Skip to main content Accessibility help
×

We are experiencing issues with the responsiveness of Cambridge Core and the Cambridge Aspire website. Users may experience website error pages or timeout error pages. Our teams are working to resolve the issues. We apologise for any inconvenience caused.

Hostname: page-component-54dcc4c588-trf7k Total loading time: 0 Render date: 2025-09-30T10:30:14.379Z Has data issue: false hasContentIssue false

Chapter 29 - The Affective Neuroscience of Posttraumatic Stress Disorder

from Section VII - Individual Differences

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

The current understanding of posttraumatic stress disorder (PTSD) is unique relative to other psychiatric disorders in that there are very clear links between basic affective neuroscience and the diagnostic criteria and treatment of the disorder. Current theories of the causes of PTSD, and gold-standard cognitive behavioral treatments, are grounded in foundational knowledge of fear learning and extinction, emotion regulation, attention, memory, and executive functioning. This conceptual alignment allows for clear translational links from molecular biology to systems neuroscience to healthy human studies and, finally, to the clinic. This chapter will outline a number of such translational links, giving a general overview of how affective neuroscience has informed the current understanding of PTSD and the emerging benefits of these insights.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Admon, R., Lubin, G., Stern, O., Rosenberg, K., Sela, L., Ben-Ami, H., & Hendler, T. (2009). Human vulnerability to stress depends on amygdala’s predisposition and hippocampal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 106, 14120–14125.Google ScholarPubMed
Ahlgrim, N. S., & Manns, J. R. (2019). Optogenetic stimulation of the basolateral amygdala increased theta-modulated gamma oscillations in the hippocampus. Frontiers in Behavioral Neuroscience, 13, 87.CrossRefGoogle ScholarPubMed
Al Abed, A. S., Ducourneau, E.-G., Bouarab, C., Sellami, A., Marighetto, A., & Desmedt, A. (2020). Preventing and treating PTSD-like memory by trauma contextualization. Nature Communications, 11, 4220.CrossRefGoogle ScholarPubMed
Amaral, D. G., Behniea, H., & Kelly, J. L. (2003). Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience, 118, 1099–1120.CrossRefGoogle Scholar
Amaral, D. G., & Price, J. L. (1984). Amygdalo-cortical projections in the monkey (Macaca fascicularis). Journal of Comparative Neurology, 230, 465–496.Google ScholarPubMed
Banerjee, S. B., Gutzeit, V. A., Baman, J., Aoued, H. S., Doshi, N. K., Liu, R. C., & Ressler, K. J. (2017). Perineuronal nets in the adult sensory cortex are necessary for fear learning. Neuron, 95, 169–179.e163.CrossRefGoogle ScholarPubMed
Booker, J. A., Fivush, R., Graci, M. E., Heitz, H., Hudak, L. A., Jovanovic, T., … Stevens, J. S. (2020). Longitudinal changes in trauma narratives over the first year and associations with coping and mental health. Journal of Affective Disorders, 272, 116–124.CrossRefGoogle ScholarPubMed
Brewin, C. R. (2014). Episodic memory, perceptual memory, and their interaction: foundations for a theory of posttraumatic stress disorder. Psychological Bulletin, 140, 69.CrossRefGoogle ScholarPubMed
Brewin, C. R., Andrews, B., & Valentine, J. D. (2000). Meta-analysis of risk factors for posttraumatic stress disorder in trauma-exposed adults. Journal Consulting and Clinical Psychology, 68, 748–766.CrossRefGoogle ScholarPubMed
Brohawn, K. H., Offringa, R., Pfaff, D. L., Hughes, K. C., & Shin, L. M. (2010). The neural correlates of emotional memory in posttraumatic stress disorder. Biological Psychiatry, 68, 1023–1030.CrossRefGoogle ScholarPubMed
Bryant, R. A., & Harvey, A. G. (1996). Visual imagery in posttraumatic stress disorder. Journal of Trauma Stress, 9, 613–619.CrossRefGoogle ScholarPubMed
Bullock, D. N., Hayday, E. A., Grier, M. D., Tang, W., Pestilli, F., & Heilbronner, S. R. (2022). A taxonomy of the brain’s white matter: Twenty-one major tracts for the 21st century. Cerebral Cortex, 32, 4524–4548.CrossRefGoogle ScholarPubMed
Carter, S. E., Gibbons, F. X., & Beach, S. R. (2021). Measuring the biological embedding of racial trauma among Black Americans utilizing the RDoC approach. Developmental Psychopathology, 33, 1849–1863.CrossRefGoogle ScholarPubMed
Clawson, B. C., Pickup, E. J., Ensing, A., Geneseo, L., Shaver, J., Gonzalez-Amoretti, J., … Swift, K. (2021). Causal role for sleep-dependent reactivation of learning-activated sensory ensembles for fear memory consolidation. Nature Communications, 12, 1200.CrossRefGoogle ScholarPubMed
Cogan, C. M., Scholl, J. A., Lee, J. Y., & Davis, J. L. (2021). Potentially traumatic events and the association between gender minority stress and suicide risk in a gender‐diverse sample. Journal of Trauma Stress, 34, 977–984.CrossRefGoogle Scholar
Cohen, H., Kaplan, Z., Kotler, M., Kouperman, I., Moisa, R., & Grisaru, N. (2004). Repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in posttraumatic stress disorder: a double-blind, placebo-controlled study. American Journal of Psychiatry, 161, 515–524.CrossRefGoogle ScholarPubMed
Costanzo, M. E., Jovanovic, T., Pham, D., Leaman, S., Highland, K. B., Norrholm, S. D., & Roy, M. J. (2016). White matter microstructure of the uncinate fasciculus is associated with subthreshold posttraumatic stress disorder symptoms and fear potentiated startle during early extinction in recently deployed service members. Neuroscience Letters, 618, 66–71.CrossRefGoogle ScholarPubMed
Cox, W., Woelk, M., de Vries, O., Krypotos, A.-M., Kindt, M., Engelhard, I., … van Ast, V. (2022). Context reexposure to bolster contextual dependency of emotional episodic memory. Scientific Reports, 13, 17792.Google Scholar
Culver, N. C., Stevens, S., Fanselow, M. S., & Craske, M. G. (2018). Building physiological toughness: Some aversive events during extinction may attenuate return of fear. Journal of Behavior Therapy and Experimental Psychiatry, 58, 18–28.CrossRefGoogle ScholarPubMed
Dahlgren, M. K., Laifer, L. M., VanElzakker, M. B., Offringa, R., Hughes, K. C., Staples-Bradley, L. K., … Orr, S. P. (2018). Diminished medial prefrontal cortex activation during the recollection of stressful events is an acquired characteristic of PTSD. Psychological Medicine, 48, 1128–1138.CrossRefGoogle Scholar
Dalmay, T., Abs, E., Poorthuis, R. B., Hartung, J., Pu, D.-L., Onasch, S., … Letzkus, J. J. (2019). A critical role for neocortical processing of threat memory. Neuron, 104, 1180–1194.e1187.CrossRefGoogle ScholarPubMed
Davis, M. (1984). The mammalian startle response. In Eaton, R. C. (Ed.), Neural mechanisms of startle behavior (pp. 287–351). Springer.Google Scholar
Dunsmoor, J. E., Campese, V. D., Ceceli, A. O., LeDoux, J. E., & Phelps, E. A. (2015). Novelty-facilitated extinction: Providing a novel outcome in place of an expected threat diminishes recovery of defensive responses. Biological Psychiatry, 78, 203–209.CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2017). On the integration of space, time, and memory. Neuron, 95, 1007–1018.CrossRefGoogle ScholarPubMed
Elzinga, B. M., & Bremner, J. D. (2002). Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? Journal of Affective Disorders, 70, 1–17.CrossRefGoogle ScholarPubMed
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 1476–1488.CrossRefGoogle ScholarPubMed
Fanselow, M. S., & LeDoux, J. E. (1999). Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 23, 229–232.CrossRefGoogle ScholarPubMed
Foa, E. B., & Rothbaum, B. O. (2001). Treating the trauma of rape: Cognitive-behavioral therapy for PTSD. Guilford Press.Google Scholar
Foa, E. B., Steketee, G., & Rothbaum, B. O. (1989). Behavioral/cognitive conceptualizations of post-traumatic stress disorder. Behavior Therapy, 20, 155–176.CrossRefGoogle Scholar
Fonzo, G. A., Flagan, T. M., Sullivan, S., Allard, C. B., Grimes, E. M., Simmons, A. N., … Stein, M. B. (2013). Neural functional and structural correlates of childhood maltreatment in women with intimate-partner violence-related posttraumatic stress disorder. Psychiatry Research, 211, 93–103.Google ScholarPubMed
Galatzer-Levy, I. R., Ankri, Y., Freedman, S., Israeli-Shalev, Y., Roitman, P., Gilad, M., & Shalev, A. Y. (2013). Early PTSD symptom trajectories: persistence, recovery, and response to treatment: Results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS). PLoS ONE, 8, e70084.CrossRefGoogle ScholarPubMed
Galatzer-Levy, I. R., & Bryant, R. A. (2013). 636,120 ways to have posttraumatic stress disorder. Perspectives on Psychological Science, 8, 651–662.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Abelson, J. L., King, A. P., Sripada, R. K., Wang, X., Gaines, L. M., & Liberzon, I. (2014). Impaired contextual modulation of memories in PTSD: An fMRI and psychophysiological study of extinction retention and fear renewal. Journal of Neuroscience, 34, 13435–13443.CrossRefGoogle ScholarPubMed
Glautier, S., Elgueta, T., & Nelson, J. B. (2013). Extinction produces context inhibition and multiple-context extinction reduces response recovery in human predictive learning. Learning & Behavior, 41, 341–352.CrossRefGoogle ScholarPubMed
Gold, A. L., Shin, L. M., Orr, S., Carson, M., Rauch, S., Macklin, M., … Alpert, N. (2011). Decreased regional cerebral blood flow in medial prefrontal cortex during trauma-unrelated stressful imagery in Vietnam veterans with post-traumatic stress disorder. Psychological Medicine, 41, 2563–2572.CrossRefGoogle ScholarPubMed
Hagihara, K. M., Bukalo, O., Zeller, M., Aksoy-Aksel, A., Karalis, N., Limoges, A., … Weinholtz, C. (2021). Intercalated amygdala clusters orchestrate a switch in fear state. Nature, 594, 403–407.CrossRefGoogle ScholarPubMed
Hallford, D. J., Rusanov, D., Yeow, J., & Barry, T. J. (2021). Overgeneral and specific autobiographical memory predict the course of depression: An updated meta-analysis. Psychological Medicine, 51, 909–926.CrossRefGoogle ScholarPubMed
Hamani, C., Davidson, B., Corchs, F., Abrahao, A., Nestor, S. M., Rabin, J. S., … Levitt, A. (2022). Deep brain stimulation of the subgenual cingulum and uncinate fasciculus for the treatment of posttraumatic stress disorder. Science Advances, 8, eadc9970.CrossRefGoogle ScholarPubMed
Hamani, C., Mayberg, H., Stone, S., Laxton, A., Haber, S., & Lozano, A. M. (2011). The subcallosal cingulate gyrus in the context of major depression. Biological Psychiatry, 69, 301–308.CrossRefGoogle ScholarPubMed
Harnett, N. G., Fani, N., Carter, S., Sanchez, L. D., Rowland, G. E., Davie, W. M., … van Rooij, S. J. (2023). Structural inequities contribute to racial/ethnic differences in neurophysiological tone, but not threat reactivity, after trauma exposure. Molecular Psychiatry, 28, 2975–2984.CrossRefGoogle Scholar
Harnett, N. G., Ference, E. W., Knight, A. J., & Knight, D. C. (2020). White matter microstructure varies with post-traumatic stress severity following medical trauma. Brain Imaging and Behavior, 14, 1012–1024.CrossRefGoogle ScholarPubMed
Harnett, N. G., Finegold, K. E., Lebois, L. A., van Rooij, S. J., Ely, T. D., Murty, V. P., … Beaudoin, F. L. (2022). Structural covariance of the ventral visual stream predicts posttraumatic intrusion and nightmare symptoms: a multivariate data fusion analysis. Translational Psychiatry, 12, 321.CrossRefGoogle ScholarPubMed
Harnett, N. G., Stevens, J. S., Fani, N., van Rooij, S. J., Ely, T. D., Michopoulos, V., … Winters, S. J. (2022). Acute posttraumatic symptoms are associated with multimodal neuroimaging structural covariance patterns: A possible role for the neural substrates of visual processing in posttraumatic stress disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7, 129–138.Google ScholarPubMed
Harris, A., & Reece, J. (2021). Transcranial magnetic stimulation as a treatment for posttraumatic stress disorder: A meta-analysis. Journal of Affective Disorders, 289, 55–65.CrossRefGoogle ScholarPubMed
Hayes, J. P., LaBar, K. S., McCarthy, G., Selgrade, E., Nasser, J., Dolcos, F., & Morey, R. A. (2011). Reduced hippocampal and amygdala activity predicts memory distortions for trauma reminders in combat-related PTSD. Journal of Psychiatric Research, 45, 660–669.CrossRefGoogle ScholarPubMed
Heilbronner, S. R., Rodriguez-Romaguera, J., Quirk, G. J., Groenewegen, H. J., & Haber, S. N. (2016). Circuit-based corticostriatal homologies between rat and primate. Biological Psychiatry, 80, 509–521.CrossRefGoogle ScholarPubMed
Hein, T. C., Goetschius, L. G., McLoyd, V. C., Brooks-Gunn, J., McLanahan, S. S., Mitchell, C., … Monk, C. S. (2020). Childhood violence exposure and social deprivation are linked to adolescent threat and reward neural function. Social Cognitive and Affective Neuroscience, 15, 1252–1259.CrossRefGoogle ScholarPubMed
Hennings, A. C., McClay, M., Lewis-Peacock, J. A., & Dunsmoor, J. E. (2020). Contextual reinstatement promotes extinction generalization in healthy adults but not PTSD. Neuropsychologia, 147, 107573.CrossRefGoogle Scholar
Herz, N., Bar-Haim, Y., Tavor, I., Tik, N., Sharon, H., Holmes, E. A., & Censor, N. (2022). Neuromodulation of visual cortex reduces the intensity of intrusive memories. Cerebral Cortex, 32, 408–417.CrossRefGoogle ScholarPubMed
Hinojosa, C. A., VanElzakker, M. B., Hughes, K. C., Offringa, R., Sangermano, L. M., Spaulding, I. G., … Rauch, S. L. (2022). Exaggerated amygdala activation to ambiguous facial expressions is a familial vulnerability factor for posttraumatic stress disorder. Journal of Psychiatric Research, 156, 451–459.CrossRefGoogle ScholarPubMed
Hinrichs, R., van Rooij, S. J., Michopoulos, V., Schultebraucks, K., Winters, S., Maples-Keller, J., … Rothbaum, B. O. (2019). Increased skin conductance response in the immediate aftermath of trauma predicts PTSD risk. Chronic Stress, 3, 2470547019844441.CrossRefGoogle ScholarPubMed
Hoge, E. A., Worthington, J. J., Nagurney, J. T., Chang, Y., Kay, E. B., Feterowski, C. M., … Lasko, N. B. (2012). Effect of acute posttrauma propranolol on PTSD outcome and physiological responses during script‐driven imagery. CNS Neuroscience & Therapeutics, 18, 21–27.CrossRefGoogle ScholarPubMed
Holmes, E. A., Grey, N., & Young, K. A. D. (2005). Intrusive images and “hotspots” of trauma memories in posttraumatic stress disorder: An exploratory investigation of emotions and cognitive themes. Journal of Behavior Therapy and Experimental Psychiatry, 36, 3–17.CrossRefGoogle ScholarPubMed
Hoppe, J. M., Walldén, Y. S. E., Kanstrup, M., Singh, L., Agren, T., Holmes, E. A., & Moulds, M. L. (2022). Hotspots in the immediate aftermath of trauma – Mental imagery of worst moments highlighting time, space and motion. Consciousness and Cognition, 99, 103286.CrossRefGoogle Scholar
Jovanovic, T., Ely, T., Fani, N., Glover, E. M., Gutman, D., Tone, E. B., … Ressler, K. J. (2013). Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample. Cortex, 49, 1884–1891.CrossRefGoogle Scholar
Jovanovic, T., Kazama, A., Bachevalier, J., & Davis, M. (2012). Impaired safety signal learning may be a biomarker of PTSD. Neuropharmacology, 62, 695–704.CrossRefGoogle ScholarPubMed
Jovanovic, T., Norrholm, S. D., Fennell, J. E., Keyes, M., Fiallos, A. M., Myers, K. M., … Duncan, E. J. (2009). Posttraumatic stress disorder may be associated with impaired fear inhibition: Relation to symptom severity. Psychiatry Research, 167, 151–160.CrossRefGoogle ScholarPubMed
Jovanovic, T., Sakoman, A. J., Kozarić‐Kovačić, D., Meštrović, A. H., Duncan, E. J., Davis, M., & Norrholm, S. D. (2013). Acute stress disorder versus chronic posttraumatic stress disorder: Inhibition of fear as a function of time since trauma. Depression & Anxiety, 30, 217–224.CrossRefGoogle ScholarPubMed
Kamkwalala, A., Norrholm, S. D., Poole, J. M., Brown, A., Donley, S., Duncan, E.,… Jovanovic, T. (2012). Dark-enhanced startle responses and heart rate variability in a traumatized civilian sample: Putative sex-specific correlates of posttraumatic stress disorder. Psychosomatic Medicine, 74, 153–159.CrossRefGoogle Scholar
Koch, S. B., Van Zuiden, M., Nawijn, L., Frijling, J. L., Veltman, D. J., & Olff, M. (2017). Decreased uncinate fasciculus tract integrity in male and female patients with PTSD: A diffusion tensor imaging study. Journal of Psychiatry and Neuroscience, 42, 331–342.CrossRefGoogle ScholarPubMed
Li, W., & Keil, A. (2023). Sensing fear: Fast and precise threat evaluation in human sensory cortex. Trends in Cognitive Sciences, 27, 341–352.CrossRefGoogle ScholarPubMed
Liberzon, I., & Abelson, J. L. (2016). Context processing and the neurobiology of post-traumatic stress disorder. Neuron, 92, 14–30.CrossRefGoogle ScholarPubMed
Mahan, A. L., & Ressler, K. J. (2012). Fear conditioning, synaptic plasticity and the amygdala: Implications for posttraumatic stress disorder. Trends in Neurosciences, 35, 24–35.CrossRefGoogle ScholarPubMed
Mattson, W. I., Hyde, L. W., Shaw, D. S., Forbes, E. E., & Monk, C. S. (2016). Clinical neuroprediction: Amygdala reactivity predicts depressive symptoms 2 years later. Social Cognitive and Affective Neuroscience, 11, 892–898.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Busso, D. S., Duys, A., Green, J. G., Alves, S., Way, M., & Sheridan, M. A. (2014). Amygdala response to negative stimuli predicts PTSD symptom onset following a terrorist attack. Depression & Anxiety, 31, 834–842.CrossRefGoogle ScholarPubMed
Meakins, J., & Wilson, R. (1918). The effect of certain sensory stimulations of respiratory and heart rate in cases of so-called “irritable heart.” Heart, 7(17), 71.Google Scholar
Milad, M. R., Pitman, R. K., Ellis, C. B., Gold, A. L., Shin, L. M., Lasko, N. B., … Rauch, S. L. (2009). Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biological Psychiatry, 66, 1075–1082.CrossRefGoogle ScholarPubMed
Milad, M. R., & Quirk, G. J. (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 420, 70–74.CrossRefGoogle ScholarPubMed
Norrholm, S. D., Glover, E. M., Stevens, J. S., Fani, N., Galatzer-Levy, I. R., Bradley, B., … Jovanovic, T. (2014). Fear load: The psychophysiological over-expression of fear as an intermediate phenotype associated with trauma reactions. International Journal of Psychophysiology, 98, 270–275.Google Scholar
Norrholm, S. D., Jovanovic, T., Olin, I. W., Sands, L. A., Karapanou, I., Bradley, B., & Ressler, K. J. (2011). Fear extinction in traumatized civilians with posttraumatic stress disorder: Relation to symptom severity. Biological Psychiatry, 69, 556–563.CrossRefGoogle ScholarPubMed
Nugent, N. R., Christopher, N. C., Crow, J. P., Browne, L., Ostrowski, S., & Delahanty, D. L. (2010). The efficacy of early propranolol administration at reducing PTSD symptoms in pediatric injury patients: A pilot study. Journal of Trauma Stress, 23, 282–287.CrossRefGoogle ScholarPubMed
O’Doherty, D. C., Ryder, W., Paquola, C., Tickell, A., Chan, C., Hermens, D. F., … Lagopoulos, J. (2018). White matter integrity alterations in post‐traumatic stress disorder. Human Brain Mapping, 39, 1327–1338.Google ScholarPubMed
Ojala, K. E., Staib, M., Gerster, S., Ruff, C. C., & Bach, D. R. (2022). Inhibiting human aversive memory by transcranial theta-burst stimulation to the primary sensory cortex. Biological Psychiatry, 92, 149–157.CrossRefGoogle Scholar
Olff, M., Langeland, W., Draijer, N., & Gersons, B. P. (2007). Gender differences in posttraumatic stress disorder. Psychological Bulletin, 133, 183–204.CrossRefGoogle ScholarPubMed
Orr, S. P., Lasko, N. B., Macklin, M. L., Pineles, S. L., Chang, Y., & Pitman, R. K. (2012). Predicting post-trauma stress symptoms from pre-trauma psychophysiologic reactivity, personality traits and measures of psychopathology. Biology of Mood & Anxiety Disorders, 2, 8.CrossRefGoogle ScholarPubMed
Orr, S. P., Lasko, N. B., Metzger, L. J., Berry, N. J., Ahern, C. E., & Pitman, R. K. (1998). Psychophysiologic assessment of women with posttraumatic stress disorder resulting from childhood sexual abuse. Journal of Consulting and Clinical Psychology, 66, 906–913.CrossRefGoogle ScholarPubMed
Orr, S. P., Metzger, L. J., Lasko, N. B., Macklin, M. L., Peri, T., & Pitman, R. K. (2000). De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. Journal of Abnormal Psychology, 109, 290–298.CrossRefGoogle ScholarPubMed
Orr, S. P., Pitman, R. K., Lasko, N. B., & Herz, L. R. (1993). Psychophysiological assessment of posttraumatic stress disorder imagery in World War II and Korean combat veterans. Journal of Abnormal Psychology, 102, 152–159.CrossRefGoogle ScholarPubMed
Philip, N. S., Barredo, J., Aiken, E., Larson, V., Jones, R. N., Shea, M. T., … van’t Wout-Frank, M, (2019). Theta-burst transcranial magnetic stimulation for posttraumatic stress disorder. American Journal of Psychiatry, 176, 939–948.CrossRefGoogle ScholarPubMed
Pitman, R. K., Orr, S. P., Forgue, D. F., de Jong, J. B., & Claiborn, J. M. (1987). Psychophysiologic assessment of posttraumatic stress disorder imagery in Vietnam combat veterans. Archives of General Psychiatry, 44, 970–975.CrossRefGoogle ScholarPubMed
Pitman, R. K., Sanders, K. M., Zusman, R. M., Healy, A. R., Cheema, F., Lasko, N. B., … Orr, S. P. (2002). Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biological Psychiatry, 51, 189–192.CrossRefGoogle ScholarPubMed
Resick, P. A., & Schnicke, M. K. (1992). Cognitive processing therapy for sexual assault victims. Journal Consulting and Clinical Psychology, 60, 748–756.CrossRefGoogle ScholarPubMed
Roesler, R., Parent, M. B., LaLumiere, R. T., & McIntyre, C. K. (2021). Amygdala-hippocampal interactions in synaptic plasticity and memory formation. Neurobiology Learning and Memory, 184, 107490.CrossRefGoogle ScholarPubMed
Rosenberg, L., Rosenberg, M., Sharp, S., Thomas, C. R., Humphries, H. F., HolzerIII, C. E., … MeyerIII, W. J. (2018). Does acute propranolol treatment prevent posttraumatic stress disorder, anxiety, and depression in children with burns? Journal of Child and Adolescent Psychopharmacology, 28, 117–123.CrossRefGoogle ScholarPubMed
Rougemont-Bucking, A., Linnman, C., Zeffiro, T. A., Zeidan, M. A., Lebron-Milad, K., Rodriguez-Romaguera, J., … Milad, M. R. (2011). Altered processing of contextual information during fear extinction in PTSD: An fMRI study. CNS Neuroscience & Therapeutics, 17, 227–236.CrossRefGoogle ScholarPubMed
Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10, 211–223.CrossRefGoogle ScholarPubMed
Seligman, M. E., & Yellen, A. (1987). What is a dream? Behaviour Research and Therapy, 25, 1–24.CrossRefGoogle ScholarPubMed
Sendi, M. S. E., Inman, C. S., Bijanki, K. R., Blanpain, L., Park, J. K., Hamann, S., … Mahmoudi, B. (2021). Identifying the neurophysiological effects of memory-enhancing amygdala stimulation using interpretable machine learning. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 14, 1511–1519.CrossRefGoogle ScholarPubMed
Shin, L. M., Kosslyn, S. M., McNally, R. J., Alpert, N. M., Thompson, W. L., Rauch, S. L., … Pitman, R. K. (1997). Visual imagery and perception in posttraumatic stress disorder: A positron emission tomographic investigation. Archives of General Psychiatry, 54, 233–241.CrossRefGoogle ScholarPubMed
Shin, L. M., Rauch, S. L., & Pitman, R. K. (2006). Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Annals of New York Academy of Sciences, 1071, 67–79.CrossRefGoogle ScholarPubMed
Shin, L. M., Whalen, P. J., Pitman, R. K., Bush, G., Macklin, M. L., Lasko, N. B., … Rauch, S. L. (2001). An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biological Psychiatry, 50, 932–942.CrossRefGoogle ScholarPubMed
Shin, L. M., Wright, C. I., Cannistraro, P. A., Wedig, M. M., McMullin, K., Martis, B., … Rauch, S. L. (2005). A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Archives of General Psychiatry, 62, 273–281.CrossRefGoogle ScholarPubMed
Squire, L. R., & Zola-Morgan, S. (1988). Memory: Brain systems and behavior. Trends in Neurosciences, 11, 170–175.CrossRefGoogle ScholarPubMed
Stein, M. B., Kerridge, C., Dimsdale, J. E., & Hoyt, D. B. (2007). Pharmacotherapy to prevent PTSD: Results from a randomized controlled proof‐of‐concept trial in physically injured patients. Journal of Traumatic Stress, 20, 923–932.CrossRefGoogle ScholarPubMed
Stevens, J. S., Almli, L. M., Fani, N., Gutman, D. A., Bradley, B., Norrholm, S. D., … Ressler, K. J. (2014). PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 111, 3158–3163.Google ScholarPubMed
Stevens, J. S., Jovanovic, T., Fani, N., Ely, T. D., Glover, E. M., Bradley, B., & Ressler, K. J. (2013). Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. Journal of Psychiatric Research, 47, 1469–1478.CrossRefGoogle ScholarPubMed
Stevens, J. S., Kim, Y. J., Galatzer-Levy, I. R., Reddy, R., Ely, T. D., Nemeroff, C. B., … Ressler, K. J. (2017). Amygdala reactivity and anterior cingulate habituation predict PTSD symptom maintenance after acute civilian trauma. Biological Psychiatry, 81, 1023–1029.CrossRefGoogle ScholarPubMed
Stevens, J. S., Reddy, R., Kim, Y. J., van Rooij, S. J. H., Ely, T. D., Hamann, S., … Jovanovic, T. (2018). Episodic memory after trauma exposure: Medial temporal lobe function is positively related to re-experiencing and inversely related to negative affect symptoms. NeuroImage: Clinical, 17, 650–658.Google ScholarPubMed
Suo, X., Lei, D., Li, W., Sun, H., Qin, K., Yang, J., … Gong, Q. (2022). Psychoradiological abnormalities in treatment‐naive noncomorbid patients with posttraumatic stress disorder. Depression & Anxiety, 39, 83–91.CrossRefGoogle ScholarPubMed
Swartz, J. R., Knodt, A. R., Radtke, S. R., & Hariri, A. R. (2015). A neural biomarker of psychological vulnerability to future life stress. Neuron, 85, 505–511.CrossRefGoogle ScholarPubMed
Thompson, E. H., Lensjø, K. K., Wigestrand, M. B., Malthe-Sørenssen, A., Hafting, T., & Fyhn, M. (2018). Removal of perineuronal nets disrupts recall of a remote fear memory. Proceedings of the National Academy of Sciences of the United States of America, 115, 607–612.Google ScholarPubMed
Tsukano, H., Hou, X., Horie, M., Kitaura, H., Nishio, N., Hishida, R., … Sugiyama, S. (2019). Reciprocal connectivity between secondary auditory cortical field and amygdala in mice. Scientific Reports, 9, 19610.CrossRefGoogle ScholarPubMed
Urcelay, G. P., Wheeler, D. S., & Miller, R. R. (2009). Spacing extinction trials alleviates renewal and spontaneous recovery. Learning & Behavior, 37, 60–73.CrossRefGoogle ScholarPubMed
van Rooij, S., Stevens, J., Ely, T., Fani, N., Smith, A., Kerley, K., … Jovanovic, T. (2016). Childhood trauma and COMT genotype interact to increase hippocampal activation in resilient individuals. Frontiers in Psychiatry, 7, 156.CrossRefGoogle ScholarPubMed
van Rooij, S. J., Ravi, M., Ely, T. D., Michopoulos, V., Winters, S. J., Shin, J., … Ressler, K. J. (2021). Hippocampal activation during contextual fear inhibition related to resilience in the early aftermath of trauma. Behavioural Brain Research, 408, 113282.CrossRefGoogle ScholarPubMed
van Rooij, S. J. H., Stevens, J. S., Ely, T. D., Hinrichs, R. C., Michopoulos, V., Winters, S. J., … Jovanovic, T. (2018). The role of the hippocampus in predicting future PTSD symptoms in recently traumatized civilians. Biological Psychiatry, 84, 106–115.CrossRefGoogle ScholarPubMed
van Wingen, G. A., Geuze, E., Vermetten, E., & Fernandez, G. (2011). Perceived threat predicts the neural sequelae of combat stress. Molecular Psychiatry, 16, 664–671.CrossRefGoogle ScholarPubMed
White, M. G., Bogdan, R., Fisher, P. M., Munoz, K. E., Williamson, D. E., & Hariri, A. R. (2012). FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes, Brain and Behavior, 11, 869–878.CrossRefGoogle ScholarPubMed
Williams, L. M., Kemp, A. H., Felmingham, K., Barton, M., Olivieri, G., Peduto, A., … Bryant, R. A. (2006). Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. NeuroImage, 29, 347–357.CrossRefGoogle ScholarPubMed
Yang, Y., Liu, D.-q., Huang, W., Deng, J., Sun, Y., Zuo, Y., & Poo, M.-M. (2016). Selective synaptic remodeling of amygdalocortical connections associated with fear memory. Nature Neuroscienec, 19, 1348–1355.Google ScholarPubMed
Yehuda, R., Hoge, C. W., McFarlane, A. C., Vermetten, E., Lanius, R. A., Nievergelt, C. M., … Hyman, S. E. (2015). Post-traumatic stress disorder. Nature Reviews Disease Primers, 1, 15057.CrossRefGoogle ScholarPubMed
Yukie, M. (2002). Connections between the amygdala and auditory cortical areas in the macaque monkey. Neuroscience Research, 42, 219–229.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×