Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
Take anything in the universe, put it in a box, and heat it up. Regardless of what you start with, the motion of the substance will be described by the equations of fluid mechanics. This remarkable universality is the reason why fluid mechanics is important. The key equation of fluid mechanics is the Navier-Stokes equation. This textbook starts with the basics of fluid flows, building to the Navier-Stokes equation while explaining the physics behind the various terms and exploring the astonishingly rich landscape of solutions. The book then progresses to more advanced topics, including waves, fluid instabilities, and turbulence, before concluding by turning inwards and describing the atomic constituents of fluids. It introduces ideas of kinetic theory, including the Boltzmann equation, to explain why the collective motion of 1023 atoms is, under the right circumstances, always governed by the laws of fluid mechanics.
Take anything in the universe, put it in a box, and heat it up. Regardless of what you start with, the motion of the substance will be described by the equations of fluid mechanics. This remarkable universality is the reason why fluid mechanics is important. The key equation of fluid mechanics is the Navier-Stokes equation. This textbook starts with the basics of fluid flows, building to the Navier-Stokes equation while explaining the physics behind the various terms and exploring the astonishingly rich landscape of solutions. The book then progresses to more advanced topics, including waves, fluid instabilities, and turbulence, before concluding by turning inwards and describing the atomic constituents of fluids. It introduces ideas of kinetic theory, including the Boltzmann equation, to explain why the collective motion of 1023 atoms is, under the right circumstances, always governed by the laws of fluid mechanics.
This clear and pedagogical text delivers a concise overview of classical and quantum statistical physics. Essential Statistical Physics shows students how to relate the macroscopic properties of physical systems to their microscopic degrees of freedom, preparing them for graduate courses in areas such as biophysics, condensed matter physics, atomic physics and statistical mechanics. Topics covered include the microcanonical, canonical, and grand canonical ensembles, Liouville's Theorem, Kinetic Theory, non-interacting Fermi and Bose systems and phase transitions, and the Ising model. Detailed steps are given in mathematical derivations, allowing students to quickly develop a deep understanding of statistical techniques. End-of-chapter problems reinforce key concepts and introduce more advanced applications, and appendices provide a detailed review of thermodynamics and related mathematical results. This succinct book offers a fresh and intuitive approach to one of the most challenging topics in the core physics curriculum and provides students with a solid foundation for tackling advanced topics in statistical mechanics.
This clear and pedagogical text delivers a concise overview of classical and quantum statistical physics. Essential Statistical Physics shows students how to relate the macroscopic properties of physical systems to their microscopic degrees of freedom, preparing them for graduate courses in areas such as biophysics, condensed matter physics, atomic physics and statistical mechanics. Topics covered include the microcanonical, canonical, and grand canonical ensembles, Liouville's Theorem, Kinetic Theory, non-interacting Fermi and Bose systems and phase transitions, and the Ising model. Detailed steps are given in mathematical derivations, allowing students to quickly develop a deep understanding of statistical techniques. End-of-chapter problems reinforce key concepts and introduce more advanced applications, and appendices provide a detailed review of thermodynamics and related mathematical results. This succinct book offers a fresh and intuitive approach to one of the most challenging topics in the core physics curriculum and provides students with a solid foundation for tackling advanced topics in statistical mechanics.