giménez, M., Caldú, X., Segovia, S., & Guillamon, A. (2006). Sex differences in the human olfactory system. Brain Research, 1116, 103–111.CrossRefGoogle ScholarPubMed
Gelstein, S., Yeshurun, Y., Rozenkrantz, L., Shushan, S., Frumin, I., Roth, Y., & Sobel, N. (2011). Human tears contain a chemosignal. Science, 331, 226–230.CrossRefGoogle ScholarPubMed
Glass, S. T., Lingg, E., & Heuberger, E. (2014). Do ambient urban odors evoke basic emotions? Frontiers in Psychology, 5, 340.CrossRefGoogle ScholarPubMed
Gossrau, G., Baum, D., Koch, T., Sabatowski, R., Hummel, T., & Haehner, A. (2020). Exposure to odors increases pain threshold in chronic low back pain patients. Pain Medicine, 21, 2546–2551.CrossRefGoogle ScholarPubMed
Gossrau, G., Zaranek, L., Klimova, A., Sabatowski, R., Koch, T., Richter, M., & Haehner, A. (2023). Olfactory training reduces pain sensitivity in children and adolescents with primary headaches. Frontiers in Pain Research, 4, 1091984.CrossRefGoogle ScholarPubMed
Gottfried, J. A. (2010). Central mechanisms of odour object perception. Nature Reviews Neuroscience, 11, 628–641.CrossRefGoogle ScholarPubMed
Gottfried, J. A. (2015). Structural and functional imaging of the human olfactory system. In Doty, R. L. (Ed.), Handbook of olfaction and gustation (pp. 279–304). John Wiley & Sons, Inc.Google Scholar
Gottfried, J. A., O’Doherty, J., & Dolan, R. J. (2002). Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. The Journal of Neuroscience, 22, 10829–10837.Google ScholarPubMed
Gottfried, J. A., Winston, J. S., & Dolan, R. J. (2006). Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron, 49, 467–479.CrossRefGoogle ScholarPubMed
Grabenhorst, F., Rolls, E. T., Margot, C., da Silva, M. A. A. P., & Velazco, M. I. (2007). How pleasant and unpleasant stimuli combine in different brain regions: Odor mixtures. The Journal of Neuroscience, 27, 13532–13540.CrossRefGoogle ScholarPubMed
Haber, S. N., Adler, A., & Bergman, H. (2012). The basal ganglia. In Mai, J. K. & Paxinos, G. (Eds.), The human nervous system (pp. 678–738). Elsevier.Google Scholar
Haddad, R., Medhanie, A., Roth, Y., Harel, D., & Sobel, N. (2010). Predicting odor pleasantness with an electronic nose. PLoS Computational Biology, 6, e1000740.CrossRefGoogle ScholarPubMed
Haehner, A., Maass, H., Croy, I., & Hummel, T. (2017). Influence of room fragrance on attention, anxiety and mood. Flavour and Fragrance Journal, 32, 24–28.CrossRefGoogle Scholar
Han, P., Hummel, T., Raue, C., & Croy, I. (2019). Olfactory loss is associated with reduced hippocampal activation in response to emotional pictures. NeuroImage, 188, 84–91.CrossRefGoogle ScholarPubMed
Han, P., Winkler, N., Hummel, C., Hähner, A., Gerber, J., & Hummel, T. (2018). Impaired brain response to odors in patients with varied severity of olfactory loss after traumatic brain injury. Journal of Neurology, 265, 2322–2332.CrossRefGoogle ScholarPubMed
Hawkes, C. H., Del Tredici, K., & Braak, H. (2007). Parkinson’s disease: A dual‐hit hypothesis. Neuropathology and Applied Neurobiology, 33, 599–614.CrossRefGoogle ScholarPubMed
He, W., de Wijk, R. A., de Graaf, C., & Boesveldt, S. (2016). Implicit and explicit measurements of affective responses to food odors. Chemical Senses, 41, 661–668.CrossRefGoogle ScholarPubMed
Heimer, L. (2003). A new anatomical framework for neuropsychiatric disorders and drug abuse. American Journal of Psychiatry, 160, 1726–1739.CrossRefGoogle ScholarPubMed
Herz, R. S. (2009). Aromatherapy facts and fictions: A scientific analysis of olfactory effects on mood, physiology and behavior. International Journal of Neuroscience, 119, 263–90.CrossRefGoogle ScholarPubMed
Herz, R. S., & Cupchik, G. C. (1995). The emotional distinctiveness of odor-evoked memories. Chemical Senses, 20, 517–528.CrossRefGoogle ScholarPubMed
Herz, R. S., & Schooler, J. W. (2002). A naturalistic study of autobiographical memories evoked by olfactory and visual cues: Testing the Proustian hypothesis. American Journal of Psychology, 115, 21–32.Google ScholarPubMed
Hoenen, M., Müller, K., Pause, B.M., & Lübke, K.T. (2016). Fancy citrus, feel good: Positive judgment of citrus odor, but not the odor itself, is associated with elevated mood during experienced helplessness. Frontiers in Psychology, 7, 74.CrossRefGoogle Scholar
Hummel, T., Whitcroft, K. L., Andrews, P., Altundags, A., Cinghi, C., Costanzo, R. M., … & Welge-Luessen, A. (2017). Position paper on olfactory dysfunction. Rhinology, 54, 1–30.Google ScholarPubMed
Iravani, B., Schaefer, M., Wilson, D. A., Arshamian, A., & Lundström, J. N. (2021). The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proceedings of the National Academy of Sciences of the United States of America, 118, e2101209118.Google ScholarPubMed
Kamath, V., Turetsky, B. I, Moberg, P. J. (2011). Identification of pleasant, neutral, and unpleasant odors in schizophrenia. Psychiatry Research, 187, 30–35.CrossRefGoogle ScholarPubMed
Keller, A., & Malaspina, D. (2013). Hidden consequences of olfactory dysfunction: A patient report series. BMC Ear, Nose, and Throat Disorders, 13, 8.CrossRefGoogle ScholarPubMed
Keller, A., & Vosshall, L. B. (2016). Olfactory perception of chemically diverse molecules. BMC Neuroscience, 17, 55.CrossRefGoogle ScholarPubMed
Kermen, F., Mandairon, N., & Chalençon, L. (2021). Odor hedonics coding in the vertebrate olfactory bulb. Cell and Tissue Research, 383, 485–493.CrossRefGoogle ScholarPubMed
Kerr, K. M., Agster, K. L., Furtak, S. C., & Burwell, R. D. (2007). Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas. Hippocampus, 17, 697–708.CrossRefGoogle ScholarPubMed
Khan, R. M., Luk, C. H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R., & Sobel, N. (2007). Predicting odor pleasantness from odorant structure: Pleasantness as a reflection of the physical world. Journal of Neuroscience, 27, 10015–10023.CrossRefGoogle ScholarPubMed
Kim, B. Y., & Bae, J. H. (2022). Olfactory function and depression: A meta-analysis. Ear, Nose and Throat Journal, 104, 39–46.Google ScholarPubMed
Kinomura, S., Kawashima, R., Yamada, K., Ono, S., Itoh, M., Yoshioka, S., … Itoh, H. (1994). Functional anatomy of taste perception in the human brain studied with positron emission tomography. Brain Research, 659, 263–266.CrossRefGoogle ScholarPubMed
Knaden, M., Strutz, A., Ahsan, J., Sachse, S., & Hansson, B. S. (2012). Spatial representation of odorant valence in an insect brain. Cell Reports, 1, 392–399.CrossRefGoogle Scholar
Kobal, G., Hummel, T., & Van Toller, S. (1992). Differences in human chemosensory evoked potentials to olfactory and somatosensory chemical stimuli presented to left and right nostrils. Chemical Senses, 17, 233–244.CrossRefGoogle Scholar
Kohli, P., Soler, Z. M., Nguyen, S. A., Muus, J. S., & Schlosser, R. J. (2016). The association between olfaction and depression: A systematic review. Chemical Senses, 41, 479.CrossRefGoogle ScholarPubMed
Kollndorfer, K., Kowalczyk, K., Hoche, E., Mueller, C. A., Pollak, M., Trattnig, S., & Schöpf, V. (2014). Recovery of olfactory function induces neuroplasticity effects in patients with smell loss. Neural Plasticity, 2014, 140419.CrossRefGoogle ScholarPubMed
Komori, T., Fujiwara, R., Tanida, M., Nomura, J., & Yokoyama, M.M. (1995). Effects of citrus fragrance on immune function and depressive states. Neuroimmunomodulation, 2, 174–180.CrossRefGoogle ScholarPubMed
Kontaris, I., East, B. S., & Wilson, D. A. (2020). Behavioral and neurobiological convergence of odor, mood and emotion: A review. Frontiers in Behavioral Neuroscience, 14, 35.CrossRefGoogle ScholarPubMed
Lapid, H., Shushan, S., Plotkin, A., Voet, H., Roth, Y., Hummel, T., … Sobel, N. (2011). Neural activity at the human olfactory epithelium reflects olfactory perception. Nature Neuroscience, 14, 1455–1461.CrossRefGoogle ScholarPubMed
Larsson, M., & Willander, J. (2009). Autobiographical odor memory. Annals of the New York Academy of Sciences, 1170, 318–323.CrossRefGoogle ScholarPubMed
Lehrner, J., Eckersberger, C., Walla, P., Pötsch, G., & Deecke, L. (2000). Ambient odor of orange in a dental office reduces anxiety and improves mood in female patients. Physiology & Behavior, 71, 83–86.CrossRefGoogle Scholar
Lehrner, J., Marwinski, G., Lehr, S., Johren, P., & Deecke, L. (2005). Ambient odors of orange and lavender reduce anxiety and improve mood in a dental office. Physiology & Behavior, 86, 92–95.CrossRefGoogle Scholar
Lemogne, C., Smadja, J., Zerdazi, E. H., Soudry, Y., Robin, M., Berthoz, S., … Bonfils, P. (2015). Congenital anosmia and emotion recognition: A case-control study. Neuropsychologia, 72, 52–58.CrossRefGoogle ScholarPubMed
Lim, J. (2011). Hedonic scaling: A review of methods and theory. Food Quality and Preference, 22, 733–747.Google Scholar
Lledo, P. M., Alonso, M., & Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews Neuroscience, 7, 179–193.CrossRefGoogle ScholarPubMed
Lomidze, N., Zhvania, M. G., Tizabi, Y., Japaridze, N., Pochkhidze, N., Rzayev, F., & Gasimov, E. (2020). Age‐related behavioral and ultrastructural changes in the rat amygdala. Developmental Neurobiology, 80, 433–442.CrossRefGoogle ScholarPubMed
Lötsch, J., Schaeffeler, E., Mittelbronn, M., Winter, S., Gudziol, V., Schwarzacher, S. W., … & Ultsch, A. (2014). Functional genomics suggest neurogenesis in the adult human olfactory bulb. Brain Structure and Function, 219, 1991–2000.CrossRefGoogle ScholarPubMed
Mai, Y., Menzel, S., Cuevas, M., Haehner, A., & Hummel, T. (2022). Well-being in patients with olfactory dysfunction. Physiology & Behavior, 254, 113899.CrossRefGoogle ScholarPubMed
Matsumoto, T., Asakura, H., & Hayashi, T. (2014). Effects of olfactory stimulation from the fragrance of the Japanese citrus fruit yuzu (Citrus junos Sieb. ex Tanaka) on mood states and salivary chromogranin A as an endocrinologic stress marker. Journal of Alternative and Complementary Medicine, 20, 500–506.CrossRefGoogle Scholar
Miwa, T., Furukawa, M., Tsuhatani, T., Costanzo, R. M., DiNardo, L. J., & Reiter, E. R. (2001). Impact of olfactory impairment on quality of life and disability. Archives of Otolaryngology–Head & Neck Surgery, 127, 497–503.CrossRefGoogle ScholarPubMed
Mohanty, A., & Gottfried, J. A. (2013). Examining emotion perception and elicitation via olfaction. In Armony, J. & Vuilleumier, P. (Eds.), The Cambridge handbook of human affective neuroscience (pp. 241–264). Cambridge University Press.Google Scholar
Nieuwenhuys, R., Voogd, J., & van Huijzen, C. (2008). The human central nervous system. Springer.CrossRefGoogle Scholar
Nordin, S., Blomqvist, H. E., Olsson, P., Stjårne, P., & Ehnhage, A. (2011). Effects of smell loss on daily life and adopted coping strategies in patients with nasal polyposis with asthma. Acta Oto-Laryngologica, 131, 826–832.CrossRefGoogle ScholarPubMed
Oleszkiewicz, A., Kunkel, F., Larsson, M., & Hummel, T. (2020). Consequences of undetected olfactory loss for human chemosensory communication and well-being. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190265.CrossRefGoogle ScholarPubMed
Oleszkiewicz, A., Schriever, V. A., Valder, C., Agosin, E., Altundag, A., Avni, H., … Gellrich, J. (2022). Hedonic perception of odors in children aged 5–8 years is similar across 18 countries: Preliminary data. International Journal of Pediatric Otorhinolaryngology, 157, 111129.CrossRefGoogle ScholarPubMed
Öngür, D., Ferry, A. T., & Price, J. L. (2003). Architectonic subdivision of the human orbital and medial prefrontal cortex. Journal of Comparative Neurology, 460, 425–449.Google ScholarPubMed
Pabel, L. D., Hummel, T., Weidner, K., & Croy, I. (2018). The impact of severity, course and duration of depression on olfactory function. Journal of Affective Disorders, 238, 194–203.CrossRefGoogle ScholarPubMed
Pabel, L. D., Murr, J., Weidner, K., Hummel, T., & Croy, I. (2020). Null effect of olfactory training with patients suffering from depressive disorders – An exploratory randomized controlled clinical trial. Frontiers in Psychiatry, 11, 593.CrossRefGoogle ScholarPubMed
Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology & Psychiatry, 38, 725–743.CrossRefGoogle Scholar
Patin, A., & Pause, B. M. (2015). Human amygdala activations during nasal chemoreception. Neuropsychologia, 78, 171–194.CrossRefGoogle ScholarPubMed
Pause, B. M., Miranda, A., Göder, R., Aldenhoff, J. B., & Ferstl, R. (2001). Reduced olfactory performance in patients with major depression. Journal of Psychiatric Research, 35, 271–277.CrossRefGoogle ScholarPubMed
Pence, T. S., Reiter, E. R., DiNardo, L. J., & Costanzo, R. M. (2014). Risk factors for hazardous events in olfactory-impaired patients. JAMA Otolaryngology–Head & Neck Surgery, 140, 951–955.CrossRefGoogle ScholarPubMed
Peng, M., Potterton, H., Chu, J. T. W., & Glue, P. (2021). Olfactory shifts linked to postpartum depression. Scientific Reports, 11, 14947.CrossRefGoogle ScholarPubMed
Pritchard, T. C. (2012). Gustatory system. In Mai, J. K. & Paxinos, G. (Eds.), The human nervous system (pp. 1187–1218). Elsevier.Google Scholar
Pritchard, T. C., & Di Lorenzo, P. M. (2015). Central taste anatomy and physiology of rodents and primates. In Doty, R. L. (Ed.), Handbook of olfaction and gustation (pp. 701–726). John Wiley & Sons, Inc.Google Scholar
Rétiveau, A. N., Iv, E. C., & Milliken, G. A. (2004). Common and specific effects of fine fragrances on the mood of women. Journal of Sensory Studies, 19, 373–394.CrossRefGoogle Scholar
Robin, O., Alaoui-Ismaïli, O., Dittmar, A., & Vernet-Maury, E. (1998). Emotional responses evoked by dental odors: An evaluation from autonomic parameters. Journal of Dental Research, 77, 1638–1646.CrossRefGoogle ScholarPubMed
Rocha, M., Parma, V., Lundström, J. N., & Soares, S. C. (2018). Anxiety body odors as context for dynamic faces: Categorization and psychophysiological biases. Perception, 47, 1054–1069.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2012). The emotional systems. In Mai, J. and Paxinos, G. (Eds.), The human nervous system (pp. 1328–1350). Elsevier.Google Scholar
Rolls, E. T., Grabenhorst, F., & Parris, B. A. (2010). Neural systems underlying decisions about affective odors. Journal of Cognitive Neuroscience, 22, 1069–1082.CrossRefGoogle ScholarPubMed
Royet, J.-P., Plailly, J., Delon-Martin, C., Kareken, D. A., & Segebarth, C. (2003). fMRI of emotional responses to odors: Influence of hedonic valence and judgment, handedness, and gender. NeuroImage, 20, 713–728.CrossRefGoogle ScholarPubMed
Ruser, P., Koeppel, C. J., Kitzler, H. H., Hummel, T., & Croy, I. (2021). Individual odor hedonic perception is coded in temporal joint network activity. NeuroImage, 229, 117782.CrossRefGoogle ScholarPubMed
Saive, A. L., Royet, J. P., Ravel, N., Thévenet, M., Garcia, S., & Plailly, J. (2014). A unique memory process modulated by emotion underpins successful odor recognition and episodic retrieval in humans. Frontiers in Behavioural Neuroscience, 8, 203.CrossRefGoogle ScholarPubMed
Santos, D. v., Reiter, E. R., DiNardo, L. J., & Costanzo, R. M. (2004). Hazardous events associated with impaired olfactory function. Archives of Otolaryngology–Head & Neck Surgery, 130, 317–319.CrossRefGoogle ScholarPubMed
Savic, I. (2005). Brain imaging studies of the functional organization of human olfaction. Chemical Senses, 30, i222–i223.CrossRefGoogle ScholarPubMed
Schäfer, L., Schellong, J., Hähner, A., Weidner, K., Hüttenbrink, K.B., Trautmann, S., Hummel, T., & Croy, I. (2019). Nocturnal olfactory stimulation for improvement of sleep quality in patients with posttraumatic stress disorder: A randomized exploratory intervention trial. Journal of Traumatic Stress, 32, 130–140.CrossRefGoogle ScholarPubMed
Schäfer, L., Schriever, V. A., & Croy, I. (2021). Human olfactory dysfunction: Causes and consequences. Cell and Tissue Research, 383, 569–579.CrossRefGoogle ScholarPubMed
Schiffman, S. S. (1974). Physicochemical correlates of olfactory quality. Science, 185, 112–117.CrossRefGoogle ScholarPubMed
Seki, Y., Dweck, H. K. M., Rybak, J., Wicher, D., Sachse, S., & Hansson, B. S. (2017). Olfactory coding from the periphery to higher brain centers in the Drosophila brain. BMC Biology, 15, 56.CrossRefGoogle ScholarPubMed
Seubert, J., Freiherr, J., Frasnelli, J., Hummel, T., & Lundström, J. N. (2013). Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cerebral Cortex, 23, 2448–2456.CrossRefGoogle ScholarPubMed
Sobel, N., Prabhakaran, V., Zhao, Z. U. O., Desmond, J. E., Glover, G. H., Sullivan, E. V., & Gabrieli, J. D. (2000). Time course of odorant-induced activation in the human primary olfactory cortex. Journal of Neurophysiology, 83, 537–551.CrossRefGoogle ScholarPubMed
Sorokowski, P., Karwowski, M., Misiak, M., Marczak, M. K., Dziekan, M., Hummel, T., & Sorokowska, A. (2019). Sex differences in human olfaction: A meta-analysis. Frontiers in Psychology, 10, 242.CrossRefGoogle Scholar
Stevenson, R. J. (2010). An initial evaluation of the functions of human olfaction. Chemical Senses, 35, 3–20.CrossRefGoogle ScholarPubMed
Toet, A., Eijsman, S., Liu, Y. X., Donker, S., Kaneko, D., Brouwer, A. M., & van Erp, J. B. F. (2020). The relation between valence and arousal in subjective odor experience. Chemosensory Perception, 13, 141–151.CrossRefGoogle Scholar
van den Bosch, I., van Delft, J. M., de Wijk, R. A., de Graaf, C., & Boesveldt, S. (2015). Learning to (dis)like: The effect of evaluative conditioning with tastes and faces on odor valence assessed by implicit and explicit measurements. Physiology Behavioural, 151, 478–484.CrossRefGoogle ScholarPubMed
van Hartevelt, T. J., & Kringelbach, M. L. (2012). The olfactory system. In Mai, J. & Paxinos, G. (Eds.), The human nervous system (pp. 1219–1238). Elsevier.Google Scholar
van Riel, D., Verdijk, R., & Kuiken, T. (2015). The olfactory nerve: A shortcut for influenza and other viral diseases into the central nervous system. Journal of Pathology, 235, 277–287.CrossRefGoogle ScholarPubMed
Vernet-Maury, E., Alaoui-Ismaı̈li, O., Dittmar, A., Delhomme, G., & Chanel, J. (1999). Basic emotions induced by odorants: A new approach based on autonomic pattern results. Journal of the Autonomic Nervous System, 75, 176–183.CrossRefGoogle ScholarPubMed
Villemure, C., Slotnick, B. M., & Bushnell, M. C. (2003). Effects of odors on pain perception: Deciphering the roles of emotion and attention. Pain, 106, 101–108.CrossRefGoogle ScholarPubMed
Wegener, B.A., Croy, I., Haehner, A., & Hummel, T. (2018). Olfactory training with older people. International Journal of Geriatric Psychiatry, 33, 212–220.Google Scholar
Wicker, B., Keysers, C., Plailly, J., Royet, J. P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron, 40, 655–664.CrossRefGoogle Scholar
Xu, W., & Wilson, D. A. (2012). Odor-evoked activity in the mouse lateral entorhinal cortex. Neuroscience, 223, 12–20.CrossRefGoogle ScholarPubMed
Yan, Z., Tan, J., Qin, C., Lu, Y., Ding, C., & Luo, M. (2008). Precise circuitry links bilaterally symmetric olfactory maps. Neuron, 58, 613–624.CrossRefGoogle ScholarPubMed
Zald, D. H., & Pardo, J. V. (1997). Emotion, olfaction, and the human amygdala: Amygdala activation during aversive olfactory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 94, 4119–4124.Google ScholarPubMed
Zald, D. H., & Pardo, J. V. (2000). Functional neuroimaging of the olfactory system in humans. International Journal of Psychophysiology, 36, 165–181.CrossRefGoogle ScholarPubMed
Zang, Y., Han, P., Burghardt, S., Knaapila, A., Schriever, V., & Hummel, T. (2019). Influence of olfactory dysfunction on the perception of food. European Archives of Oto-Rhino-Laryngology, 276, 2811–2817.CrossRefGoogle ScholarPubMed
Zhang, Z., Liu, X., Jing, B., Hu, B., Ai, Z., Xing, B., … Peng, P. (2021). Cerebellar involvement in olfaction: An fMRI Study. Journal of Neuroimaging, 31, 517–523.CrossRefGoogle ScholarPubMed
Zou, L. Q., Hummel, T., Otte, M. S., Bitter, T., Besser, G., Mueller, C. A., … Haehner, A. (2021). Association between olfactory function and quality of life in patients with olfactory disorders: A multicenter study in over 760 participants. Rhinology, 59, 164–172.Google ScholarPubMed

References

Adolphs, R., Tranel, D., & Damasio, H. (2001). Emotion recognition from faces and prosody following temporal lobectomy. Neuropsychology, 15, 396–404.CrossRefGoogle ScholarPubMed
Atzil, S., Touroutoglou, A., Rudy, T., Salcedo, S., Feldman, R., Hooker, J. M., … Barrett, L. F. (2017). Dopamine in the medial amygdala network mediates human bonding. Proceedings of the National Academy of Sciences of the United States of America, 114, 2361–2366.Google ScholarPubMed
Belden, A., Quinci, M. A., Geddes, M., Donovan, N. J., Hanser, S. B., & Loui, P. (2023). Functional organization of auditory and reward systems in aging. Journal of Cognitive Neuroscience, 35, 1570–1592.CrossRefGoogle ScholarPubMed
Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: Current advances and a proposed model. Annals of the New York Academy of Sciences, 1464, 99–114.CrossRefGoogle Scholar
Belfi, A. M., Moreno, G. L., Gugliano, M., & Neill, C. (2022). Musical reward across the lifespan. Aging & Mental Health, 26, 932–939.CrossRefGoogle ScholarPubMed
Bohlen, H. (1978). 13 Tonstufen in der Duodezine. Acustica, 37, 76–86.Google Scholar
Cardona, G., Ferreri, L., Lorenzo-Seva, U., Russo, F. A., & Rodriguez-Fornells, A. (2022). The forgotten role of absorption in music reward. Annals of the New York Academy of Sciences, 1514, 142–154.CrossRefGoogle ScholarPubMed
Chapman, L. J., Chapman, J. P., & Raulin, M. L. (1976). Scales for physical and social anhedonia. Journal of Abnormal Psychology, 85, 374–382.CrossRefGoogle ScholarPubMed
Chen, W. G., Iversen, J. R., Kao, M. H., Loui, P., Patel, A. D., Zatorre, R. J., & Edwards, E. (2022). Music and brain circuitry: Strategies for strengthening evidence-based research for music-based interventions. The Journal of Neuroscience, 42, 8498–8507.CrossRefGoogle ScholarPubMed
Cheung, V. K. M., Harrison, P. M. C., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29, 4084–4092.e4.CrossRefGoogle ScholarPubMed
Chmiel, A., & Schubert, E. (2017). Back to the inverted-U for music preference: A review of the literature. Psychology of Music, 45, 886–909.CrossRefGoogle Scholar
Cowen, A. S., Fang, X., Sauter, D., & Keltner, D. (2020). What music makes us feel: At least 13 dimensions organize subjective experiences associated with music across different cultures. Proceedings of the National Academy of Sciences of the United States of America, 117, 1924–1934.Google ScholarPubMed
Cowen, A. S., & Keltner, D. (2017). Self-report captures 27 distinct categories of emotion bridged by continuous gradients. Proceedings of the National Academy of Sciences of the United States of America, 114, E7900–E7909.Google ScholarPubMed
Di Liberto, G. M., Pelofi, C., Bianco, R., Patel, P., Mehta, A. D., Herrero, J. L., … Mesgarani, N. (2020). Cortical encoding of melodic expectations in human temporal cortex. eLife, 9, e51784.CrossRefGoogle ScholarPubMed
Drapeau, J., Gosselin, N., Peretz, I., & McKerral, M. (2017). Emotional recognition from dynamic facial, vocal and musical expressions following traumatic brain injury. Brain Injury, 31, 221–229.CrossRefGoogle ScholarPubMed
Edwards, E., Hillaire-Clarke, C. S., Frankowski, D. W., Finkelstein, R., Cheever, T., Chen, W. G., … Collins, F. S. (2023). NIH music-based intervention toolkit. Neurology, 100, 868–878.CrossRefGoogle ScholarPubMed
Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17, 124–129.CrossRefGoogle ScholarPubMed
Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221, 1208–1210.CrossRefGoogle ScholarPubMed
Gagnon, L., Peretz, I., & Fülöp, T. (2011). Musical structural determinants of emotional judgments in dementia of the Alzheimer type. Psychology of Popular Media Culture, 1, 96–107.CrossRefGoogle Scholar
Gebauer, L., Skewes, J., Westphael, G., Heaton, P., & Vuust, P. (2014). Intact brain processing of musical emotions in autism spectrum disorder, but more cognitive load and arousal in happy vs. sad music. Frontiers in Neuroscience, 8, 192.CrossRefGoogle ScholarPubMed
Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: A reward for learning? The Journal of Neuroscience, 39, 9397–9409.CrossRefGoogle Scholar
Gosselin, N., Peretz, I., Hasboun, D., Baulac, M., & Samson, S. (2011). Impaired recognition of musical emotions and facial expressions following anteromedial temporal lobe excision. Cortex, 47, 1116–1125.CrossRefGoogle ScholarPubMed
Gosselin, N., Peretz, I., Johnsen, E., & Adolphs, R. (2007). Amygdala damage impairs emotion recognition from music. Neuropsychologia, 45, 236–244.CrossRefGoogle ScholarPubMed
Gosselin, N., Peretz, I., Noulhiane, M., Hasboun, D., Beckett, C., Baulac, M., & Samson, S. (2005). Impaired recognition of scary music following unilateral temporal lobe excision. Brain, 128, 628–640.CrossRefGoogle ScholarPubMed
Gosselin, N., Samson, S., Adolphs, R., Noulhiane, M., Roy, M., Hasboun, D., Baulac, M., & Peretz, I. (2006). Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain, 129, 2585–2592.CrossRefGoogle Scholar
Grady, C., Sarraf, S., Saverino, C., & Campbell, K. (2016). Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiology of Aging, 41, 159–172.CrossRefGoogle ScholarPubMed
Honda, S., Herrero, E. M., Isoda, M., Muraki, M., Lorenzo-Seva, U., Kitayama, Y., … Fujii, S. (2023). The Japanese version of the Barcelona Music Reward Questionnaire (J-BMRQ) Confirms the cross-cultural generalizability of the “five-factor” model. PsyArXiv, https://doi.org/10.31234/osf.io/7qp45.Google Scholar
Hsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia, 50, 1814–1822.CrossRefGoogle ScholarPubMed
Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. MIT Press.CrossRefGoogle Scholar
Ilie, G., & Thompson, W. F. (2006). A comparison of acoustic cues in music and speech for three dimensions of affect. Music Perception, 23, 319–330.CrossRefGoogle Scholar
Janata, P., Tomic, S. T., & Haberman, J. M. (2012). Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology: General, 141, 54–75.Google ScholarPubMed
Johnsen, E. L., Tranel, D., Lutgendorf, S., & Adolphs, R. (2009). A neuroanatomical dissociation for emotion induced by music. Central and Peripheral Nervous System Interactions: From Mind to Brain to Body, 72, 24–33.Google ScholarPubMed
Juslin, P. N. (2013). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of Life Reviews, 10, 235–266.CrossRefGoogle ScholarPubMed
Juslin, P. N., & Västfjäll, D. (2008). Emotional responses to music: The need to consider underlying mechanisms. Behavioral and Brain Sciences, 31, 559–575.CrossRefGoogle ScholarPubMed
Kathios, N., & Loui, P. (2022). Musical enculturation in the social coevolution of emotions. Evolutionary Studies in Imaginative Culture, 6, 33–38.CrossRefGoogle Scholar
Kathios, N., Patel, A. D., & Loui, P. (2024). Musical anhedonia, timbre, and the rewards of music listening. Cognition, 243, 105672.CrossRefGoogle ScholarPubMed
Kathios, N., Sachs, M. E., Zhang, E., Ou, Y., & Loui, P. (2023). Generating new musical preferences from multilevel mapping of predictions to reward. Psychological Science, 35, 34–54.Google ScholarPubMed
Keltner, D., & Oatley, K. (2022). Social functions of emotions in life and imaginative culture. Evolutionary Studies in Imaginative Culture, 6, 1–20.CrossRefGoogle Scholar
Khalfa, S., Guye, M., Peretz, I., Chapon, F., Girard, N., Chauvel, P., & Liégeois-Chauvel, C. (2008). Evidence of lateralized anteromedial temporal structures involvement in musical emotion processing. Neuropsychologia, 46, 2485–2493.CrossRefGoogle ScholarPubMed
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308, 78–83.CrossRefGoogle Scholar
Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15, 170–180.CrossRefGoogle ScholarPubMed
Lima, C. F., Garrett, C., & Castro, S. L. (2013). Not all sounds sound the same: Parkinson’s disease affects differently emotion processing in music and in speech prosody. Journal of Clinical and Experimental Neuropsychology, 35, 373–392.CrossRefGoogle ScholarPubMed
Loui, P., Patterson, S., Sachs, M. E., Leung, Y., Zeng, T., & Przysinda, E. (2017). White matter correlates of musical anhedonia: Implications for evolution of music. Frontiers in Psychology, 8, 1664.CrossRefGoogle ScholarPubMed
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2016). Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences of the United States of America, 113, E7337–E7345.Google ScholarPubMed
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2019). White matter microstructure reflects individual differences in music reward sensitivity. The Journal of Neuroscience, 39, 5018–5027.CrossRefGoogle ScholarPubMed
Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2018). Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behaviour, 2, 27–32.Google ScholarPubMed
Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J., & Rodriguez-Fornells, A. (2013). Individual differences in music reward experiences. Music Perception, 31, 118–138.CrossRefGoogle Scholar
Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24, 699–704.CrossRefGoogle ScholarPubMed
Mather, M. (2016). The affective neuroscience of aging. Annual Review of Psychology, 67, 213–238.CrossRefGoogle ScholarPubMed
Matthews, T. E., Witek, M. A. G., Lund, T., Vuust, P., & Penhune, V. B. (2020). The sensation of groove engages motor and reward networks. NeuroImage, 214, 116768.CrossRefGoogle ScholarPubMed
McIntosh, G. C., Brown, S. H., Rice, R. R., & Thaut, M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 62, 22–26.CrossRefGoogle ScholarPubMed
Meyer, L. B. (1956). Emotion and meaning in music. University of Chicago Press.Google Scholar
Molnar-Szakacs, I., & Heaton, P. (2012). Music: A unique window into the world of autism. Annals of the New York Academy of Sciences, 1252, 318–324.CrossRefGoogle Scholar
Omar, R., Henley, S. M. D., Bartlett, J. W., Hailstone, J. C., Gordon, E., Sauter, D. A., … Warren, J. D. (2011). The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. NeuroImage, 56, 1814–1821.CrossRefGoogle ScholarPubMed
Park, K. S., Hass, C. J., Patel, B., & Janelle, C. M. (2020). Musical pleasure beneficially alters stride and arm swing amplitude during rhythmically-cued walking in people with Parkinson’s disease. Human Movement Science, 74, 102718.CrossRefGoogle ScholarPubMed
Patel, A. D. (2023). Human musicality and gene-culture coevolution: Ten concepts to guide productive exploration. In Margulis, E. H., Loui, P., & Loughridge, D. (Eds.), The science-music borderlands: Reckoning with the past and imagining the future (pp. 15–38). MIT Press.Google Scholar
Pearce, M. T., & Wiggins, G. A. (2006). Expectation in melody: The influence of context and learning. Music Perception, 23, 377–405.CrossRefGoogle Scholar
Pralus, A., Belfi, A., Hirel, C., Lévêque, Y., Fornoni, L., Bigand, E., … Caclin, A. (2020). Recognition of musical emotions and their perceived intensity after unilateral brain damage. Cortex, 130, 78–93.CrossRefGoogle ScholarPubMed
Quinci, M. A., Belden, A., Goutama, V., Gong, D., Hanser, S., Donovan, N. J., … Loui, P. (2022). Longitudinal changes in auditory and reward systems following receptive music-based intervention in older adults. Scientific Reports, 12, 11517.CrossRefGoogle ScholarPubMed
Quintin, E.-M., Bhatara, A., Poissant, H., Fombonne, E., & Levitin, D. J. (2011). Emotion perception in music in high-functioning adolescents with autism spectrum disorders. Journal of Autism and Developmental Disorders, 41, 1240–1255.CrossRefGoogle ScholarPubMed
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.CrossRefGoogle Scholar
Saarikallio, S. (2019). Access-Awareness-Agency (AAA) Model of Music-Based Social-Emotional Competence (MuSEC). Music & Science, 2, 2059204318815421.CrossRefGoogle Scholar
Sachs, M. E., Ellis, R. J., Schlaug, G., & Loui, P. (2016). Brain connectivity reflects human aesthetic responses to music. Social Cognitive and Affective Neuroscience, 11, 884–891.CrossRefGoogle ScholarPubMed
Saenz, A., Doé de Maindreville, A., Henry, A., de Labbey, S., Bakchine, S., & Ehrlé, N. (2013). Recognition of facial and musical emotions in Parkinson’s disease. European Journal of Neurology, 20, 571–577.CrossRefGoogle ScholarPubMed
Saliba, J., Lorenzo-Seva, U., Marco-Pallares, J., Tillmann, B., Zeitouni, A., & Lehmann, A. (2016). French validation of the Barcelona music reward questionnaire. PeerJ, 4, e1760.CrossRefGoogle ScholarPubMed
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14, 257–262.CrossRefGoogle Scholar
Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340, 216–219.CrossRefGoogle ScholarPubMed
Sandstrom, G. M., & Russo, F. A. (2013). Absorption in music: Development of a scale to identify individuals with strong emotional responses to music. Psychology of Music, 41, 216–228.CrossRefGoogle Scholar
Satoh, M., Nakase, T., Nagata, K., & Tomimoto, H. (2011). Musical anhedonia: Selective loss of emotional experience in listening to music. Neurocase, 17, 410–417.CrossRefGoogle ScholarPubMed
Savage, P. E., Loui, P., Tarr, B., Schachner, A., Glowacki, L., Mithen, S., & Fitch, W. T. (2021). Music as a coevolved system for social bonding. Behavioral and Brain Sciences, 44, e59.CrossRefGoogle Scholar
Schubert, E. (2004). Modeling perceived emotion with continuous musical features. Music Perception, 21, 561–585.CrossRefGoogle Scholar
Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95, 853–951.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.CrossRefGoogle ScholarPubMed
Silvia, P. J., & Nusbaum, E. C. (2011). On personality and piloerection: Individual differences in aesthetic chills and other unusual aesthetic experiences. Psychology of Aesthetics, Creativity, and the Arts, 5, 208–214.CrossRefGoogle Scholar
Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: A TMS investigation. Brain and Cognition, 82, 127–136.CrossRefGoogle ScholarPubMed
Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Arousal in Anxiety, 61, 201–216.Google Scholar
Ustohal, L., Prikryl, R., Prikrylova Kucerova, H., Sisrova, M., Stehnova, I., Venclikova, S., … Ceskova, E. (2012). Emotional side effects after high-frequency rTMS of the right dorsolateral prefrontal cortex in an adult patient with ADHD and comorbid depression. Psychiatria Danubina, 24, 102–103.Google Scholar
van Tricht, M. J., Smeding, H. M. M., Speelman, J. D., & Schmand, B. A. (2010). Impaired emotion recognition in music in Parkinson’s disease. Brain and Cognition, 74, 58–65.CrossRefGoogle ScholarPubMed
Vuust, P., Heggli, O. A., Friston, K. J., & Kringelbach, M. L. (2022). Music in the brain. Nature Reviews Neuroscience, 23, 287–305.CrossRefGoogle ScholarPubMed
Wagener, G. L., Berning, M., Costa, A. P., Steffgen, G., & Melzer, A. (2021). Effects of emotional music on facial emotion recognition in children with autism spectrum disorder (ASD). Journal of Autism and Developmental Disorders, 51, 3256–3265.CrossRefGoogle ScholarPubMed
Wang, J., Xu, M., Jin, Z., Xia, L., Lian, Q., Huyang, S., & Wu, D. (2021). The Chinese version of the Barcelona Music Reward Questionnaire (BMRQ): Associations with personality traits and gender. Musicae Scientiae, 27, 218–232.Google Scholar
Wei, Y., Zhu, J., Pan, S., Su, H., Li, H., & Wang, J. (2017). Meta-analysis of the efficacy and safety of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. Shanghai Archives of Psychiatry, 29, 328–342.Google ScholarPubMed
Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L., & Vuust, P. (2014). Syncopation, body-movement and pleasure in groove music. PLoS ONE, 9, e94446.CrossRefGoogle ScholarPubMed
Wu, D.-D., Li, S.-H., He, J., Su, W., & Chen, H.-B. (2019). Emotion recognition in patients with Parkinson disease. Cognitive and Behavioral Neurology, 32, 247–255.CrossRefGoogle Scholar
Zentner, M., Grandjean, D., & Scherer, K. R. (2008). Emotions evoked by the sound of music: Characterization, classification, and measurement. Emotion, 8, 494–521.CrossRefGoogle ScholarPubMed
Zhou, S.-S., Gao, X., Hu, Y.-J., Zhu, Y.-M., Tian, Y.-H., Wang, K., & Chen, X. (2019). Selective impairment of musical emotion recognition in patients with amnestic mild cognitive impairment and mild to moderate Alzheimer disease. Chinese Medical Journal, 132, 2308–2314.CrossRefGoogle Scholar

References

Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: Active inference in the motor system. Brain Structure and Function, 218, 611–643.CrossRefGoogle Scholar
Alves, H., Koch, A., & Unkelbach, C. (2017). Why good is more alike than bad: Processing implications. Trends in Cognitive Sciences, 21, 69–79.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65, 550–562.CrossRefGoogle ScholarPubMed
Atzil, S., Gao, W., Fradkin, I., & Barrett, L. F. (2018). Growing a social brain. Nature Human Behaviour, 2, 624–636.Google ScholarPubMed
Atzil, S., & Gendron, M. (2017). Bio-behavioral synchrony promotes the development of conceptualized emotions. Current Opinion in Psychology, 17, 162–169.CrossRefGoogle ScholarPubMed
Bar, M. (2009). The proactive brain: Memory for predictions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1235–1243.CrossRefGoogle ScholarPubMed
Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annual Review of Neuroscience, 38, 269–289.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1, 28–58.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12, 1–23.CrossRefGoogle ScholarPubMed
Barrett, L. F., Quigley, K. S., & Hamilton, P. (2016). An active inference theory of allostasis and interoception in depression. Philosophical Transactions of the Royal Society B, 37, 20160011.Google Scholar
Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23, 361–372.CrossRefGoogle ScholarPubMed
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16, 419–429.CrossRefGoogle ScholarPubMed
Bendixen, A., SanMiguel, I., & Schröger, E. (2012). Early electrophysiological indicators for predictive processing in audition: A review. International Journal of Psychophysiology, 83, 120–131.CrossRefGoogle ScholarPubMed
Bertoux, M., Duclos, H., Caillaud, M., Segobin, S., Merck, C., de La Sayette, V., … Laisney, M. (2020). When affect overlaps with concept: Emotion recognition in semantic variant of primary progressive aphasia. Brain, 143, 3850–3864.CrossRefGoogle ScholarPubMed
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527–536.CrossRefGoogle ScholarPubMed
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.CrossRefGoogle Scholar
Bliss-Moreau, E. (2017). Constructing nonhuman animal emotion. Current Opinion in Psychology, 17, 184–188.CrossRefGoogle ScholarPubMed
Borghi, A. M., & Binkofski, F. (2014). Words as social tools: An embodied view on abstract concepts. Springer Science & Business Media.CrossRefGoogle Scholar
Brooks, J. A., Chikazoe, J., Sadato, N., & Freeman, J. B. (2019). The neural representation of facial-emotion categories reflects conceptual structure. Proceedings of the National Academy of Sciences of the United States of America, 116, 15861–15870.Google ScholarPubMed
Brooks, J. A., Shablack, H., Gendron, M., Satpute, A. B., Parrish, M. H., & Lindquist, K. A. (2017). The role of language in the experience and perception of emotion: A neuroimaging meta-analysis. Social Cognitive and Affective Neuroscience, 12, 169–183.Google ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 1–38.Google ScholarPubMed
Burklund, L., Creswell, J., Irwin, M., & Lieberman, M. (2014). The common and distinct neural bases of affect labeling and reappraisal in healthy adults. Frontiers in Psychology, 5, 221.CrossRefGoogle ScholarPubMed
Campanella, F., Shallice, T., Ius, T., Fabbro, F., & Skrap, M. (2014). Impact of brain tumour location on emotion and personality: A voxel-based lesion–symptom mapping study on mentalization processes. Brain, 137, 2532–2545.CrossRefGoogle Scholar
Chanes, L., & Barrett, L. F. (2016). Redefining the role of limbic areas in cortical processing. Trends in Cognitive Sciences, 20, 96–106.CrossRefGoogle ScholarPubMed
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181–204.CrossRefGoogle ScholarPubMed
Clark, A. (2018). A nice surprise? Predictive processing and the active pursuit of novelty. Phenomenology and the Cognitive Sciences, 17, 521–534.CrossRefGoogle Scholar
Clore, G. L., & Ortony, A. (2013). Psychological construction in the OCC model of emotion. Emotion Review, 5, 335–343.CrossRefGoogle ScholarPubMed
Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B., & Kaas, J. H. (2010). Neuron densities vary across and within cortical areas in primates. Proceedings of the National Academy of Sciences of the United States of America, 107, 15927–15932.Google ScholarPubMed
Constantinou, E., Van Den Houte, M., Bogaerts, K., Van Diest, I., & Van den Bergh, O. (2014). Can words heal? Using affect labeling to reduce the effects of unpleasant cues on symptom reporting. Frontiers in Psychology, 5, 807.CrossRefGoogle ScholarPubMed
Craig, A. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13, 500–505.Google ScholarPubMed
DeWall, C. N., Baumeister, R. F., Chester, D. S., & Bushman, B. J. (2016). How often does currently felt emotion predict social behavior and judgment? A meta-analytic test of two theories. Emotion Review, 8, 136–143.CrossRefGoogle Scholar
Doyle, C. M., Gendron, M., & Lindquist, K. A. (2021). Language is a unique context for emotion perception. Affective Science, 2, 171–177.CrossRefGoogle ScholarPubMed
Fernández-Dols, J.-M., & Ruiz-Belda, M.-A. (1995). Are smiles a sign of happiness? Gold medal winners at the Olympic Games. Journal of Personality and Social Psychology, 69, 1113–1119.CrossRefGoogle Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138.CrossRefGoogle ScholarPubMed
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., & Pezzulo, G. (2016). Active inference and learning. Neuroscience & Biobehavioral Reviews, 68, 862–879.CrossRefGoogle ScholarPubMed
Fugate, J. M. B., Gouzoules, H., & Barrett, L. F. (2010). Reading chimpanzee faces: Evidence for the role of verbal labels in categorical perception of emotion. Emotion, 10, 544–554.CrossRefGoogle ScholarPubMed
Gendron, M., & Barrett, L. F. (2009). Reconstructing the past: A century of ideas about emotion in psychology. Emotion Review, 1, 316–339.CrossRefGoogle Scholar
Grossi, D., Di Vita, A., Palermo, L., Sabatini, U., Trojano, L., & Guariglia, C. (2014). The brain network for self-feeling: A symptom-lesion mapping study. Neuropsychologia, 63, 92–98.CrossRefGoogle Scholar
Hamann, S. (2012). Mapping discrete and dimensional emotions onto the brain: Controversies and consensus. Trends in Cognitive Sciences, 16, 458–466.CrossRefGoogle ScholarPubMed
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. NeuroReport, 11, 43.CrossRefGoogle ScholarPubMed
Hoemann, K., Gendron, M., & Barrett, L. F. (2022). Assessing the power of words to facilitate emotion category learning. Affective Science, 3, 69–80.Google ScholarPubMed
Hoemann, K., Khan, Z., Kamona, N., Dy, J., Barrett, L. F., & Quigley, K. S. (2021). Investigating the relationship between emotional granularity and cardiorespiratory physiological activity in daily life. Psychophysiology, 58, e13818.CrossRefGoogle ScholarPubMed
Hoffman, P., Jefferies, B., & Ralph, M. L. (2015). Special issue of Neuropsychologia: Semantic cognition. Neuropsychologia, 76, 1–3.CrossRefGoogle ScholarPubMed
Huang, Y.-A., Jastorff, J., Van den Stock, J., Van de Vliet, L., Dupont, P., & Vandenbulcke, M. (2018). Studying emotion theories through connectivity analysis: Evidence from generalized psychophysiological interactions and graph theory. NeuroImage, 172, 250–262.CrossRefGoogle ScholarPubMed
Hunt, W. A. (1941). Recent developments in the field of emotion. Psychological Bulletin, 38, 249–276.CrossRefGoogle Scholar
Jastorff, J., De Winter, F.-L., Van den Stock, J., Vandenberghe, R., Giese, M. A., & Vandenbulcke, M. (2016). Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: Insights from behavioral variant frontotemporal dementia. Human Brain Mapping, 37, 4472–4486.CrossRefGoogle ScholarPubMed
Kashdan, T. B., Barrett, L. F., & McKnight, P. E. (2015). Unpacking emotion differentiation: Transforming unpleasant experience by perceiving distinctions in negativity. Current Directions in Psychological Science, 24, 10–16.CrossRefGoogle Scholar
Katsumi, Y., Theriault, J. E., Quigley, K. S., & Barrett, L. F. (2022). Allostasis as a core feature of hierarchical gradients in the human brain. Network Neuroscience, 6, 1010–1031.CrossRefGoogle ScholarPubMed
Katsumi, Y., Zhang, J., Chen, D., Kamona, N., Bunce, J. G., Hutchinson, J. B., … Barrett, L. F. (2023). Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Communications Biology, 6, 401.CrossRefGoogle ScholarPubMed
Kircanski, K., Lieberman, M. D., & Craske, M. G. (2012). Feelings into words: Contributions of language to exposure therapy. Psychological Science, 23, 1086–1091.CrossRefGoogle ScholarPubMed
Kleckner, I. R., Zhang, J., Touroutoglou, A., Chanes, L., Xia, C., Simmons, W. K., … Barrett, L. F. (2017). Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nature Human Behaviour, 1, 0069.CrossRefGoogle ScholarPubMed
Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D. (2008). Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage, 42, 998–1031.CrossRefGoogle ScholarPubMed
Kragel, P. A., & LaBar, K. S. (2015). Multivariate neural biomarkers of emotional states are categorically distinct. Social Cognitive and Affective Neuroscience, 10, 1437–1448.CrossRefGoogle ScholarPubMed
Lambon Ralph, M. A., Pobric, G., & Jefferies, E. (2009). Conceptual knowledge is underpinned by the temporal pole bilaterally: Convergent evidence from rTMS. Cerebral Cortex, 19, 832–838.CrossRefGoogle ScholarPubMed
LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73, 653–676.CrossRefGoogle ScholarPubMed
Lee, J. Y., Lindquist, K. A., & Nam, C. S. (2017). Emotional granularity effects on event-related brain potentials during affective picture processing. Frontiers in Human Neuroscience, 11, 133.CrossRefGoogle ScholarPubMed
Lee, K. M., Lindquist, K. A., & Payne, B. K. (2018). Constructing bias: Conceptualization breaks the link between implicit bias and fear of Black Americans. Emotion, 18, 855–871.CrossRefGoogle ScholarPubMed
Lieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words. Psychological Science, 18, 421–428.CrossRefGoogle ScholarPubMed
Lieberman, M. D., Inagaki, T. K., Tabibnia, G., & Crockett, M. J. (2011). Subjective responses to emotional stimuli during labeling, reappraisal, and distraction. Emotion, 11, 468.CrossRefGoogle ScholarPubMed
Lindquist, K. A. (2013). Emotions emerge from more basic psychological ingredients: A modern psychological constructionist model. Emotion Review, 5, 356–368.CrossRefGoogle Scholar
Lindquist, K. A. (2017). The role of language in emotion: Existing evidence and future directions. Current Opinion in Psychology, 17, 135–139.CrossRefGoogle ScholarPubMed
Lindquist, K. A., & Barrett, L. F. (2008). Constructing emotion: The experience of fear as a conceptual act. Psychological Science, 19, 898–903.CrossRefGoogle ScholarPubMed
Lindquist, K. A., & Barrett, L. F. (2012). A functional architecture of the human brain: Emerging insights from the science of emotion. Trends in Cognitive Science, 16, 533–540.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Barrett, L. F., Bliss-Moreau, E., & Russell, J. A. (2006). Language and the perception of emotion. Emotion, 6, 125–138.CrossRefGoogle ScholarPubMed
Lindquist, K. A., & Gendron, M. (2013). What’s in a word? Language constructs emotion perception. Emotion Review, 5, 66–71.CrossRefGoogle Scholar
Lindquist, K. A., Gendron, M., Barrett, L. F., & Dickerson, B. C. (2014). Emotion perception, but not affect perception, is impaired with semantic memory loss. Emotion, 14, 375–387.CrossRefGoogle Scholar
Lindquist, K. A., Gendron, M., & Satpute, A. B. (2016). Language and emotion. In Barrett, L. F. & Lewis, M. (Eds.), Handbook of emotions, 4th ed. (Ch. 34), The Guilford Press.Google Scholar
Lindquist, K. A., Jackson, J. C., Leshin, J., Satpute, A. B., & Gendron, M. (2022). The cultural evolution of emotion. Nature Reviews Psychology, 1, 669–681.CrossRefGoogle Scholar
Lindquist, K. A., MacCormack, J. K., & Shablack, H. (2015). The role of language in emotion: Predictions from psychological constructionism. Frontiers in Psychology, 6, 444.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Satpute, A. B., & Gendron, M. (2015). Does language do more than communicate emotion? Current Directions in Psychological Science, 24, 99–108.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. The Behavioral and Brain Sciences, 35, 121–143.CrossRefGoogle ScholarPubMed
Lupyan, G., & Clark, A. (2015). Words and the world: Predictive coding and the language-perception-cognition interface. Current Directions in Psychological Science, 24, 279–284.CrossRefGoogle Scholar
Lupyan, G., & Ward, E. J. (2013). Language can boost otherwise unseen objects into visual awareness. Proceedings of the National Academy of Sciences of the United States of America, 110, 14196–14201.Google ScholarPubMed
Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315, 393–395.CrossRefGoogle ScholarPubMed
Matejka, M., Kazzer, P., Seehausen, M., Bajbouj, M., Klann-Delius, G., Menninghaus, W., … Prehn, K. (2013). Talking about emotion: Prosody and skin conductance indicate emotion regulation. Frontiers in Psychology, 4, 260.CrossRefGoogle ScholarPubMed
Mitchell, W. J., Tepfer, L. J., Henninger, N. M., Perlman, S. B., Murty, V. P., & Helion, C. (2021). Developmental differences in affective representation between prefrontal and subcortical structures. Social Cognitive and Affective Neuroscience, 17, 311–322.Google ScholarPubMed
Nencheva, M., Nook, E., Thornton, M. A., Lew-Williams, C., & Tamir, D. (2024). The emergence of organized emotion dynamics in childhood. Affective Science, 5, 246–258.CrossRefGoogle ScholarPubMed
Niles, A. N., Craske, M. G., Lieberman, M. D., & Hur, C. (2015). Affect labeling enhances exposure effectiveness for public speaking anxiety. Behaviour Research and Therapy, 68, 27–36.CrossRefGoogle ScholarPubMed
Nook, E. C., Lindquist, K. A., & Zaki, J. (2015). A new look at emotion perception: Concepts speed and shape facial emotion recognition. Emotion, 15, 569–578.CrossRefGoogle Scholar
Nook, E. C., Satpute, A. B., & Ochsner, K. N. (2021). Emotion naming impedes both cognitive reappraisal and mindful acceptance strategies of emotion regulation. Affective Science, 2, 187–198.CrossRefGoogle ScholarPubMed
Nook, E. C., & Somerville, L. H. (2019). Emotion concept development from childhood to adulthood. In Neta, M. & Haas, I. J. (Eds.), Emotion in the mind and body (pp. 11–41). Springer International Publishing.Google Scholar
Nook, E. C., Stavish, C. M., Sasse, S. F., Lambert, H. K., Mair, P., McLaughlin, K. A., & Somerville, L. H. (2020). Charting the development of emotion comprehension and abstraction from childhood to adulthood using observer-rated and linguistic measures. Emotion, 20, 773–792.CrossRefGoogle ScholarPubMed
Ogren, M., & Sandhofer, C. M. (2022). Emotion words link faces to emotional scenarios in early childhood. Emotion, 22, 167–178.CrossRefGoogle ScholarPubMed
Panksepp, J. (2004). Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.Google Scholar
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976–987.CrossRefGoogle Scholar
Payer, D. E., Baicy, K., Lieberman, M. D., & London, E. D. (2012). Overlapping neural substrates between intentional and incidental down-regulation of negative emotions. Emotion, 12, 229–235.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447.CrossRefGoogle ScholarPubMed
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.CrossRefGoogle ScholarPubMed
Recasens, M., Gross, J., & Uhlhaas, P. J. (2018). Low-frequency oscillatory correlates of auditory predictive processing in cortical-subcortical networks: A MEG-study. Scientific Reports, 8, 14007.CrossRefGoogle ScholarPubMed
Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110, 145–172.CrossRefGoogle ScholarPubMed
Saarimäki, H., Ejtehadian, L. F., Glerean, E., Jääskeläinen, I. P., Vuilleumier, P., Sams, M., & Nummenmaa, L. (2018). Distributed affective space represents multiple emotion categories across the human brain. Social Cognitive and Affective Neuroscience, 13, 471–482.CrossRefGoogle ScholarPubMed
Saarimäki, H., Glerean, E., Smirnov, D., Mynttinen, H., Jääskeläinen, I. P., Sams, M., & Nummenmaa, L. (2022). Classification of emotion categories based on functional connectivity patterns of the human brain. NeuroImage, 247, 118800.CrossRefGoogle ScholarPubMed
Satpute, A. B., & Lindquist, K. A. (2019). The default mode network’s role in discrete emotion. Trends in Cognitive Sciences, 23, 851–864.CrossRefGoogle ScholarPubMed
Satpute, A. B., & Lindquist, K. A. (2021). At the neural intersection between language and emotion. Affective Science, 2, 207–220.CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657–661.CrossRefGoogle ScholarPubMed
Schulkin, J., & Sterling, P. (2019). Allostasis: A brain-centered, predictive mode of physiological regulation. Trends in Neurosciences, 42, 740–752.CrossRefGoogle ScholarPubMed
Shablack, H., & Lindquist, K. A. (2019). The role of language in emotional development. In LoBue, V., Pérez-Edgar, K., & Buss, K. A. (Eds.), Handbook of emotional development (pp. 451–478). Springer International Publishing.Google Scholar
Shenhav, A., Barrett, L. F., & Bar, M. (2013). Affective value and associative processing share a cortical substrate. Cognitive, Affective, & Behavioral Neuroscience, 13, 46–59.CrossRefGoogle Scholar
Siegel, E. H., Sands, M. K., Van Den Noortgate, W., Condon, P., Chang, Y., Dy, J., … Barrett, L. F. (2018). Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychological Bulletin, 144, 343–393.CrossRefGoogle ScholarPubMed
Smidt, K. E., & Suvak, M. K. (2015). A brief, but nuanced, review of emotional granularity and emotion differentiation research. Current Opinion in Psychology, 3, 48–51.CrossRefGoogle Scholar
Souter, N. E., Lindquist, K. A., & Jefferies, E. (2021). Impaired emotion perception and categorization in semantic aphasia. Neuropsychologia, 162, 108052.CrossRefGoogle ScholarPubMed
Souter, N. E., Wang, X., Thompson, H., Krieger-Redwood, K., Halai, A. D., Lambon Ralph, M. A., … Jefferies, E. (2022). Mapping lesion, structural disconnection, and functional disconnection to symptoms in semantic aphasia. Brain Structure and Function, 227, 3043–3061.CrossRefGoogle ScholarPubMed
Sterling, P. (2012). Allostasis: A model of predictive regulation. Physiology & Behavior, 106, 5–15.CrossRefGoogle Scholar
Taylor, S. F., Phan, K. L., Decker, L. R., & Liberzon, I. (2003). Subjective rating of emotionally salient stimuli modulates neural activity. NeuroImage, 18, 650–659.CrossRefGoogle ScholarPubMed
Torre, J. B., & Lieberman, M. D. (2018). Putting feelings into words: Affect labeling as implicit emotion regulation. Emotion Review, 10, 116–124.CrossRefGoogle Scholar
Tottenham, N. (2020). Neural meaning making, prediction, and prefrontal–subcortical development following early adverse caregiving. Development and Psychopathology, 32, 1563–1578.CrossRefGoogle ScholarPubMed
Touroutoglou, A., Lindquist, K. A., Dickerson, B. C., & Barrett, L. F. (2015). Intrinsic connectivity in the human brain does not reveal networks for “basic” emotions. Social Cognitive and Affective Neuroscience, 10, 1257–1265.CrossRefGoogle Scholar
Vigliocco, G., Meteyard, L., Andrews, M., & Kousta, S. (2009). Toward a theory of semantic representation. Language and Cognition, 1, 219–247.CrossRefGoogle Scholar
Visser, M., Jefferies, E., & Lambon Ralph, M. A. (2010). Semantic processing in the anterior temporal lobes: A meta-analysis of the functional neuroimaging literature. Journal of Cognitive Neuroscience, 22, 1083–1094.CrossRefGoogle ScholarPubMed
Wager, T. D., Kang, J., Johnson, T. D., Nichols, T. E., Satpute, A. B., & Barrett, L. F. (2015). A Bayesian model of category-specific emotional brain responses. PLOS Computational Biology, 11, e1004066.CrossRefGoogle ScholarPubMed
Widen, S. C. (2013). Children’s interpretation of facial expressions: The long path from valence-based to specific discrete categories. Emotion Review, 5, 72–77.CrossRefGoogle Scholar
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.Google ScholarPubMed
Zhang, J., Abiose, O., Katsumi, Y., Touroutoglou, A., Dickerson, B. C., & Barrett, L. F. (2019). Intrinsic functional connectivity is organized as three interdependent gradients. Scientific Reports, 9, 15976.Google ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×