Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
Acquire complete knowledge of the basics of air-breathing turbomachinery with this hands-on practical text. This updated new edition for students in mechanical and aerospace engineering discusses the role of entropy in assessing machine performance, provides a review of flow structures, and includes an applied review of boundary layer principles. New coverage describes approaches used to smooth initial design geometry into a continuous flow path, the development of design methods associated with the flow over blade shape (cascades loss theory) and annular type flows, as well as a discussion of the mechanisms for the setting of shaft speed. This essential text is also fully supported by over 200 figures, numerous examples, and homework problems, many of which have been revised for this edition.
Acquire complete knowledge of the basics of air-breathing turbomachinery with this hands-on practical text. This updated new edition for students in mechanical and aerospace engineering discusses the role of entropy in assessing machine performance, provides a review of flow structures, and includes an applied review of boundary layer principles. New coverage describes approaches used to smooth initial design geometry into a continuous flow path, the development of design methods associated with the flow over blade shape (cascades loss theory) and annular type flows, as well as a discussion of the mechanisms for the setting of shaft speed. This essential text is also fully supported by over 200 figures, numerous examples, and homework problems, many of which have been revised for this edition.
Master the principles of structural dynamics with this comprehensive and self-contained textbook, with key theoretical concepts explained through real-world engineering applications. The theory of natural modes of vibration, the finite element method and the dynamic response of structures is balanced with practical applications to give students a thorough contextual understanding of the subject. Enhanced coverage of damping, rotating systems, and parametric excitation provides students with superior understanding of these essential topics. Examples and homework problems, closely linked to real-world applications, enrich and deepen student understanding. Curated mathematical appendices equip students with all the tools necessary to excel, without disrupting coverage of core topics. Containing all the material needed for a one- or two-semester course, and accompanied online by Matlab code, this authoritative textbook is the ideal introduction for graduate students in aerospace, mechanical and civil engineering.
Master the principles of structural dynamics with this comprehensive and self-contained textbook, with key theoretical concepts explained through real-world engineering applications. The theory of natural modes of vibration, the finite element method and the dynamic response of structures is balanced with practical applications to give students a thorough contextual understanding of the subject. Enhanced coverage of damping, rotating systems, and parametric excitation provides students with superior understanding of these essential topics. Examples and homework problems, closely linked to real-world applications, enrich and deepen student understanding. Curated mathematical appendices equip students with all the tools necessary to excel, without disrupting coverage of core topics. Containing all the material needed for a one- or two-semester course, and accompanied online by Matlab code, this authoritative textbook is the ideal introduction for graduate students in aerospace, mechanical and civil engineering.
The new edition of this popular textbook provides a modern, accessible introduction to the whole process of aircraft design from requirements to conceptual design, manufacture and in-service issues. Highly illustrated descriptions of the full spectrum of aircraft types, their aerodynamics, structures and systems, allow students to appreciate good and poor design and understand how to improve their own designs. Cost data is considerably updated, many new images have been added and new sections are included on the emerging fields of Uninhabited Aerial Vehicles and environmentally-friendly airlines. Examples from real aircraft projects are presented throughout, demonstrating to students the applications of the theory. Three appendices and a bibliography provide a wealth of information, much not published elsewhere, including simple aerodynamic formulae, an introduction to airworthiness and environmental requirements, aircraft, engine and equipment data, and a case study of the conceptual design of a large airliner.
The new edition of this popular textbook provides a modern, accessible introduction to the whole process of aircraft design from requirements to conceptual design, manufacture and in-service issues. Highly illustrated descriptions of the full spectrum of aircraft types, their aerodynamics, structures and systems, allow students to appreciate good and poor design and understand how to improve their own designs. Cost data is considerably updated, many new images have been added and new sections are included on the emerging fields of Uninhabited Aerial Vehicles and environmentally-friendly airlines. Examples from real aircraft projects are presented throughout, demonstrating to students the applications of the theory. Three appendices and a bibliography provide a wealth of information, much not published elsewhere, including simple aerodynamic formulae, an introduction to airworthiness and environmental requirements, aircraft, engine and equipment data, and a case study of the conceptual design of a large airliner.
This computational aerodynamics textbook is written at the undergraduate level, based on years of teaching focused on developing the engineering skills required to become an intelligent user of aerodynamic codes. This is done by taking advantage of CA codes that are now available and doing projects to learn the basic numerical and aerodynamic concepts required. This book includes a number of unique features to make studying computational aerodynamics more enjoyable. These include:The computer programs used in the book's projects are all open source and accessible to students and practicing engineers alike on the book's website, www-cambridge-org.demo.remotlog.com/aerodynamics. The site includes access to images, movies, programs, and moreThe computational aerodynamics concepts are given relevance by CA Concept Boxes integrated into the chapters to provide realistic asides to the conceptsReaders can see fluids in motion with the Flow Visualization Boxes carefully integrated into the text.
This computational aerodynamics textbook is written at the undergraduate level, based on years of teaching focused on developing the engineering skills required to become an intelligent user of aerodynamic codes. This is done by taking advantage of CA codes that are now available and doing projects to learn the basic numerical and aerodynamic concepts required. This book includes a number of unique features to make studying computational aerodynamics more enjoyable. These include:The computer programs used in the book's projects are all open source and accessible to students and practicing engineers alike on the book's website, www-cambridge-org.demo.remotlog.com/aerodynamics. The site includes access to images, movies, programs, and moreThe computational aerodynamics concepts are given relevance by CA Concept Boxes integrated into the chapters to provide realistic asides to the conceptsReaders can see fluids in motion with the Flow Visualization Boxes carefully integrated into the text.
Fully updated and revised, the second edition of this introductory text on air-breathing jet propulsion focuses on the basic operating principles of jet engines and gas turbines. A state-of-the-art review of turboramjet engines, hypersonic applications, geared turbofans, and adaptive cycle engines, accompanies an examination of emissions and pollutants, greatly expanding the importance of power generation gas turbines in industrial applications, and ensuring that students will be introduced to the most current trends in the subject. With completely rewritten chapters on the operating characteristics of components and ideal and nonideal cycle analysis, additional SI units in numerous examples, new and expanded end-of-chapter problems, and updated accompanying software, this remains the ideal text for advanced undergraduate and beginning graduate students in aerospace and mechanical engineering.
Fully updated and revised, the second edition of this introductory text on air-breathing jet propulsion focuses on the basic operating principles of jet engines and gas turbines. A state-of-the-art review of turboramjet engines, hypersonic applications, geared turbofans, and adaptive cycle engines, accompanies an examination of emissions and pollutants, greatly expanding the importance of power generation gas turbines in industrial applications, and ensuring that students will be introduced to the most current trends in the subject. With completely rewritten chapters on the operating characteristics of components and ideal and nonideal cycle analysis, additional SI units in numerous examples, new and expanded end-of-chapter problems, and updated accompanying software, this remains the ideal text for advanced undergraduate and beginning graduate students in aerospace and mechanical engineering.
A modern pedagogical treatment of the latest industry trends in rocket propulsion, developed from the authors' extensive experience in both industry and academia. Students are guided along a step-by-step journey through modern rocket propulsion, beginning with the historical context and an introduction to top-level performance measures, and progressing on to in-depth discussions of the chemical aspects of fluid flow combustion thermochemistry and chemical equilibrium, solid, liquid, and hybrid rocket propellants, mission requirements, and an overview of electric propulsion. With a wealth of homework problems (and a solutions manual for instructors online), real-life case studies and examples throughout, and an appendix detailing key numerical methods and links to additional online resources, this is a must-have guide for senior and first year graduate students looking to gain a thorough understanding of the topic along with practical tools that can be applied in industry.
A modern pedagogical treatment of the latest industry trends in rocket propulsion, developed from the authors' extensive experience in both industry and academia. Students are guided along a step-by-step journey through modern rocket propulsion, beginning with the historical context and an introduction to top-level performance measures, and progressing on to in-depth discussions of the chemical aspects of fluid flow combustion thermochemistry and chemical equilibrium, solid, liquid, and hybrid rocket propellants, mission requirements, and an overview of electric propulsion. With a wealth of homework problems (and a solutions manual for instructors online), real-life case studies and examples throughout, and an appendix detailing key numerical methods and links to additional online resources, this is a must-have guide for senior and first year graduate students looking to gain a thorough understanding of the topic along with practical tools that can be applied in industry.
Master the principles of flight dynamics, performance, stability, and control with this comprehensive and self-contained textbook. A strong focus on analytical rigor, balancing theoretical derivations and case studies, equips students with a firm understanding of the links between formulae and results. Over 130 step-by-step examples and 130 end-of-chapter problems cement student understanding, with solutions available to instructors. Computational Matlab code is provided for all examples, enabling students to acquire hands-on understanding, and over 200 ground-up diagrams, from simple “paper plane” models through to real-world examples, draw from leading commercial aircraft. Introducing fundamental principles and advanced concepts within the same conceptual framework, and drawing on the author's over 20 years of teaching in the field, this textbook is ideal for senior undergraduate and graduate-level students across aerospace engineering.
Master the principles of flight dynamics, performance, stability, and control with this comprehensive and self-contained textbook. A strong focus on analytical rigor, balancing theoretical derivations and case studies, equips students with a firm understanding of the links between formulae and results. Over 130 step-by-step examples and 130 end-of-chapter problems cement student understanding, with solutions available to instructors. Computational Matlab code is provided for all examples, enabling students to acquire hands-on understanding, and over 200 ground-up diagrams, from simple “paper plane” models through to real-world examples, draw from leading commercial aircraft. Introducing fundamental principles and advanced concepts within the same conceptual framework, and drawing on the author's over 20 years of teaching in the field, this textbook is ideal for senior undergraduate and graduate-level students across aerospace engineering.