Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
Using a modern matrix-based approach, this rigorous second course in linear algebra helps upper-level undergraduates in mathematics, data science, and the physical sciences transition from basic theory to advanced topics and applications. Its clarity of exposition together with many illustrations, 900+ exercises, and 350 conceptual and numerical examples aid the student's understanding. Concise chapters promote a focused progression through essential ideas. Topics are derived and discussed in detail, including the singular value decomposition, Jordan canonical form, spectral theorem, QR factorization, normal matrices, Hermitian matrices, and positive definite matrices. Each chapter ends with a bullet list summarizing important concepts. New to this edition are chapters on matrix norms and positive matrices, many new sections on topics including interpolation and LU factorization, 300+ more problems, many new examples, and color-enhanced figures. Prerequisites include a first course in linear algebra and basic calculus sequence. Instructor's resources are available.
Using a modern matrix-based approach, this rigorous second course in linear algebra helps upper-level undergraduates in mathematics, data science, and the physical sciences transition from basic theory to advanced topics and applications. Its clarity of exposition together with many illustrations, 900+ exercises, and 350 conceptual and numerical examples aid the student's understanding. Concise chapters promote a focused progression through essential ideas. Topics are derived and discussed in detail, including the singular value decomposition, Jordan canonical form, spectral theorem, QR factorization, normal matrices, Hermitian matrices, and positive definite matrices. Each chapter ends with a bullet list summarizing important concepts. New to this edition are chapters on matrix norms and positive matrices, many new sections on topics including interpolation and LU factorization, 300+ more problems, many new examples, and color-enhanced figures. Prerequisites include a first course in linear algebra and basic calculus sequence. Instructor's resources are available.
Set theory is a rich and beautiful subject whose fundamental concepts permeate virtually every branch of mathematics. One could say that set theory is a unifying theory for mathematics, since nearly all mathematical concepts and results can be formalized within set theory. This textbook is meant for an upper undergraduate course in set theory. In this text, the fundamentals of abstract sets, including relations, functions, the natural numbers, order, cardinality, transfinite recursion, the axiom of choice, ordinal numbers, and cardinal numbers, are developed within the framework of axiomatic set theory. The reader will need to be comfortable reading and writing mathematical proofs. The proofs in this textbook are rigorous, clear, and complete, while remaining accessible to undergraduates who are new to upper-level mathematics. Exercises are included at the end of each section in a chapter, with useful suggestions for the more challenging exercises.
Set theory is a rich and beautiful subject whose fundamental concepts permeate virtually every branch of mathematics. One could say that set theory is a unifying theory for mathematics, since nearly all mathematical concepts and results can be formalized within set theory. This textbook is meant for an upper undergraduate course in set theory. In this text, the fundamentals of abstract sets, including relations, functions, the natural numbers, order, cardinality, transfinite recursion, the axiom of choice, ordinal numbers, and cardinal numbers, are developed within the framework of axiomatic set theory. The reader will need to be comfortable reading and writing mathematical proofs. The proofs in this textbook are rigorous, clear, and complete, while remaining accessible to undergraduates who are new to upper-level mathematics. Exercises are included at the end of each section in a chapter, with useful suggestions for the more challenging exercises.
Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.
Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Bridge the gap between theoretical concepts and their practical applications with this rigorous introduction to the mathematics underpinning data science. It covers essential topics in linear algebra, calculus and optimization, and probability and statistics, demonstrating their relevance in the context of data analysis. Key application topics include clustering, regression, classification, dimensionality reduction, network analysis, and neural networks. What sets this text apart is its focus on hands-on learning. Each chapter combines mathematical insights with practical examples, using Python to implement algorithms and solve problems. Self-assessment quizzes, warm-up exercises and theoretical problems foster both mathematical understanding and computational skills. Designed for advanced undergraduate students and beginning graduate students, this textbook serves as both an invitation to data science for mathematics majors and as a deeper excursion into mathematics for data science students.
Bridge the gap between theoretical concepts and their practical applications with this rigorous introduction to the mathematics underpinning data science. It covers essential topics in linear algebra, calculus and optimization, and probability and statistics, demonstrating their relevance in the context of data analysis. Key application topics include clustering, regression, classification, dimensionality reduction, network analysis, and neural networks. What sets this text apart is its focus on hands-on learning. Each chapter combines mathematical insights with practical examples, using Python to implement algorithms and solve problems. Self-assessment quizzes, warm-up exercises and theoretical problems foster both mathematical understanding and computational skills. Designed for advanced undergraduate students and beginning graduate students, this textbook serves as both an invitation to data science for mathematics majors and as a deeper excursion into mathematics for data science students.
Emphasizing the creative nature of mathematics, this conversational textbook guides students through the process of discovering a proof. The material revolves around possible strategies to approaching a problem without classifying 'types of proofs' or providing proof templates. Instead, it helps students develop the thinking skills needed to tackle mathematics when there is no clear algorithm or recipe to follow. Beginning by discussing familiar and fundamental topics from a more theoretical perspective, the book moves on to inequalities, induction, relations, cardinality, and elementary number theory. The final supplementary chapters allow students to apply these strategies to the topics they will learn in future courses. With its focus on 'doing mathematics' through 200 worked examples, over 370 problems, illustrations, discussions, and minimal prerequisites, this course will be indispensable to first- and second-year students in mathematics, statistics, and computer science. Instructor resources include solutions to select problems.
Emphasizing the creative nature of mathematics, this conversational textbook guides students through the process of discovering a proof. The material revolves around possible strategies to approaching a problem without classifying 'types of proofs' or providing proof templates. Instead, it helps students develop the thinking skills needed to tackle mathematics when there is no clear algorithm or recipe to follow. Beginning by discussing familiar and fundamental topics from a more theoretical perspective, the book moves on to inequalities, induction, relations, cardinality, and elementary number theory. The final supplementary chapters allow students to apply these strategies to the topics they will learn in future courses. With its focus on 'doing mathematics' through 200 worked examples, over 370 problems, illustrations, discussions, and minimal prerequisites, this course will be indispensable to first- and second-year students in mathematics, statistics, and computer science. Instructor resources include solutions to select problems.
This user-friendly textbook introduces complex analysis at the beginning graduate or advanced undergraduate level. Unlike other textbooks, it follows Weierstrass' approach, stressing the importance of power series expansions instead of starting with the Cauchy integral formula, an approach that illuminates many important concepts. This view allows readers to quickly obtain and understand many fundamental results of complex analysis, such as the maximum principle, Liouville's theorem, and Schwarz's lemma. The book covers all the essential material on complex analysis, and includes several elegant proofs that were recently discovered. It includes the zipper algorithm for computing conformal maps, as well as a constructive proof of the Riemann mapping theorem, and culminates in a complete proof of the uniformization theorem. Aimed at students with some undergraduate background in real analysis, though not Lebesgue integration, this classroom-tested textbook will teach the skills and intuition necessary to understand this important area of mathematics.
This user-friendly textbook introduces complex analysis at the beginning graduate or advanced undergraduate level. Unlike other textbooks, it follows Weierstrass' approach, stressing the importance of power series expansions instead of starting with the Cauchy integral formula, an approach that illuminates many important concepts. This view allows readers to quickly obtain and understand many fundamental results of complex analysis, such as the maximum principle, Liouville's theorem, and Schwarz's lemma. The book covers all the essential material on complex analysis, and includes several elegant proofs that were recently discovered. It includes the zipper algorithm for computing conformal maps, as well as a constructive proof of the Riemann mapping theorem, and culminates in a complete proof of the uniformization theorem. Aimed at students with some undergraduate background in real analysis, though not Lebesgue integration, this classroom-tested textbook will teach the skills and intuition necessary to understand this important area of mathematics.
This rigorous textbook is intended for a year-long analysis or advanced calculus course for advanced undergraduate or beginning graduate students. Starting with detailed, slow-paced proofs that allow students to acquire facility in reading and writing proofs, it clearly and concisely explains the basics of differentiation and integration of functions of one and several variables, and covers the theorems of Green, Gauss, and Stokes. Minimal prerequisites are assumed, and relevant linear algebra topics are reviewed right before they are needed, making the material accessible to students from diverse backgrounds. Abstract topics are preceded by concrete examples to facilitate understanding, for example, before introducing differential forms, the text examines low-dimensional examples. The meaning and importance of results are thoroughly discussed, and numerous exercises of varying difficulty give students ample opportunity to test and improve their knowledge of this difficult yet vital subject.
This rigorous textbook is intended for a year-long analysis or advanced calculus course for advanced undergraduate or beginning graduate students. Starting with detailed, slow-paced proofs that allow students to acquire facility in reading and writing proofs, it clearly and concisely explains the basics of differentiation and integration of functions of one and several variables, and covers the theorems of Green, Gauss, and Stokes. Minimal prerequisites are assumed, and relevant linear algebra topics are reviewed right before they are needed, making the material accessible to students from diverse backgrounds. Abstract topics are preceded by concrete examples to facilitate understanding, for example, before introducing differential forms, the text examines low-dimensional examples. The meaning and importance of results are thoroughly discussed, and numerous exercises of varying difficulty give students ample opportunity to test and improve their knowledge of this difficult yet vital subject.
Games and elections are fundamental activities in society with applications in economics, political science, and sociology. These topics offer familiar, current, and lively subjects for a course in mathematics. This classroom-tested textbook, primarily intended for a general education course in game theory at the freshman or sophomore level, provides an elementary treatment of games and elections. Starting with basics such as gambling, zero-sum and combinatorial games, Nash equilibria, social dilemmas, and fairness and impossibility theorems for elections, the text then goes further into the theory with accessible proofs of advanced topics such as the Sprague–Grundy theorem and Arrow's impossibility theorem.Uses an integrative approach to probability, game, and social choice theoryProvides a gentle introduction to the logic of mathematical proof, thus equipping readers with the necessary tools for further mathematical studiesContains numerous exercises and examples of varying levels of difficultyRequires only a high school mathematical background.
Games and elections are fundamental activities in society with applications in economics, political science, and sociology. These topics offer familiar, current, and lively subjects for a course in mathematics. This classroom-tested textbook, primarily intended for a general education course in game theory at the freshman or sophomore level, provides an elementary treatment of games and elections. Starting with basics such as gambling, zero-sum and combinatorial games, Nash equilibria, social dilemmas, and fairness and impossibility theorems for elections, the text then goes further into the theory with accessible proofs of advanced topics such as the Sprague–Grundy theorem and Arrow's impossibility theorem.Uses an integrative approach to probability, game, and social choice theoryProvides a gentle introduction to the logic of mathematical proof, thus equipping readers with the necessary tools for further mathematical studiesContains numerous exercises and examples of varying levels of difficultyRequires only a high school mathematical background.
Active student engagement is key to this classroom-tested combinatorics text, boasting 1200+ carefully designed problems, ten mini-projects, section warm-up problems, and chapter opening problems. The author – an award-winning teacher – writes in a conversational style, keeping the reader in mind on every page. Students will stay motivated through glimpses into current research trends and open problems as well as the history and global origins of the subject. All essential topics are covered, including Ramsey theory, enumerative combinatorics including Stirling numbers, partitions of integers, the inclusion-exclusion principle, generating functions, introductory graph theory, and partially ordered sets. Some significant results are presented as sets of guided problems, leading readers to discover them on their own. More than 140 problems have complete solutions and over 250 have hints in the back, making this book ideal for self-study. Ideal for a one semester upper undergraduate course, prerequisites include the calculus sequence and familiarity with proofs.
Active student engagement is key to this classroom-tested combinatorics text, boasting 1200+ carefully designed problems, ten mini-projects, section warm-up problems, and chapter opening problems. The author – an award-winning teacher – writes in a conversational style, keeping the reader in mind on every page. Students will stay motivated through glimpses into current research trends and open problems as well as the history and global origins of the subject. All essential topics are covered, including Ramsey theory, enumerative combinatorics including Stirling numbers, partitions of integers, the inclusion-exclusion principle, generating functions, introductory graph theory, and partially ordered sets. Some significant results are presented as sets of guided problems, leading readers to discover them on their own. More than 140 problems have complete solutions and over 250 have hints in the back, making this book ideal for self-study. Ideal for a one semester upper undergraduate course, prerequisites include the calculus sequence and familiarity with proofs.
From rings to modules to groups to fields, this undergraduate introduction to abstract algebra follows an unconventional path. The text emphasizes a modern perspective on the subject, with gentle mentions of the unifying categorical principles underlying the various constructions and the role of universal properties. A key feature is the treatment of modules, including a proof of the classification theorem for finitely generated modules over Euclidean domains. Noetherian modules and some of the language of exact complexes are introduced. In addition, standard topics - such as the Chinese Remainder Theorem, the Gauss Lemma, the Sylow Theorems, simplicity of alternating groups, standard results on field extensions, and the Fundamental Theorem of Galois Theory - are all treated in detail. Students will appreciate the text's conversational style, 400+ exercises, an appendix with complete solutions to around 150 of the main text problems, and an appendix with general background on basic logic and naïve set theory.
From rings to modules to groups to fields, this undergraduate introduction to abstract algebra follows an unconventional path. The text emphasizes a modern perspective on the subject, with gentle mentions of the unifying categorical principles underlying the various constructions and the role of universal properties. A key feature is the treatment of modules, including a proof of the classification theorem for finitely generated modules over Euclidean domains. Noetherian modules and some of the language of exact complexes are introduced. In addition, standard topics - such as the Chinese Remainder Theorem, the Gauss Lemma, the Sylow Theorems, simplicity of alternating groups, standard results on field extensions, and the Fundamental Theorem of Galois Theory - are all treated in detail. Students will appreciate the text's conversational style, 400+ exercises, an appendix with complete solutions to around 150 of the main text problems, and an appendix with general background on basic logic and naïve set theory.
Abstract Algebra with Applications provides a friendly and concise introduction to algebra, with an emphasis on its uses in the modern world. The first part of this book covers groups, after some preliminaries on sets, functions, relations, and induction, and features applications such as public-key cryptography, Sudoku, the finite Fourier transform, and symmetry in chemistry and physics. The second part of this book covers rings and fields, and features applications such as random number generators, error correcting codes, the Google page rank algorithm, communication networks, and elliptic curve cryptography. The book's masterful use of colorful figures and images helps illustrate the applications and concepts in the text. Real-world examples and exercises will help students contextualize the information. Intended for a year-long undergraduate course in algebra for mathematics, engineering, and computer science majors, the only prerequisites are calculus and a bit of courage when asked to do a short proof.
Abstract Algebra with Applications provides a friendly and concise introduction to algebra, with an emphasis on its uses in the modern world. The first part of this book covers groups, after some preliminaries on sets, functions, relations, and induction, and features applications such as public-key cryptography, Sudoku, the finite Fourier transform, and symmetry in chemistry and physics. The second part of this book covers rings and fields, and features applications such as random number generators, error correcting codes, the Google page rank algorithm, communication networks, and elliptic curve cryptography. The book's masterful use of colorful figures and images helps illustrate the applications and concepts in the text. Real-world examples and exercises will help students contextualize the information. Intended for a year-long undergraduate course in algebra for mathematics, engineering, and computer science majors, the only prerequisites are calculus and a bit of courage when asked to do a short proof.
Exploring Mathematics gives students experience with doing mathematics - interrogating mathematical claims, exploring definitions, forming conjectures, attempting proofs, and presenting results - and engages them with examples, exercises, and projects that pique their interest. Written with a minimal number of pre-requisites, this text can be used by college students in their first and second years of study, and by independent readers who want an accessible introduction to theoretical mathematics. Core topics include proof techniques, sets, functions, relations, and cardinality, with selected additional topics that provide many possibilities for further exploration. With a problem-based approach to investigating the material, students develop interesting examples and theorems through numerous exercises and projects. In-text exercises, with complete solutions or robust hints included in an appendix, help students explore and master the topics being presented. The end-of-chapter exercises and projects provide students with opportunities to confirm their understanding of core material, learn new concepts, and develop mathematical creativity.
Exploring Mathematics gives students experience with doing mathematics - interrogating mathematical claims, exploring definitions, forming conjectures, attempting proofs, and presenting results - and engages them with examples, exercises, and projects that pique their interest. Written with a minimal number of pre-requisites, this text can be used by college students in their first and second years of study, and by independent readers who want an accessible introduction to theoretical mathematics. Core topics include proof techniques, sets, functions, relations, and cardinality, with selected additional topics that provide many possibilities for further exploration. With a problem-based approach to investigating the material, students develop interesting examples and theorems through numerous exercises and projects. In-text exercises, with complete solutions or robust hints included in an appendix, help students explore and master the topics being presented. The end-of-chapter exercises and projects provide students with opportunities to confirm their understanding of core material, learn new concepts, and develop mathematical creativity.
This textbook gives a complete and modern introduction to mathematical logic. The author uses contemporary notation, conventions, and perspectives throughout, and emphasizes interactions with the rest of mathematics. In addition to covering the basic concepts of mathematical logic and the fundamental material on completeness, compactness, and incompleteness, it devotes significant space to thorough introductions to the pillars of the modern subject: model theory, set theory, and computability. Requiring only a modest background of undergraduate mathematics, the text can be readily adapted for a variety of one- or two-semester courses at the upper-undergraduate or beginning-graduate level. Numerous examples reinforce the key ideas and illustrate their applications, and a wealth of classroom-tested exercises serve to consolidate readers' understanding. Comprehensive and engaging, this book offers a fresh approach to this enduringly fascinating and important subject.
This textbook gives a complete and modern introduction to mathematical logic. The author uses contemporary notation, conventions, and perspectives throughout, and emphasizes interactions with the rest of mathematics. In addition to covering the basic concepts of mathematical logic and the fundamental material on completeness, compactness, and incompleteness, it devotes significant space to thorough introductions to the pillars of the modern subject: model theory, set theory, and computability. Requiring only a modest background of undergraduate mathematics, the text can be readily adapted for a variety of one- or two-semester courses at the upper-undergraduate or beginning-graduate level. Numerous examples reinforce the key ideas and illustrate their applications, and a wealth of classroom-tested exercises serve to consolidate readers' understanding. Comprehensive and engaging, this book offers a fresh approach to this enduringly fascinating and important subject.
Through this book, upper undergraduate mathematics majors will master a challenging yet rewarding subject, and approach advanced studies in algebra, number theory and geometry with confidence. Groups, rings and fields are covered in depth with a strong emphasis on irreducible polynomials, a fresh approach to modules and linear algebra, a fresh take on Gröbner theory, and a group theoretic treatment of Rejewski's deciphering of the Enigma machine. It includes a detailed treatment of the basics on finite groups, including Sylow theory and the structure of finite abelian groups. Galois theory and its applications to polynomial equations and geometric constructions are treated in depth. Those interested in computations will appreciate the novel treatment of division algorithms. This rigorous text 'gets to the point', focusing on concisely demonstrating the concept at hand, taking a 'definitions first, examples next' approach. Exercises reinforce the main ideas of the text and encourage students' creativity.
Through this book, upper undergraduate mathematics majors will master a challenging yet rewarding subject, and approach advanced studies in algebra, number theory and geometry with confidence. Groups, rings and fields are covered in depth with a strong emphasis on irreducible polynomials, a fresh approach to modules and linear algebra, a fresh take on Gröbner theory, and a group theoretic treatment of Rejewski's deciphering of the Enigma machine. It includes a detailed treatment of the basics on finite groups, including Sylow theory and the structure of finite abelian groups. Galois theory and its applications to polynomial equations and geometric constructions are treated in depth. Those interested in computations will appreciate the novel treatment of division algorithms. This rigorous text 'gets to the point', focusing on concisely demonstrating the concept at hand, taking a 'definitions first, examples next' approach. Exercises reinforce the main ideas of the text and encourage students' creativity.