Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
This expanded new edition of Wind Turbines introduces key topics in offshore wind, alongside carefully revised and updated coverage of core topics in wind turbine technology. It features two new chapters on offshore wind, covering offshore resources, metocean data, wind turbine technologies, environmental impact, and loading and dynamics for fixed-bottom and floating platforms. Real-world case studies are introduced from Europe and the USA, and a new chapter examines wind power in the context of broader decarbonisation, practical energy storage, and other renewable energy sources. Updated coverage of turbine energy yield calculations, blade-element momentum theory, and current economic trends is presented, and over 100 varied end-of-chapter problems are included, with solutions available for instructors. Combining key topics in aerodynamics, electrical and control theory, structures, planning, economics, and policy, the clear language of this multidisciplinary textbook makes it ideal for undergraduate and graduate students, and professional engineers, in the renewable energy sector.
This expanded new edition of Wind Turbines introduces key topics in offshore wind, alongside carefully revised and updated coverage of core topics in wind turbine technology. It features two new chapters on offshore wind, covering offshore resources, metocean data, wind turbine technologies, environmental impact, and loading and dynamics for fixed-bottom and floating platforms. Real-world case studies are introduced from Europe and the USA, and a new chapter examines wind power in the context of broader decarbonisation, practical energy storage, and other renewable energy sources. Updated coverage of turbine energy yield calculations, blade-element momentum theory, and current economic trends is presented, and over 100 varied end-of-chapter problems are included, with solutions available for instructors. Combining key topics in aerodynamics, electrical and control theory, structures, planning, economics, and policy, the clear language of this multidisciplinary textbook makes it ideal for undergraduate and graduate students, and professional engineers, in the renewable energy sector.
There are four forces in our universe. Two act only at the very smallest scales and one only at the very biggest. For everything inbetween, there is electromagnetism. The theory of electromagnetism is described by four gloriously simple and beautiful vector calculus equations known as the Maxwell equations. These are the first genuinely fundamental equations that we meet in our physics education and they survive, essentially unchanged, in our best modern theories of physics. They also serve as a blueprint for what subsequent laws of physics look like. This textbook takes us on a tour of the Maxwell equations and their many solutions. It starts with the basics of electric and magnetic phenomena and explains how their unification results in waves that we call light. It then describes more advanced topics such as superconductors, monopoles, radiation, and electromagnetism in matter. The book concludes with a detailed review of the mathematics of vector calculus.
There are four forces in our universe. Two act only at the very smallest scales and one only at the very biggest. For everything inbetween, there is electromagnetism. The theory of electromagnetism is described by four gloriously simple and beautiful vector calculus equations known as the Maxwell equations. These are the first genuinely fundamental equations that we meet in our physics education and they survive, essentially unchanged, in our best modern theories of physics. They also serve as a blueprint for what subsequent laws of physics look like. This textbook takes us on a tour of the Maxwell equations and their many solutions. It starts with the basics of electric and magnetic phenomena and explains how their unification results in waves that we call light. It then describes more advanced topics such as superconductors, monopoles, radiation, and electromagnetism in matter. The book concludes with a detailed review of the mathematics of vector calculus.