Skip to main content Accessibility help
×
Hostname: page-component-6bb9c88b65-t28k2 Total loading time: 0 Render date: 2025-07-25T14:03:05.515Z Has data issue: false hasContentIssue false

1 - What Is a Biological ‘Trait’?

Published online by Cambridge University Press:  25 March 2017

Christopher J. Percival
Affiliation:
University of Calgary
Joan T. Richtsmeier
Affiliation:
Pennsylvania State University
Get access

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Bateson, W. (1894). Materials for the Study of Variation, Treated with Special Regard to Discontinuity in the Origin of Species. London: Macmillan.Google Scholar
Buchanan, A. V., Sholtis, S., Richtsmeier, J. and Weiss, K. M. (2009). What are genes “for” or where are traits “from”? What is the question? BioEssays, 31, 198208.10.1002/bies.200800133CrossRefGoogle Scholar
Burke, A. C., Nelson, C. E., Morgan, B. A. and Tabin, C. (1995). Hox genes and the evolution of vertebrate axial morphology. Development, 121, 333346.10.1242/dev.121.2.333CrossRefGoogle ScholarPubMed
Chan, Y., Salem, R. M., Hsu, Y. H., et al. (2015). Genome-wide analysis of body proportion classifies height-associated variants by mechanism of action and implicates genes important for skeletal development. American Journal of Human Genetics, 96, 695708.CrossRefGoogle ScholarPubMed
Chen, Y., Zhang, Y., Jiang, T. X., et al. (2000). Conservation of early odontogenic signaling pathways in Aves. Proceedings of the National Academy of Sciences USA, 97, 1004410049.10.1073/pnas.160245097CrossRefGoogle ScholarPubMed
Cheverud, J. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36, 17371747.CrossRefGoogle ScholarPubMed
Cheverud, J. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 4450.10.1093/icb/36.1.44CrossRefGoogle Scholar
Cheverud, J. (2004). Modular pleiotropic effects of quantitative trait loci on morphological traits. In: Schlosser, G. & Wagner, G. (eds.) Modularity in Development and Evolution. Chicago, IL: University of Chicago.Google Scholar
Cheverud, J. M., Hartman, S. E., Richtsmeier, J. T. and Atchley, W. R. (1991). A quantitative genetic analysis of localized morphology in mandibles of inbred mice using finite element scaling analysis. Journal of Craniofacial Genetics and Developmental Biology, 11, 122137.Google ScholarPubMed
Huang, S. (2012). The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework for post-Darwinian biology? Bioessays, 34, 149157.CrossRefGoogle ScholarPubMed
Jernvall, J. and Jung, H. S. (2000). Genotype, phenotype, and developmental biology of molar tooth characters. American Journal of Physical Anthropology, Suppl 31, 171190.10.1002/1096-8644(2000)43:31+<171::AID-AJPA6>3.0.CO;2-33.0.CO;2-3>CrossRefGoogle Scholar
Jernvall, J. and Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92, 1929.CrossRefGoogle ScholarPubMed
Kawasaki, K., Suzuki, T. and Weiss, K. M. (2005). Phenogenetic drift in evolution: the changing genetic basis of vertebrate teeth. Proceedings of the National Academy of Sciences USA, 102, 1806318068.10.1073/pnas.0509263102CrossRefGoogle ScholarPubMed
Kawasaki, K., Buchanan, A. V. and Weiss, K. M. (2009). Biomineralization in humans: making the hard choices in life. Annual Review of Genetics, 43, 119142.10.1146/annurev-genet-102108-134242CrossRefGoogle ScholarPubMed
Klingenberg, C. P., Leamy, L. J. and Cheverud, J. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166, 19091921.10.1093/genetics/166.4.1909CrossRefGoogle ScholarPubMed
Kondo, S. and Asai, R. (1995). A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature, 376, 765768.10.1038/376765a0CrossRefGoogle ScholarPubMed
Kondo, S. and Miura, T. (2010). Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329, 16161620.10.1126/science.1179047CrossRefGoogle ScholarPubMed
Lango Allen, H., Estrada, K., Lettre, G., et al. (2010). Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 467, 832838.10.1038/nature09410CrossRefGoogle ScholarPubMed
Maini, P. K., Baker, R. E. and Chuong, C. M. (2006). Developmental biology. The Turing model comes of molecular age. Science, 314, 13971398.10.1126/science.1136396CrossRefGoogle ScholarPubMed
Mezey, J. G., Cheverud, J. M. and Wagner, G. P. (2000). Is the genotype–phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics, 156, 305311.10.1093/genetics/156.1.305CrossRefGoogle Scholar
Salazar-Ciudad, I. and Jernvall, J. (2002). A gene network model accounting for development and evolution of mammalian teeth. Proceedings of the National Academy of Science USA, 99, 81168120.10.1073/pnas.132069499CrossRefGoogle ScholarPubMed
Salazar-Ciudad, I. and Jernvall, J. (2004). How different types of pattern formation mechanisms affect the evolution of form and development. Evolution and Development, 6, 616.10.1111/j.1525-142X.2004.04002.xCrossRefGoogle ScholarPubMed
Sheth, R., Marcon, L., Bastida, M. F., et al. (2012). Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science, 338, 14761480.CrossRefGoogle ScholarPubMed
Tabin, C. (1992). Why we have (only) five fingers per hand: Hox genes and the evolution of paired limbs. Development, 116, 289296.10.1242/dev.116.2.289CrossRefGoogle ScholarPubMed
Tucker, A., Matthews, K. and Sharpe, P. (1998). Transformation of tooth type induced by inhibition of BMP signaling. Science, 282, 11361138.10.1126/science.282.5391.1136CrossRefGoogle ScholarPubMed
Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, Series B, 237, 3772.Google Scholar
Waddington, C. H. (1942). Canalization of development and genetic assimilation of acquired characters. Nature, 183, 16541655.CrossRefGoogle Scholar
Waddington, C. H. (1957). The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. London: George Allen & Unwin.Google Scholar
Watanabe, M. and Kondo, S. (2015). Is pigment patterning in fish skin determined by the Turing mechanism? Trends in Genetics, 31, 8896.10.1016/j.tig.2014.11.005CrossRefGoogle ScholarPubMed
Weiss, K., Buchanan, A. and Richtsmeier, J. (2015). How are we made? Even well-controlled experiments show the complexity of our traits. Evolutionary Anthropology, 24, 130136.10.1002/evan.21454CrossRefGoogle ScholarPubMed
Weiss, K. M. and Buchanan, A. V. (2004). Genetics and the Logic of Evolution. New York, NY: Wiley-Liss.CrossRefGoogle Scholar
Weiss, K. M. and Buchanan, A. V. (2008). The cooperative genome: organisms as social contracts. International Journal of Developmental Biology, 53, 753763.10.1387/ijdb.072497kwCrossRefGoogle Scholar
Weiss, K. M. and Buchanan, A. V. (2009). The Mermaid’s Tale: Four Billion Years of Cooperation in the Making of Living Things. Cambridge, MA: Harvard University Press.10.2307/j.ctv1rr6d11CrossRefGoogle Scholar
Weiss, K. M. and Fullerton, S. M. (2000). Phenogenetic drift and the evolution of genotype–phenotype relationships. Theoretical Population Biology, 57, 187195.CrossRefGoogle ScholarPubMed
Wood, A. R., Esco, T., Yang, J., et al. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 46, 11731186.10.1038/ng.3097CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×