Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-wlffp Total loading time: 0 Render date: 2025-09-29T00:05:05.216Z Has data issue: false hasContentIssue false

Chapter 28 - Affective Neuroscience of Aging

An Interplay of Organic Brain Changes and Shifting Goals

from Section VII - Individual Differences

Published online by Cambridge University Press:  16 September 2025

Jorge Armony
Affiliation:
McGill University, Montréal
Patrik Vuilleumier
Affiliation:
University of Geneva
Get access

Summary

In this chapter, we review empirical and conceptual work pertaining to organic changes in the brain and shifting goals as contributors to age-related changes in affective processing. We argue for the need to integrate these two previously isolated lines of research by delineating their crucial interplay toward a comprehensive understanding of affective neuroscience in aging. We present examples of aging trajectories, impacted by organic brain and motivational change, to identify key processes of interest for future research and potent intervention targets to promote successful aging. We conclude with open basic and applied research questions embedded within our integrated conceptual framework to guide future research on affective neuroscience in aging.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Bäckman, L., Lindenberger, U., Li, S.-C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neuroscience & Biobehavioral Reviews, 34, 670–677.CrossRefGoogle ScholarPubMed
Bailey, P. E., Brady, B., Ebner, N. C., & Ruffman, T. (2018). Effects of age on emotion regulation, emotional empathy, and prosocial behavior. The Journals of Gerontology: Series B, 75, 802–810.Google Scholar
Barrett, L. F., & Bliss-Moreau, E. (2009). She’s emotional. He’s having a bad day: Attributional explanations for emotion stereotypes. Emotion, 9, 649–658.CrossRefGoogle Scholar
Bos, P. A., Panksepp, J., Bluthé, R.-M., & van Honk, J. (2012). Acute effects of steroid hormones and neuropeptides on human social–emotional behavior: A review of single administration studies. Frontiers in Neuroendocrinology, 33, 17–35.CrossRefGoogle ScholarPubMed
Burke, H. M., Davis, M. C., Otte, C., & Mohr, D. C. (2005). Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology, 30, 846–856.CrossRefGoogle ScholarPubMed
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85–100.CrossRefGoogle ScholarPubMed
Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14, 364–375.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., Bechara, A., Tranel, D., & Hawkley, L. C. (2011). Could an aging brain contribute to subjective well-being? The value added by a social neuroscience perspective. In Todorov, A., Fiske, S., & Prentice, D. (Eds.), Social neuroscience: Toward understanding the underpinnings of the social mind (p. 249–262). Oxford University Press.Google Scholar
Carhart-Harris, R., & Nutt, D. (2017). Serotonin and brain function: A tale of two receptors. Journal of Psychopharmacology, 31, 1091–1120.CrossRefGoogle ScholarPubMed
Carstensen, L. L. (2006). The influence of a sense of time on human development. Science, 312, 1913–1915.CrossRefGoogle ScholarPubMed
Castle, E., Eisenberger, N. I., Seeman, T. E., Moons, W. G., Boggero, I. A., Grinblatt, M. S., & Taylor, S. E. (2012). Neural and behavioral bases of age differences in perceptions of trust. Proceedings of the National Academy of Sciences of the United States of America, 109, 20848–20852.Google ScholarPubMed
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.Google Scholar
Dahl, M. J., Mather, M., Werkle-Bergner, M., Kennedy, B. L., Guzman, S., Hurth, K., … Ringman, J. M. (2022). Locus coeruleus integrity is related to tau burden and memory loss in autosomal-dominant Alzheimer’s disease. Neurobiology of Aging, 112, 39–54.CrossRefGoogle ScholarPubMed
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18, 1201–1209.CrossRefGoogle ScholarPubMed
Delgado, M. R., Beer, J. S., Fellows, L. K., Huettel, S. A., Platt, M. L., Quirk, G. J., & Schiller, D. (2016). Viewpoints: Dialogues on the functional role of the ventromedial prefrontal cortex. Nature Neuroscience, 19, 1545–1552.CrossRefGoogle ScholarPubMed
Ebner, N. C., Chen, H., Porges, E., Lin, T., Fischer, H., Feifel, D., & Cohen, R. A. (2016). Oxytocin’s effect on resting-state functional connectivity varies by age and sex. Psychoneuroendocrinology, 69, 50–59.CrossRefGoogle ScholarPubMed
Ebner, N. C., & Fischer, H. (2014). Emotion and aging: Evidence from brain and behavior. Frontiers in Psychology, 5, 996.CrossRefGoogle ScholarPubMed
Ebner, N. C., Kamin, H., Diaz, V., Cohen, R. A., & MacDonald, K. (2015). Hormones as “difference makers” in cognitive and socioemotional aging processes. Frontiers in Psychology, 5, 1595.CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 85–93.CrossRefGoogle ScholarPubMed
Farokhian, F., Yang, C., Beheshti, I., Matsuda, H., & Wu, S. (2017). Age-related gray and white matter changes in normal adult brains. Aging and Disease, 8, 899–909.CrossRefGoogle ScholarPubMed
Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B., for the Alzheimer’s Disease Neuroimaging Initiative. (2013). Brain changes in older adults at very low risk for Alzheimer’s disease. Journal of Neuroscience, 33, 8237–8242.CrossRefGoogle ScholarPubMed
Fjell, A. M., & Walhovd, K. B. (2010). Structural brain changes in aging: Courses, causes and cognitive consequences. Reviews in the Neurosciences, 21, 187–221.CrossRefGoogle ScholarPubMed
Ford, J. H., & Kensinger, E. A. (2017). Prefrontally-mediated alterations in the retrieval of negative events: Links to memory vividness across the adult lifespan. Neuropsychologia, 102, 82–94.CrossRefGoogle ScholarPubMed
Fraser, M. A., Shaw, M. E., & Cherbuin, N. (2015). A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. NeuroImage, 112, 364–374.CrossRefGoogle ScholarPubMed
Frazier, I., Lighthall, N. R., Horta, M., Perez, E., & Ebner, N. C. (2019). CISDA: Changes in Integration for Social Decisions in Aging. Wiley Interdisciplinary Reviews Cognitive Science, 10, e1490.CrossRefGoogle ScholarPubMed
Fuchs, E., & Flügge, G. (2003). Chronic social stress: Effects on limbic brain structures. Physiology & Behavior, 79, 417–427.CrossRefGoogle ScholarPubMed
Giorgio, A., Santelli, L., Tomassini, V., Bosnell, R., Smith, S., De Stefano, N., & Johansen-Berg, H. (2010). Age-related changes in grey and white matter structure throughout adulthood. NeuroImage, 51, 943–951.CrossRefGoogle ScholarPubMed
Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14, 21–36.Google ScholarPubMed
Gooren, L. (2007). Testosterone and the brain. The Journal of Men’s Health & Gender, 4, 344–351.Google Scholar
Grady, C. L., Bernstein, L. J., Beig, S., & Siegenthaler, A. L. (2002). The effects of encoding task on age-related differences in the functional neuroanatomy of face memory. Psychology and Aging, 17, 7–23.CrossRefGoogle ScholarPubMed
Grieve, S. M., Clark, C. R., Williams, L. M., Peduto, A. J., & Gordon, E. (2005). Preservation of limbic and paralimbic structures in aging. Human Brain Mapping, 25, 391–401.CrossRefGoogle ScholarPubMed
Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: A review of MRI findings. International Journal of Geriatric Psychiatry, 24, 109–117.CrossRefGoogle ScholarPubMed
Ha, D. M., Xu, J., & Janowsky, J. S. (2007). Preliminary evidence that long-term estrogen use reduces white matter loss in aging. Neurobiology of Aging, 28, 1936–1940.CrossRefGoogle ScholarPubMed
Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4–26.CrossRefGoogle ScholarPubMed
Harrison, T. M., Weintraub, S., Mesulam, M.-M., & Rogalski, E. (2012). Superior memory and higher cortical volumes in unusually successful cognitive aging. Journal of the International Neuropsychological Society, 18, 1081–1085.CrossRefGoogle ScholarPubMed
Hauser, T. U., Eldar, E., Purg, N., Moutoussis, M., & Dolan, R. J. (2019). Distinct roles of dopamine and noradrenaline in incidental memory. The Journal of Neuroscience, 39, 7715–7721.CrossRefGoogle ScholarPubMed
Heaney, J. L. J., Phillips, A. C., & Carroll, D. (2010). Ageing, depression, anxiety, social support and the diurnal rhythm and awakening response of salivary cortisol. International Journal of Psychophysiology, 78, 201–208.CrossRefGoogle ScholarPubMed
Horta, M., Ziaei, M., Lin, T., Porges, E. C., Fischer, H., Feifel, D., … Ebner, N. C. (2019). Oxytocin alters patterns of brain activity and amygdalar connectivity by age during dynamic facial emotion identification. Neurobiology of Aging, 78, 42–51.CrossRefGoogle ScholarPubMed
Hussain, L. (2022). Physiology, noradrenergic synapse. StatPearls Publishing.Google Scholar
Isaacowitz, D. M., Freund, A. M., Mayr, U., Rothermund, K., & Tobler, P. N. (2021). Age-related changes in the role of social motivation: Implications for healthy aging. The Journals of Gerontology: Series B, 76, S115–S124.CrossRefGoogle ScholarPubMed
Jernigan, T. L., Archibald, S. L., Fennema-Notestine, C., Gamst, A. C., Stout, J. C., Bonner, J., & Hesselink, J. R. (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of Aging, 22, 581–594.CrossRefGoogle ScholarPubMed
Kang, W., Wang, J., & Malvaso, A. (2022). Inhibitory control in aging: The compensation-related utilization of neural circuits hypothesis. Frontiers in Aging Neuroscience, 13, 771885.CrossRefGoogle ScholarPubMed
Karalija, N., Johansson, J., Papenberg, G., Wåhlin, A., Salami, A., Köhncke, Y., … Nyberg, L. (2022). Longitudinal dopamine D2 receptor changes and cerebrovascular health in aging. Neurology, 99, e1278–e1289.CrossRefGoogle ScholarPubMed
Karrer, T. M., Josef, A. K., Mata, R., Morris, E. D., & Samanez-Larkin, G. R. (2017). Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: A meta-analysis. Neurobiology of Aging, 57, 36–46.CrossRefGoogle Scholar
Karrer, T. M., McLaughlin, C. L., Guaglianone, C. P., & Samanez-Larkin, G. R. (2019). Reduced serotonin receptors and transporters in normal aging adults: A meta-analysis of PET and SPECT imaging studies. Neurobiology of Aging, 80, 1–10.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Corkin, S. (2004). Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the National Academy of Sciences of the United States of America, 101, 3310–3315.Google ScholarPubMed
Knierim, J. J. (2015). The hippocampus. Current Biology, 25, R1116–R1121.CrossRefGoogle ScholarPubMed
Knutson, B., Katovich, K., & Suri, G. (2014). Inferring affect from fMRI data. Trends in Cognitive Sciences, 18, 422–428.CrossRefGoogle ScholarPubMed
Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D. (2008). Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage, 42, 998–1031.CrossRefGoogle ScholarPubMed
Kryla-Lighthall, N., & Mather, M. (2009). The role of cognitive control in older adults’ emotional well-being. Springer Publishing Company.Google Scholar
Kwee, I. L., & Nakada, T. (2003). Dorsolateral prefrontal lobe activation declines significantly with age functional NIRS study. Journal of Neurology, 250, 525–529.CrossRefGoogle ScholarPubMed
Lee, T.-H., Greening, S. G., Ueno, T., Clewett, D., Ponzio, A., Sakaki, M., & Mather, M. (2018). Arousal increases neural gain via the locus coeruleus–noradrenaline system in younger adults but not in older adults. Nature Human Behaviour, 2, 356–366.CrossRefGoogle Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121–143.CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434–445.CrossRefGoogle ScholarPubMed
MacDonald, M. E., & Pike, G. B. (2021). MRI of healthy brain aging: A review. NMR in Biomedicine, 34, e4564.CrossRefGoogle ScholarPubMed
Malagurski, B., Deschwanden, P. F., Jäncke, L., & Mérillat, S. (2022). Longitudinal functional connectivity patterns of the default mode network in healthy older adults. NeuroImage, 259, 119414.CrossRefGoogle ScholarPubMed
Mather, M. (2016). The affective neuroscience of aging. Annual Review of Psychology, 67, 213–238.CrossRefGoogle ScholarPubMed
Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 39, e200.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2013). The brain on stress: Toward an integrative approach to brain, body, and behavior. Perspectives on Psychological Science, 8, 673–675.CrossRefGoogle ScholarPubMed
Menon, V. (2015). Salience network. In Toga, A. W. (Ed.), Brain mapping: An encyclopedic reference, Vol. 2 (pp. 597–611). Elsevier.Google Scholar
Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., & Cohen, N. J. (2002). Attentional control in the aging brain: Insights from an fMRI study of the Stroop task. Brain and Cognition, 49, 277–296.CrossRefGoogle ScholarPubMed
Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., & Caron, M. G. (1998). Dopamine receptors: From structure to function. Physiological Reviews, 78, 189–225.CrossRefGoogle ScholarPubMed
Mitchell, D. G. V. (2011). The nexus between decision making and emotion regulation: A review of convergent neurocognitive substrates. Behavioural Brain Research, 217, 215–231.CrossRefGoogle ScholarPubMed
Morawetz, C., Bode, S., Derntl, B., & Heekeren, H. R. (2017). The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 72, 111–128.CrossRefGoogle ScholarPubMed
Nashiro, K., Sakaki, M., & Mather, M. (2012). Age differences in brain activity during emotion processing: Reflections of age-related decline or increased emotion regulation. Gerontology, 58, 156–163.CrossRefGoogle ScholarPubMed
Newhouse, P. A., Dumas, J., Hancur-Bucci, C., Naylor, M., Sites, C. K., Benkelfat, C., & Young, S. N. (2008). Estrogen administration negatively alters mood following monoaminergic depletion and psychosocial stress in postmenopausal women. Neuropsychopharmacology, 33, 1514–1527.CrossRefGoogle ScholarPubMed
Nordahl, C. W., Ranganath, C., Yonelinas, A. P., DeCarli, C., Fletcher, E., & Jagust, W. J. (2006). White matter changes compromise prefrontal cortex function in healthy elderly individuals. Journal of Cognitive Neuroscience, 18, 418–429.CrossRefGoogle ScholarPubMed
Ogawa, S. K., & Watabe-Uchida, M. (2018). Organization of dopamine and serotonin system: Anatomical and functional mapping of monosynaptic inputs using rabies virus. Pharmacology Biochemistry and Behavior, 174, 9–22.CrossRefGoogle ScholarPubMed
Onoda, K., Ishihara, M., & Yamaguchi, S. (2012). Decreased functional connectivity by aging is associated with cognitive decline. Journal of Cognitive Neuroscience, 24, 2186–2198.CrossRefGoogle ScholarPubMed
Pardo, J. V., Lee, J. T., Sheikh, S. A., Surerus-Johnson, C., Shah, H., Munch, K. R., … Dysken, M. W. (2007). Where the brain grows old: Decline in anterior cingulate and medial prefrontal function with normal aging. NeuroImage, 35, 1231–1237.CrossRefGoogle ScholarPubMed
Peper, J. S., van den Heuvel, M. P., Mandl, R. C. W., Pol, H. E. H., & van Honk, J. (2011). Sex steroids and connectivity in the human brain: A review of neuroimaging studies. Psychoneuroendocrinology, 36, 1101–1113.CrossRefGoogle ScholarPubMed
Peters, K. Z., Cheer, J. F., & Tonini, R. (2021). Modulating the neuromodulators: Dopamine, serotonin, and the endocannabinoid system. Trends in Neurosciences, 44, 464–477.CrossRefGoogle ScholarPubMed
Piazza, J. R., Charles, S. T., Stawski, R. S., & Almeida, D. M. (2013). Age and the association between negative affective states and diurnal cortisol. Psychology and Aging, 28, 47–56.CrossRefGoogle ScholarPubMed
Pierce, J. E., & Péron, J. (2020). The basal ganglia and the cerebellum in human emotion. Social Cognitive and Affective Neuroscience, 15, 599–613.CrossRefGoogle ScholarPubMed
Protopopescu, X., Pan, H., Altemus, M., Tuescher, O., Polanecsky, M., McEwen, B., … Stern, E. (2005). Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle. Proceedings of the National Academy of Sciences of the United States of America, 102, 16060–16065.Google ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.Google ScholarPubMed
Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. Lawrence Erlbaum Associates Publishers.Google Scholar
Raz, N. (2005). The aging brain observed in vivo: Differential changes and their modifiers. In Cabeza, R., Nyberg, L., & Park, D. (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 19–57). Oxford University Press.Google Scholar
Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. NeuroImage, 51, 501–511.CrossRefGoogle ScholarPubMed
Reed, A. E., Chan, L., & Mikels, J. A. (2014). Meta-analysis of the age-related positivity effect: Age differences in preferences for positive over negative information. Psychology and Aging, 29, 1–15.CrossRefGoogle ScholarPubMed
Salat, D. H., Kaye, J. A., & Janowsky, J. S. (1999). Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease. Archives of Neurology, 56, 338–344.CrossRefGoogle ScholarPubMed
Salat, D. H., Tuch, D. S., Hevelone, N. D., Fischl, B., Corkin, S., Rosas, H. D., & Dale, A. M. (2005). Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Annals of the New York Academy of Sciences, 1064, 37–49.CrossRefGoogle ScholarPubMed
Samanez-Larkin, G. R., & Knutson, B. (2015). Decision making in the ageing brain: Changes in affective and motivational circuits. Nature Reviews. Neuroscience, 16, 278–289.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 55–89.Google ScholarPubMed
Saykin, A. J., Wishart, H. A., Rabin, L. A., Santulli, R. B., Flashman, L. A., West, J. D., … Mamourian, A. C. (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology, 67, 834–842.CrossRefGoogle ScholarPubMed
Scherer, K. R., Schorr, A., & Johnstone, T. (Eds.). (2001). Appraisal processes in emotion: Theory, methods, research. Oxford University Press.CrossRefGoogle Scholar
Schultz, W. (2016). Reward functions of the basal ganglia. Journal of Neural Transmission, 123, 679–693.CrossRefGoogle ScholarPubMed
Schwarz, L. A., & Luo, L. (2015). Organization of the locus coeruleus-norepinephrine system. Current Biology, 25, R1051–R1056.CrossRefGoogle ScholarPubMed
Seaman, K. L., Smith, C. T., Juarez, E. J., Dang, L. C., Castrellon, J. J., Burgess, L. L., … Samanez‐Larkin, G. R. (2019). Differential regional decline in dopamine receptor availability across adulthood: Linear and nonlinear effects of age. Human Brain Mapping, 40, 3125–3138.CrossRefGoogle ScholarPubMed
Sele, S., Liem, F., Mérillat, S., & Jäncke, L. (2020). Decline variability of cortical and subcortical regions in aging: A longitudinal study. Frontiers in Human Neuroscience, 14, 363.CrossRefGoogle ScholarPubMed
Sharma, A. N., Aoun, P., Wigham, J. R., Weist, S. M., & Veldhuis, J. D. (2014). Estradiol, but not testosterone, heightens cortisol-mediated negative feedback on pulsatile ACTH secretion and ACTH approximate entropy in unstressed older men and women. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 306, R627–R635.Google Scholar
St. Jacques, P. L., Dolcos, F., & Cabeza, R. (2009). Effects of aging on functional connectivity of the amygdala for subsequent memory of negative pictures: A network analysis of functional magnetic resonance imaging data. Psychological Science, 20, 74–84.CrossRefGoogle ScholarPubMed
Stevens, F. L., Hurley, R. A., & Taber, K. H. (2011). Anterior cingulate cortex: Unique role in cognition and emotion. The Journal of Neuropsychiatry and Clinical Neurosciences, 23, 121–125.CrossRefGoogle ScholarPubMed
Storsve, A. B., Fjell, A. M., Tamnes, C. K., Westlye, L. T., Overbye, K., Aasland, H. W., & Walhovd, K. B. (2014). Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. Journal of Neuroscience, 34, 8488–8498.CrossRefGoogle ScholarPubMed
Sun, F. W., Stepanovic, M. R., Andreano, J., Barrett, L. F., Touroutoglou, A., & Dickerson, B. C. (2016). Youthful brains in older adults: Preserved neuroanatomy in the default mode and salience networks contributes to youthful memory in superaging. The Journal of Neuroscience, 36, 9659–9668.CrossRefGoogle ScholarPubMed
Touroutoglou, A., Zhang, J., Andreano, J. M., Dickerson, B. C., & Barrett, L. F. (2018). Dissociable effects of aging on salience subnetwork connectivity mediate age-related changes in executive function and affect. Frontiers in Aging Neuroscience, 10, 410.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and function of the human insula. Journal of Clinical Neurophysiology, 34, 300–306.CrossRefGoogle ScholarPubMed
Urry, H. L., & Gross, J. J. (2010). Emotion regulation in older age. Current Directions in Psychological Science, 19, 352–357.CrossRefGoogle Scholar
Walla, P., & Panksepp, J. (2013). Neuroimaging helps to clarify brain affective processing without necessarily clarifying emotions. In Fountas, K. (Ed.), Novel frontiers of advanced neuroimaging (pp. 93–118). InTech.Google Scholar
Weinert, B. T., & Timiras, P. S. (2003). Invited review: Theories of aging. Journal of Applied Physiology, 95, 1706–1716.CrossRefGoogle ScholarPubMed
Wieser, M. J., Mühlberger, A., Kenntner-Mabiala, R., & Pauli, P. (2006). Is emotion processing affected by advancing age? An event-related brain potential study. Brain Research, 1096, 138–147.CrossRefGoogle ScholarPubMed
Williams, L. M., Brown, K. J., Palmer, D., Liddell, B. J., Kemp, A. H., & Olivieri, G. (2006). The mellow years?: Neural basis of improving emotional stability over age. The Journal of Neuroscience, 26, 6422–6430.CrossRefGoogle ScholarPubMed
Wu, J.-T., Wu, H.-Z., Yan, C.-G., Chen, W.-X., Zhang, H.-Y., He, Y., & Yang, H.-S. (2011). Aging-related changes in the default mode network and its anti-correlated networks: A resting-state fMRI study. Neuroscience Letters, 504, 62–67.CrossRefGoogle ScholarPubMed
Yu, J., Mamerow, L., Lei, X., Fang, L., & Mata, R. (2016). Altered value coding in the ventromedial prefrontal cortex in healthy older adults. Frontiers in Aging Neuroscience, 8, 210.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×