Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
Both a serious academic text and an intriguing story, this seventh edition reflects a significant update in research, theory, and applications in all areas. It presents a comprehensive view of the historical development of learning theories from behaviorist through to cognitive models. The chapters also cover memory, motivation, social learning, machine learning, and artificial intelligence. The author's highly entertaining style clarifies concepts, emphasizes practical applications, and presents a thought-provoking, narrator-based commentary. The stage is given to Mrs Gribbin and her swashbuckling cat, who both lighten things up and supply much-needed detail. These two help to explore the importance of technology for simulating human cognitive processes and engage with current models of memory. They investigate developments in, and applications of, brain-based research and plunge into models in motivation theory, to name but a few of the adventures they embark upon in this textbook.
Both a serious academic text and an intriguing story, this seventh edition reflects a significant update in research, theory, and applications in all areas. It presents a comprehensive view of the historical development of learning theories from behaviorist through to cognitive models. The chapters also cover memory, motivation, social learning, machine learning, and artificial intelligence. The author's highly entertaining style clarifies concepts, emphasizes practical applications, and presents a thought-provoking, narrator-based commentary. The stage is given to Mrs Gribbin and her swashbuckling cat, who both lighten things up and supply much-needed detail. These two help to explore the importance of technology for simulating human cognitive processes and engage with current models of memory. They investigate developments in, and applications of, brain-based research and plunge into models in motivation theory, to name but a few of the adventures they embark upon in this textbook.
Focusing on methods for data that are ordered in time, this textbook provides a comprehensive guide to analyzing time series data using modern techniques from data science. It is specifically tailored to economics and finance applications, aiming to provide students with rigorous training. Chapters cover Bayesian approaches, nonparametric smoothing methods, machine learning, and continuous time econometrics. Theoretical and empirical exercises, concise summaries, bolded key terms, and illustrative examples are included throughout to reinforce key concepts and bolster understanding. Ancillary materials include an instructor's manual with solutions and additional exercises, PowerPoint lecture slides, and datasets. With its clear and accessible style, this textbook is an essential tool for advanced undergraduate and graduate students in economics, finance, and statistics.
Focusing on methods for data that are ordered in time, this textbook provides a comprehensive guide to analyzing time series data using modern techniques from data science. It is specifically tailored to economics and finance applications, aiming to provide students with rigorous training. Chapters cover Bayesian approaches, nonparametric smoothing methods, machine learning, and continuous time econometrics. Theoretical and empirical exercises, concise summaries, bolded key terms, and illustrative examples are included throughout to reinforce key concepts and bolster understanding. Ancillary materials include an instructor's manual with solutions and additional exercises, PowerPoint lecture slides, and datasets. With its clear and accessible style, this textbook is an essential tool for advanced undergraduate and graduate students in economics, finance, and statistics.
Based on the authors' extensive teaching experience, this hands-on graduate-level textbook teaches how to carry out large-scale data analytics and design machine learning solutions for big data. With a focus on fundamentals, this extensively class-tested textbook walks students through key principles and paradigms for working with large-scale data, frameworks for large-scale data analytics (Hadoop, Spark), and explains how to implement machine learning to exploit big data. It is unique in covering the principles that aspiring data scientists need to know, without detail that can overwhelm. Real-world examples, hands-on coding exercises and labs combine with exceptionally clear explanations to maximize student engagement. Well-defined learning objectives, exercises with online solutions for instructors, lecture slides, and an accompanying suite of lab exercises of increasing difficulty in Jupyter Notebooks offer a coherent and convenient teaching package. An ideal teaching resource for courses on large-scale data analytics with machine learning in computer/data science departments.
Based on the authors' extensive teaching experience, this hands-on graduate-level textbook teaches how to carry out large-scale data analytics and design machine learning solutions for big data. With a focus on fundamentals, this extensively class-tested textbook walks students through key principles and paradigms for working with large-scale data, frameworks for large-scale data analytics (Hadoop, Spark), and explains how to implement machine learning to exploit big data. It is unique in covering the principles that aspiring data scientists need to know, without detail that can overwhelm. Real-world examples, hands-on coding exercises and labs combine with exceptionally clear explanations to maximize student engagement. Well-defined learning objectives, exercises with online solutions for instructors, lecture slides, and an accompanying suite of lab exercises of increasing difficulty in Jupyter Notebooks offer a coherent and convenient teaching package. An ideal teaching resource for courses on large-scale data analytics with machine learning in computer/data science departments.
Dive into the foundations of intelligent systems, machine learning, and control with this hands-on, project-based introductory textbook. Precise, clear introductions to core topics in fuzzy logic, neural networks, optimization, deep learning, and machine learning, avoid the use of complex mathematical proofs, and are supported by over 70 examples. Modular chapters built around a consistent learning framework enable tailored course offerings to suit different learning paths. Over 180 open-ended review questions support self-review and class discussion, over 120 end-of-chapter problems cement student understanding, and over 20 hands-on Arduino assignments connect theory to practice, supported by downloadable Matlab and Simulink code. Comprehensive appendices review the fundamentals of modern control, and contain practical information on implementing hands-on assignments using Matlab, Simulink, and Arduino. Accompanied by solutions for instructors, this is the ideal guide for senior undergraduate and graduate engineering students, and professional engineers, looking for an engaging and practical introduction to the field.
Dive into the foundations of intelligent systems, machine learning, and control with this hands-on, project-based introductory textbook. Precise, clear introductions to core topics in fuzzy logic, neural networks, optimization, deep learning, and machine learning, avoid the use of complex mathematical proofs, and are supported by over 70 examples. Modular chapters built around a consistent learning framework enable tailored course offerings to suit different learning paths. Over 180 open-ended review questions support self-review and class discussion, over 120 end-of-chapter problems cement student understanding, and over 20 hands-on Arduino assignments connect theory to practice, supported by downloadable Matlab and Simulink code. Comprehensive appendices review the fundamentals of modern control, and contain practical information on implementing hands-on assignments using Matlab, Simulink, and Arduino. Accompanied by solutions for instructors, this is the ideal guide for senior undergraduate and graduate engineering students, and professional engineers, looking for an engaging and practical introduction to the field.
Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied successfully to even the largest datasets. It begins with a discussion of the MapReduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream-processing algorithms for mining data that arrives too fast for exhaustive processing. Other chapters cover the PageRank idea and related tricks for organizing the Web, the problems of finding frequent itemsets, and clustering. This third edition includes new and extended coverage on decision trees, deep learning, and mining social-network graphs.
Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied successfully to even the largest datasets. It begins with a discussion of the MapReduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream-processing algorithms for mining data that arrives too fast for exhaustive processing. Other chapters cover the PageRank idea and related tricks for organizing the Web, the problems of finding frequent itemsets, and clustering. This third edition includes new and extended coverage on decision trees, deep learning, and mining social-network graphs.
This enthusiastic introduction to the fundamentals of information theory builds from classical Shannon theory through to modern applications in statistical learning, equipping students with a uniquely well-rounded and rigorous foundation for further study. Introduces core topics such as data compression, channel coding, and rate-distortion theory using a unique finite block-length approach. With over 210 end-of-part exercises and numerous examples, students are introduced to contemporary applications in statistics, machine learning and modern communication theory. This textbook presents information-theoretic methods with applications in statistical learning and computer science, such as f-divergences, PAC Bayes and variational principle, Kolmogorov's metric entropy, strong data processing inequalities, and entropic upper bounds for statistical estimation. Accompanied by a solutions manual for instructors, and additional standalone chapters on more specialized topics in information theory, this is the ideal introductory textbook for senior undergraduate and graduate students in electrical engineering, statistics, and computer science.
This enthusiastic introduction to the fundamentals of information theory builds from classical Shannon theory through to modern applications in statistical learning, equipping students with a uniquely well-rounded and rigorous foundation for further study. Introduces core topics such as data compression, channel coding, and rate-distortion theory using a unique finite block-length approach. With over 210 end-of-part exercises and numerous examples, students are introduced to contemporary applications in statistics, machine learning and modern communication theory. This textbook presents information-theoretic methods with applications in statistical learning and computer science, such as f-divergences, PAC Bayes and variational principle, Kolmogorov's metric entropy, strong data processing inequalities, and entropic upper bounds for statistical estimation. Accompanied by a solutions manual for instructors, and additional standalone chapters on more specialized topics in information theory, this is the ideal introductory textbook for senior undergraduate and graduate students in electrical engineering, statistics, and computer science.
Maximise student engagement and understanding of matrix methods in data-driven applications with this modern teaching package. Students are introduced to matrices in two preliminary chapters, before progressing to advanced topics such as the nuclear norm, proximal operators and convex optimization. Highlighted applications include low-rank approximation, matrix completion, subspace learning, logistic regression for binary classification, robust PCA, dimensionality reduction and Procrustes problems. Extensively classroom-tested, the book includes over 200 multiple-choice questions suitable for in-class interactive learning or quizzes, as well as homework exercises (with solutions available for instructors). It encourages active learning with engaging 'explore' questions, with answers at the back of each chapter, and Julia code examples to demonstrate how the mathematics is actually used in practice. A suite of computational notebooks offers a hands-on learning experience for students. This is a perfect textbook for upper-level undergraduates and first-year graduate students who have taken a prior course in linear algebra basics.
Maximise student engagement and understanding of matrix methods in data-driven applications with this modern teaching package. Students are introduced to matrices in two preliminary chapters, before progressing to advanced topics such as the nuclear norm, proximal operators and convex optimization. Highlighted applications include low-rank approximation, matrix completion, subspace learning, logistic regression for binary classification, robust PCA, dimensionality reduction and Procrustes problems. Extensively classroom-tested, the book includes over 200 multiple-choice questions suitable for in-class interactive learning or quizzes, as well as homework exercises (with solutions available for instructors). It encourages active learning with engaging 'explore' questions, with answers at the back of each chapter, and Julia code examples to demonstrate how the mathematics is actually used in practice. A suite of computational notebooks offers a hands-on learning experience for students. This is a perfect textbook for upper-level undergraduates and first-year graduate students who have taken a prior course in linear algebra basics.