Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
Formal Models of Domestic Politics offers a unified and accessible approach to canonical and important new models of politics. Intended for political science and economics students who have already taken a course in game theory, this new edition retains the widely appreciated pedagogic approach of the first edition. Coverage has been expanded to include a new chapter on nondemocracy; new material on valance and issue ownership, dynamic veto and legislative bargaining, delegation to leaders by imperfectly informed politicians, and voter competence; and numerous additional exercises. Political economists, comparativists, and Americanists will all find models in the text central to their research interests. This leading graduate textbook assumes no mathematical knowledge beyond basic calculus, with an emphasis placed on clarity of presentation. Political scientists will appreciate the simplification of economic environments to focus on the political logic of models; economists will discover many important models published outside of their discipline; and both instructors and students will value the classroom-tested exercises. This is a vital update to a classic text.
Formal Models of Domestic Politics offers a unified and accessible approach to canonical and important new models of politics. Intended for political science and economics students who have already taken a course in game theory, this new edition retains the widely appreciated pedagogic approach of the first edition. Coverage has been expanded to include a new chapter on nondemocracy; new material on valance and issue ownership, dynamic veto and legislative bargaining, delegation to leaders by imperfectly informed politicians, and voter competence; and numerous additional exercises. Political economists, comparativists, and Americanists will all find models in the text central to their research interests. This leading graduate textbook assumes no mathematical knowledge beyond basic calculus, with an emphasis placed on clarity of presentation. Political scientists will appreciate the simplification of economic environments to focus on the political logic of models; economists will discover many important models published outside of their discipline; and both instructors and students will value the classroom-tested exercises. This is a vital update to a classic text.
This unique textbook provides an introduction to statistical inference with network data. The authors present a self-contained derivation and mathematical formulation of methods, review examples, and real-world applications, as well as provide data and code in the R environment that can be customised. Inferential network analysis transcends fields, and examples from across the social sciences are discussed (from management to electoral politics), which can be adapted and applied to a panorama of research. From scholars to undergraduates, spanning the social, mathematical, computational and physical sciences, readers will be introduced to inferential network models and their extensions. The exponential random graph model and latent space network model are paid particular attention and, fundamentally, the reader is given the tools to independently conduct their own analyses.
This unique textbook provides an introduction to statistical inference with network data. The authors present a self-contained derivation and mathematical formulation of methods, review examples, and real-world applications, as well as provide data and code in the R environment that can be customised. Inferential network analysis transcends fields, and examples from across the social sciences are discussed (from management to electoral politics), which can be adapted and applied to a panorama of research. From scholars to undergraduates, spanning the social, mathematical, computational and physical sciences, readers will be introduced to inferential network models and their extensions. The exponential random graph model and latent space network model are paid particular attention and, fundamentally, the reader is given the tools to independently conduct their own analyses.
Most textbooks on regression focus on theory and the simplest of examples. Real statistical problems, however, are complex and subtle. This is not a book about the theory of regression. It is about using regression to solve real problems of comparison, estimation, prediction, and causal inference. Unlike other books, it focuses on practical issues such as sample size and missing data and a wide range of goals and techniques. It jumps right in to methods and computer code you can use immediately. Real examples, real stories from the authors' experience demonstrate what regression can do and its limitations, with practical advice for understanding assumptions and implementing methods for experiments and observational studies. They make a smooth transition to logistic regression and GLM. The emphasis is on computation in R and Stan rather than derivations, with code available online. Graphics and presentation aid understanding of the models and model fitting.
Most textbooks on regression focus on theory and the simplest of examples. Real statistical problems, however, are complex and subtle. This is not a book about the theory of regression. It is about using regression to solve real problems of comparison, estimation, prediction, and causal inference. Unlike other books, it focuses on practical issues such as sample size and missing data and a wide range of goals and techniques. It jumps right in to methods and computer code you can use immediately. Real examples, real stories from the authors' experience demonstrate what regression can do and its limitations, with practical advice for understanding assumptions and implementing methods for experiments and observational studies. They make a smooth transition to logistic regression and GLM. The emphasis is on computation in R and Stan rather than derivations, with code available online. Graphics and presentation aid understanding of the models and model fitting.
Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout.
Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout.
Written specifically for graduate students and practitioners beginning social science research, Statistical Modeling and Inference for Social Science covers the essential statistical tools, models and theories that make up the social scientist's toolkit. Assuming no prior knowledge of statistics, this textbook introduces students to probability theory, statistical inference and statistical modeling, and emphasizes the connection between statistical procedures and social science theory. Sean Gailmard develops core statistical theory as a set of tools to model and assess relationships between variables - the primary aim of social scientists - and demonstrates the ways in which social scientists express and test substantive theoretical arguments in various models. Chapter exercises guide students in applying concepts to data, extending their grasp of core theoretical concepts. Students will also gain the ability to create, read and critique statistical applications in their fields of interest.
Written specifically for graduate students and practitioners beginning social science research, Statistical Modeling and Inference for Social Science covers the essential statistical tools, models and theories that make up the social scientist's toolkit. Assuming no prior knowledge of statistics, this textbook introduces students to probability theory, statistical inference and statistical modeling, and emphasizes the connection between statistical procedures and social science theory. Sean Gailmard develops core statistical theory as a set of tools to model and assess relationships between variables - the primary aim of social scientists - and demonstrates the ways in which social scientists express and test substantive theoretical arguments in various models. Chapter exercises guide students in applying concepts to data, extending their grasp of core theoretical concepts. Students will also gain the ability to create, read and critique statistical applications in their fields of interest.