Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-tfzs5 Total loading time: 0 Render date: 2025-10-12T11:43:59.963Z Has data issue: false hasContentIssue false

8 - Effective Human–AI Collaborative Intelligence

Published online by Cambridge University Press:  19 September 2025

Dan Wu
Affiliation:
Wuhan University, China
Shaobo Liang
Affiliation:
Wuhan University, China
Get access

Summary

In today’s data-driven world, the demand for advanced intelligent systems to automate and enhance complex tasks is growing. However, developing effective artificial intelligence (AI) often depends on extensive, high-quality training data, which can be costly and time-consuming to obtain. This chapter highlights the potential of human–AI collaboration by integrating human expertise into machine learning workflows to address data limitations and enhance model performance. We explore foundational concepts such as Human-in-the-Loop systems, Active Learning, Crowdsourcing, and Interactive Machine Learning, outlining their interconnections as key paradigms. Through practical applications in diverse domains such as healthcare, finance, and agriculture, along with real-world case studies in education and law, we demonstrate how strategically incorporating human expertise into machine learning workflows can significantly enhance AI performance. From an information science perspective, this chapter emphasizes the powerful human–AI partnership that can drive the next generation of AI systems, enabling continuous learning from human experts and advancing capability and performance.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2023). Re-thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges. Applied Sciences, 13(12), 7082.10.3390/app13127082CrossRefGoogle Scholar
Arous, I., Dolamic, L., Yang, J., Bhardwaj, A., Cuccu, G., & Cudré-Mauroux, P. (2021). Marta: Leveraging Human Rationales for Explainable Text Classification. Proceedings of the AAAI Conference on Artificial Intelligence, 35(7), 58685876.10.1609/aaai.v35i7.16734CrossRefGoogle Scholar
Baldridge, J., & Palmer, A. (2009). How Well Does Active Learning Actually Work? Time-based Evaluation of Cost-reduction Strategies for Language Documentation. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, 296–305.Google Scholar
Bartolo, M., Roberts, A., Welbl, J., Riedel, S., & Stenetorp, P. (2020). Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension. Transactions of the Association for Computational Linguistics, 8, 662678.10.1162/tacl_a_00338CrossRefGoogle Scholar
Boukhelifa, N., Bezerianos, A., & Lutton, E. (2018). Evaluation of Interactive Machine Learning Systems. In Zhou, J. & Chen, F. (eds.), Human and Machine Learning (pp. 341360). Springer International Publishing.10.1007/978-3-319-90403-0_17CrossRefGoogle Scholar
Brabham, D. C. (2008). Crowdsourcing as a Model for Problem Solving: An Introduction and Cases. Convergence: The International Journal of Research into New Media Technologies, 14(1), 7590.10.1177/1354856507084420CrossRefGoogle Scholar
Budd, S., Robinson, E. C., & Kainz, B. (2021). A Survey on Active Learning and Human-in-the-Loop Deep Learning for Medical Image Analysis. Medical Image Analysis, 71, 102062.10.1016/j.media.2021.102062CrossRefGoogle ScholarPubMed
Burr, S. (2009). Active Learning Literature Survey. University of Wisconsin-Madison Department of Computer Sciences.Google Scholar
Casalini, F., González, J. L., & Nemoto, T. (2021). Mapping Commonalities in Regulatory Approaches to Cross-border Data Transfers. OECD Trade Policy Papers.Google Scholar
Chai, C., & Li, G. (2020). Human-in-the-Loop Techniques in Machine Learning. IEEE Data Engineering Bulletin, 43(3), 3752.Google Scholar
Chandra, A. L., Desai, S. V., Balasubramanian, V. N., Ninomiya, S., & Guo, W. (2020). Active Learning with Point Supervision for Cost-effective Panicle Detection in Cereal Crops. Plant Methods, 16(1), 34. https://doi.org/10.1186/s13007-020-00575-8CrossRefGoogle ScholarPubMed
Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J., & Blei, D. (2009). Reading Tea Leaves: How Humans Interpret Topic Models. Advances in Neural Information Processing Systems, 22, 288296.Google Scholar
Chaudhuri, K., Kakade, S. M., Netrapalli, P., & Sanghavi, S. (2015). Convergence Rates of Active Learning for Maximum Likelihood Estimation. Advances in Neural Information Processing Systems, 28, 10901098.Google Scholar
Daniel, F., Kucherbaev, P., Cappiello, C., Benatallah, B., & Allahbakhsh, M. (2019). Quality Control in Crowdsourcing: A Survey of Quality Attributes, Assessment Techniques, and Assurance Actions. ACM Computing Surveys, 51(1), 140.10.1145/3148148CrossRefGoogle Scholar
De Angeli, K., Gao, S., Alawad, M., Yoon, H.-J., Schaefferkoetter, N., Wu, X.-C., Durbin, E. B., Doherty, J., Stroup, A., Coyle, L., Penberthy, L., & Tourassi, G. (2021). Deep Active Learning for Classifying Cancer Pathology Reports. BMC Bioinformatics, 22(1), 113. https://doi.org/10.1186/s12859-021-04047-1CrossRefGoogle ScholarPubMed
De Melo, F. R., Flôres, E. L., De Carvalho, S. D., De Teixeira, R. A. G., Loja, L. F. B., & de Sousa Gomide, R. (2014). Computational Organization of Didactic Contents for Personalized Virtual Learning Environments. Computers & Education, 79, 126137.10.1016/j.compedu.2014.07.012CrossRefGoogle Scholar
Demartini, G., Mizzaro, S., & Spina, D. (2020). Human-in-the-Loop Artificial Intelligence for Fighting Online Misinformation: Challenges and Opportunities. IEEE Data Engineering Bulletin, 43(3), 6574.Google Scholar
Deng, D., Shahabi, C., & Demiryurek, U. (2013). Maximizing the Number of Worker’s Self-selected Tasks in Spatial Crowdsourcing. Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 324–333.10.1145/2525314.2525370CrossRefGoogle Scholar
Diligenti, M., Roychowdhury, S., & Gori, M. (2017). Integrating Prior Knowledge into Deep Learning. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), 920–923.10.1109/ICMLA.2017.00-37CrossRefGoogle Scholar
Dimensional Research. (2019). What Data Scientists Tell Us About AI Model Training Today. Alegion. https://cdn2.hubspot.net/hubfs/3971219/Content%20Offers/Drafts/Alegion_SurveyNarrative.pdfGoogle Scholar
Dong, J., Kang, Y., Liu, J., Sun, C., Fan, S., Jin, H., Wu, D., Jiang, Z., Niu, X., & Liu, X. (2023). Human-centred Design on Crowdsourcing Annotation towards Improving Active Learning Model Performance. Journal of Information Science, doi: 10.1177/01655515231204802CrossRefGoogle Scholar
Donmez, P., & Carbonell, J. G. (2008). Proactive Learning: Cost-sensitive Active Learning with Multiple Imperfect Oracles. Proceedings of the 17th ACM Conference on Information and Knowledge Management, 619–628.10.1145/1458082.1458165CrossRefGoogle Scholar
Dor, L. E., Halfon, A., Gera, A., Shnarch, E., Dankin, L., Choshen, L., Danilevsky, M., Aharonov, R., Katz, Y., & Slonim, N. (2020). Active Learning for BERT: An Empirical Study. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 7949–7962.Google Scholar
Druck, G., Settles, B., & McCallum, A. (2009). Active Learning by Labeling Features. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, 81–90.10.3115/1699510.1699522CrossRefGoogle Scholar
Dudley, J. J., & Kristensson, P. O. (2018). A Review of User Interface Design for Interactive Machine Learning. ACM Transactions on Interactive Intelligent Systems, 8(2), 137.10.1145/3185517CrossRefGoogle Scholar
Eapen, T., Finkenstadt, D. J., Folk, J., & Venkataswamy, L. (2023). How Generative AI Can Augment Human Creativity. Harvard Business Review, 101(4), 5664.Google Scholar
El-Hasnony, I. M., Elzeki, O. M., Alshehri, A., & Salem, H. (2022). Multi-Label Active Learning-Based Machine Learning Model for Heart Disease Prediction. SENSORS, 22(3), 1184. https://doi.org/10.3390/s22031184CrossRefGoogle ScholarPubMed
Fails, J. A., & Olsen, D. R. (2003). Interactive Machine Learning. Proceedings of the 8th International Conference on Intelligent User Interfaces, 39–45.10.1145/604045.604056CrossRefGoogle Scholar
Fan, X., Li, C., Yuan, X., Dong, X., & Liang, J. (2019). An Interactive Visual Analytics Approach for Network Anomaly Detection through Smart Labeling. Journal of Visualization, 22(5), 955971.10.1007/s12650-019-00580-7CrossRefGoogle Scholar
Fiebrink, R., Cook, P. R., & Trueman, D. (2011). Human Model Evaluation in Interactive Supervised Learning. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 147–156.10.1145/1978942.1978965CrossRefGoogle Scholar
Folmsbee, J., Liu, X., Brandwein-Weber, M., & Doyle, S. (2018). Active Deep Learning: Improved Training Efficiency of Convolutional Neural Networks for Tissue Classification in Oral Cavity Cancer. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 770–773. https://webofscience.clarivate.cn/wos/alldb/summary/8b3794b9-2bc2-4ba9-bb93–84b37012273a-0108175925/relevance/110.1109/ISBI.2018.8363686CrossRefGoogle Scholar
Forrester Consulting. (2020). Overcome Obstacles to Get to AI at Scale. IBM. www.ibm.com/downloads/cas/VBMPEQLNGoogle Scholar
Fredrikson, M., Jha, S., & Ristenpart, T. (2015). Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 1322–1333.10.1145/2810103.2813677CrossRefGoogle Scholar
Gomes, R., Welinder, P., Krause, A., & Perona, P. (2011). Crowdclustering. Advances in Neural Information Processing Systems 24 (NIPS 2011).Google Scholar
Gronsund, T., & Aanestad, M. (2020). Augmenting the Algorithm: Emerging Human-in-the-Loop Work Configurations. Journal of Strategic Information Systems, 29(2), 101614. https://doi.org/10.1016/j.jsis.2020.101614CrossRefGoogle Scholar
Gualo, F., Rodríguez, M., Verdugo, J., Caballero, I., & Piattini, M. (2021). Data Quality Certification using ISO/IEC 25012: Industrial Experiences. Journal of Systems and Software, 176, 110938.10.1016/j.jss.2021.110938CrossRefGoogle Scholar
Guo, J., Kang, Y., Duan, Y., Liu, X., Tang, S., Zhang, W., Kuang, K., Sun, C., & Wu, F. (2022). Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of Semi-Supervised Learning and Active Learning. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2935–2945.10.1145/3534678.3539022CrossRefGoogle Scholar
Guo, J., Shi, H., Kang, Y., Kuang, K., Tang, S., Jiang, Z., Sun, C., Wu, F., & Zhuang, Y. (2021). Semi-supervised Active Learning for Semi-supervised Models: Exploit Adversarial Examples with Graph-based Virtual Labels. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2896–2905.10.1109/ICCV48922.2021.00289CrossRefGoogle Scholar
He, L., Michael, J., Lewis, M., & Zettlemoyer, L. (2016). Human-in-the-Loop Parsing. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2337–2342.10.18653/v1/D16-1258CrossRefGoogle Scholar
Hoi, S. C. H., Jin, R., Zhu, J., & Lyu, M. R. (2006). Batch Mode Active Learning and Its Application to Medical Image Classification. Proceedings of the 23rd International Conference on Machine Learning: ICML’06, 417–424.10.1145/1143844.1143897CrossRefGoogle Scholar
Holzinger, A. (2016). Interactive Machine Learning for Health Informatics: When Do We Need the Human-in-the-Loop? Brain Informatics, 3(2), 119131.10.1007/s40708-016-0042-6CrossRefGoogle ScholarPubMed
Howe, J. (2006). The Rise of Crowdsourcing. Wired Magazine, 14(6), 176183.Google Scholar
Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership Inference Attacks on Machine Learning: A Survey. ACM Computing Surveys, 54(11s), 137.Google Scholar
Ipeirotis, P. G., Provost, F., & Wang, J. (2010). Quality Management on Amazon Mechanical Turk. Proceedings of the ACM SIGKDD Workshop on Human Computation, 64–67.10.1145/1837885.1837906CrossRefGoogle Scholar
Jiang, Z., Gao, L., Yuan, K., Gao, Z., Tang, Z., & Liu, X. (2018). Mathematics Content Understanding for Cyberlearning via Formula Evolution Map. Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 37–46. https://doi.org/10.1145/3269206.3271694CrossRefGoogle Scholar
Jiang, Z., Gao, Z., Duan, Y., Kang, Y., Sun, C., Zhang, Q., & Liu, X. (2020). Camouflaged Chinese Spam Content Detection with Semi-supervised Generative Active Learning. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 3080–3085.10.18653/v1/2020.acl-main.279CrossRefGoogle Scholar
Jiang, Z., Liu, X., Gao, L., & Tang, Z. (2016). Community-based Cyberreading for Information Understanding. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, 789–792. https://dl.acm.org/doi/abs/10.1145/2911451.2914744CrossRefGoogle Scholar
Joshi, A. J., Porikli, F., & Papanikolopoulos, N. (2009). Multi-class Active Learning for Image Classification. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2372–2379.10.1109/CVPR.2009.5206627CrossRefGoogle Scholar
Jwo, J.-S., Lin, C.-S., & Lee, C.-H. (2021). Smart Technology-driven Aspects for Human-in-the-Loop Smart Manufacturing. The International Journal of Advanced Manufacturing Technology, 114(5–6), 17411752.10.1007/s00170-021-06977-9CrossRefGoogle Scholar
Kameda, T., Toyokawa, W., & Tindale, R. S. (2022). Information Aggregation and Collective Intelligence beyond the Wisdom of Crowds. Nature Reviews Psychology, 1(6), 345357.10.1038/s44159-022-00054-yCrossRefGoogle Scholar
Kapoor, A., Horvitz, E., & Basu, S. (2007). Selective Supervision: Guiding Supervised Learning with Decision-theoretic Active Learning. IJCAI’07 Proceedings of the 20th International Joint Conference on Artificial Intelligence, 877–882.Google Scholar
Kee, S., Del Castillo, E., & Runger, G. (2018). Query-by-Committee Improvement with Diversity and Density in Batch Active Learning. Information Sciences, 454, 401418.10.1016/j.ins.2018.05.014CrossRefGoogle Scholar
Kovashka, A., Parikh, D., & Grauman, K. (2015). WhittleSearch: Interactive Image Search with Relative Attribute Feedback. International Journal of Computer Vision, 115(2), 185210. https://doi.org/10.1007/s11263-015-0814-0CrossRefGoogle Scholar
Kreutzer, J., Riezler, S., & Lawrence, C. (2021). Offline Reinforcement Learning from Human Feedback in Real-World Sequence-to-Sequence Tasks. Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021), 37–43.10.18653/v1/2021.spnlp-1.4CrossRefGoogle Scholar
Le, T.-N., Sugimoto, A., Ono, S., & Kawasaki, H. (2020). Toward Interactive Self-annotation for Video Object Bounding Box: Recurrent Self-learning and Hierarchical Annotation based Framework. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 3231–3240.10.1109/WACV45572.2020.9093398CrossRefGoogle Scholar
Lease, M. (2011). On Quality Control and Machine Learning in Crowdsourcing. Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence.Google Scholar
Lee, T. Y., Smith, A., Seppi, K., Elmqvist, N., Boyd-Graber, J., & Findlater, L. (2017). The Human Touch: How Non-expert Users Perceive, Interpret, and Fix Topic Models. International Journal of Human–Computer Studies, 105, 2842.Google Scholar
Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C., & Zou, J. (2022). Advances, Challenges and Opportunities in Creating Data for Trustworthy AI. Nature Machine Intelligence, 4(8), 669677.10.1038/s42256-022-00516-1CrossRefGoogle Scholar
Liu, B., & Ferrari, V. (2017). Active Learning for Human Pose Estimation. Proceedings of the IEEE International Conference on Computer Vision, 4363–4372. http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Active_Learning_for_ICCV_2017_paper.html10.1109/ICCV.2017.468CrossRefGoogle Scholar
Liu, C., Zhao, F., Kuang, K., Kang, Y., Jiang, Z., Sun, C., & Wu, F. (2024). Evolving Knowledge Distillation with Large Language Models and Active Learning. Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), 6717–6731. https://aclanthology.org/2024.lrec-main.593/Google Scholar
Liu, P., Wang, L., Ranjan, R., He, G., & Zhao, L. (2022). A Survey on Active Deep Learning: From Model Driven to Data Driven. ACM Computing Surveys, 54(10s), 134.Google Scholar
Liu, X., Jiang, Z., & Gao, L. (2015). Scientific Information Understanding via Open Educational Resources (OER). Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 645–654. https://doi.org/10.1145/2766462.2767750CrossRefGoogle Scholar
Liu, Z., Guo, Y., & Mahmud, J. (2021). When and Why a Model Fails? A Human-in-the-Loop Error Detection Framework for Sentiment Analysis. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers, 170–177.10.18653/v1/2021.naacl-industry.22CrossRefGoogle Scholar
Liu, Z., Wang, J., Gong, S., Lu, H., & Tao, D. (2019). Deep Reinforcement Active Learning for Human-in-the-Loop Person Re-identification. Proceedings of the IEEE/CVF International Conference on Computer Vision, 6122–6131.10.1109/ICCV.2019.00622CrossRefGoogle Scholar
Luo, T., Kramer, K., Goldgof, D. B., Hall, L. O., Samson, S., Remsen, A., Hopkins, T., & Cohn, D. (2005). Active Learning to Recognize Multiple Types of Plankton. Journal of Machine Learning Research, 6(4), 589613.Google Scholar
Ma, Y., Liu, J., Yi, F., Cheng, Q., Huang, Y., Lu, W., & Liu, X. (2023). AI vs. Human: Differentiation Analysis of Scientific Content Generation [arXiv preprint]. arXiv:2301.10416. http://arxiv.org/abs/2301.10416Google Scholar
Madnick, S. E., Wang, R. Y., Lee, Y. W., & Zhu, H. (2009). Overview and Framework for Data and Information Quality Research. Journal of Data and Information Quality, 1(1), 122.Google Scholar
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2022). A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys, 54(6), 135.10.1145/3457607CrossRefGoogle Scholar
Monarch, R. M. (2021). Human-in-the-Loop Machine Learning: Active Learning and Annotation for Human-centered AI. Simon and Schuster.Google Scholar
Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J., & Fernández-Leal, Á. (2023). Human-in-the-Loop Machine Learning: A State of the Art. Artificial Intelligence Review, 56(4), 30053054.10.1007/s10462-022-10246-wCrossRefGoogle Scholar
Nguyen, D. H., & Patrick, J. D. (2014). Supervised Machine Learning and Active Learning in Classification of Radiology Reports. Journal of the American Medical Informatics Association, 21(5), 893901.10.1136/amiajnl-2013-002516CrossRefGoogle ScholarPubMed
Odekerken, D., & Bex, F. (2020). Towards Transparent Human-in-the-Loop Classification of Fraudulent Web Shops. In Villata, S., Harašta, J., & Křemen, P. (eds.), Frontiers in Artificial Intelligence and Applications (pp. 239242). IOS Press. https://doi.org/10.3233/FAIA200873Google Scholar
Panian, Z. (2010). Some Practical Experiences in Data Governance. World Academy of Science, Engineering and Technology, 62(1), 939946.Google Scholar
Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running Experiments on Amazon Mechanical Turk. Judgment and Decision Making, 5(5), 411419.10.1017/S1930297500002205CrossRefGoogle Scholar
Patil, Y., Amer-Yahia, S., & Subramanian, S. (2022). Designing the Evaluation of Operator-enabled Interactive Data Exploration in VALIDE. Proceedings of the Workshop on Human-In-the-Loop Data Analytics, 1–7. https://doi.org/10.1145/3546930.3547509CrossRefGoogle Scholar
Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data Quality Assessment. Communications of the ACM, 45(4), 211218.10.1145/505248.506010CrossRefGoogle Scholar
Porter, R., Theiler, J., & Hush, D. (2013). Interactive Machine Learning in Data Exploitation. Computing in Science & Engineering, 15(5), 1220.10.1109/MCSE.2013.74CrossRefGoogle Scholar
Press, G. (2022, April 14). Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says. Forbes. www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/Google Scholar
Rahm, E., & Do, H. H. (2000). Data Cleaning: Problems and Current Approaches. IEEE Data Engineering Bulletin, 23(4), 313.Google Scholar
Ramos, G., Meek, C., Simard, P., Suh, J., & Ghorashi, S. (2020). Interactive Machine Teaching: A Human-centered Approach to Building Machine-learned Models. Human–Computer Interaction, 35(5–6), 413451.10.1080/07370024.2020.1734931CrossRefGoogle Scholar
Räth, T., Onah, N., & Sattler, K.-U. (2023). Interactive Data Cleaning for Real-Time Streaming Applications. Proceedings of the Workshop on Human-In-the-Loop Data Analytics, 1–3. https://doi.org/10.1145/3597465.3605229CrossRefGoogle Scholar
Reddy, D. (2023). Data Engineering Challenges in AI Automation. 2023 International Conference on Computing, Electronics & Communications Engineering (iCCECE), 107–112.Google Scholar
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144.10.1145/2939672.2939778CrossRefGoogle Scholar
Rouzegar, H., & Makrehchi, M. (2024). Enhancing Text Classification through LLM-Driven Active Learning and Human Annotation. Proceedings of the 18th Linguistic Annotation Workshop (LAW-XVIII), 98–111.Google Scholar
Rožanec, J. M., Montini, E., Cutrona, V., Papamartzivanos, D., Klemenčič, T., Fortuna, B., Mladenić, D., Veliou, E., Giannetsos, T., & Emmanouilidis, C. (2024). Human in the AI Loop via xAI and Active Learning for Visual Inspection. In Soldatos, J. (ed.), Artificial Intelligence in Manufacturing (pp. 381406). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-46452-2_22CrossRefGoogle Scholar
Sachan, S., Almaghrabi, F., Yang, J.-B., & Xu, D.-L. (2024). Human–AI Collaboration to Mitigate Decision Noise in Financial Underwriting: A Study on FinTech Innovation in a Lending Firm. International Review of Financial Analysis, 93, 103149. https://doi.org/10.1016/j.irfa.2024.103149Google Scholar
Schröder, C., & Niekler, A. (2020). A Survey of Active Learning for Text Classification using Deep Neural Networks [arXiv preprint]. arXiv:2008.07267. http://arxiv.org/abs/2008.07267Google Scholar
Settles, B. (2011). From Theories to Queries: Active Learning in Practice. Active Learning and Experimental Design Workshop in Conjunction with AISTATS 2010, 1–18.Google Scholar
Sheikh, R., Milioto, A., Lottes, P., Stachniss, C., Bennewitz, M., & Schultz, T. (2020). Gradient and Log-based Active Learning for Semantic Segmentation of Crop and Weed for Agricultural Robots. 2020 IEEE International Conference on Robotics and Automation (ICRA), 1350–1356. https://ieeexplore.ieee.org/abstract/document/9196722/Google Scholar
Sheng, V. S., & Zhang, J. (2019). Machine Learning with Crowdsourcing: A Brief Summary of the Past Research and Future Directions. Proceedings of the AAAI Conference on Artificial Intelligence, 33(1), 98379843.10.1609/aaai.v33i01.33019837CrossRefGoogle Scholar
Shoshitaishvili, Y., Weissbacher, M., Dresel, L., Salls, C., Wang, R., Kruegel, C., & Vigna, G. (2017). Rise of the HaCRS: Augmenting Autonomous Cyber Reasoning Systems with Human Assistance. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 347–362. https://doi.org/10.1145/3133956.3134105CrossRefGoogle Scholar
Shraga, R. (2022). HumanAL: Calibrating Human Matching beyond a Single Task. Proceedings of the Workshop on Human-In-the-Loop Data Analytics, 1–8. https://doi.org/10.1145/3546930.3547496CrossRefGoogle Scholar
Smailovic, J., Grcar, M., Lavrac, N., & Znidarsic, M. (2014). Stream-based Active Learning for Sentiment Analysis in the Financial Domain. Information Sciences, 285, 181203. https://doi.org/10.1016/j.ins.2014.04.034CrossRefGoogle Scholar
Smith, A., Kumar, V., Boyd-Graber, J., Seppi, K., & Findlater, L. (2018). Closing the Loop: User-Centered Design and Evaluation of a Human-in-the-Loop Topic Modeling System. 23rd International Conference on Intelligent User Interfaces, 293–304. https://doi.org/10.1145/3172944.3172965CrossRefGoogle Scholar
Sourati, J., Akcakaya, M., Leen, T. K., Erdogmus, D., & Dy, J. G. (2017). Asymptotic Analysis of Objectives based on Fisher Information in Active Learning. Journal of Machine Learning Research, 18(34), 141.Google Scholar
Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., Voss, C., Radford, A., Amodei, D., & Christiano, P. F. (2020). Learning to Summarize with Human Feedback. Advances in Neural Information Processing Systems, 33, 30083021.Google Scholar
Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J., Wu, Z., & Ding, X. (2020). Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation. Medical Image Analysis, 63, 101693. https://doi.org/10.1016/j.media.2020.101693CrossRefGoogle ScholarPubMed
Vaughan, J. W. (2018). Making Better Use of the Crowd: How Crowdsourcing Can Advance Machine Learning Research. Journal of Machine Learning Research, 18(193), 146.Google Scholar
Wallace, E., Rodriguez, P., Feng, S., Yamada, I., & Boyd-Graber, J. (2019). Trick Me If You Can: Human-in-the-Loop Generation of Adversarial Examples for Question Answering. Transactions of the Association for Computational Linguistics, 7, 387401.10.1162/tacl_a_00279CrossRefGoogle Scholar
Wang, G., Zuluaga, M. A., Li, W., Pratt, R., Patel, P. A., Aertsen, M., Doel, T., David, A. L., Deprest, J., Ourselin, S., & Vercauteren, T. (2019). DeeplGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(7), 15591572. https://doi.org/10.1109/TPAMI.2018.2840695CrossRefGoogle ScholarPubMed
Wang, Z. J., Choi, D., Xu, S., & Yang, D. (2021). Putting Humans in the Natural Language Processing Loop: A Survey. Proceedings of the First Workshop on Bridging Human–Computer Interaction and Natural Language Processing, 47–52. https://aclanthology.org/2021.hcinlp-1.8/Google Scholar
Ware, M., Frank, E., Holmes, G., Hall, M., & Witten, I. H. (2001). Interactive Machine Learning: Letting Users Build Classifiers. International Journal of Human–Computer Studies, 55(3), 281292.10.1006/ijhc.2001.0499CrossRefGoogle Scholar
Wondimu, N. A., Buche, C., & Visser, U. (2022). Interactive Machine Learning: A State of the Art Review [arXiv preprint]. arXiv:2207.06196. http://arxiv.org/abs/2207.06196Google Scholar
Wrede, F., & Hellander, A. (2019). Smart Computational Exploration of Stochastic Gene Regulatory Network Models Using Human-in-the-Loop Semi-supervised Learning. Bioinformatics, 35(24), 51995206.10.1093/bioinformatics/btz420CrossRefGoogle ScholarPubMed
Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., & He, L. (2022). A Survey of Human-in-the-Loop for Machine Learning. Future Generation Computer Systems, 135, 364381.10.1016/j.future.2022.05.014CrossRefGoogle Scholar
Wu, Y., Wang, C., Gumusel, E., & Liu, X. (2024). Knowledge-Infused Legal Wisdom: Navigating LLM Consultation through the Lens of Diagnostics and Positive-Unlabeled Reinforcement Learning. Findings of the Association for Computational Linguistics 2024.10.18653/v1/2024.findings-acl.918CrossRefGoogle Scholar
Xiao, R., Dong, Y., Zhao, J., Wu, R., Lin, M., Chen, G., & Wang, H. (2023). FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 14520–14535. https://aclanthology.org/2023.emnlp-main.896/10.18653/v1/2023.emnlp-main.896CrossRefGoogle Scholar
Xu, W., Dainoff, M. J., Ge, L., & Gao, Z. (2023). Transitioning to Human Interaction with AI Systems: New Challenges and Opportunities for HCI Professionals to Enable Human-Centered AI. International Journal of Human–Computer Interaction, 39(3), 494518.10.1080/10447318.2022.2041900CrossRefGoogle Scholar
Yang, J., Lan, G., Li, Y., Gong, Y., Zhang, Z., & Ercisli, S. (2022). Data Quality Assessment and Analysis for Pest Identification in Smart Agriculture. Computers and Electrical Engineering, 103, 108322.10.1016/j.compeleceng.2022.108322CrossRefGoogle Scholar
Yang, Q., Suh, J., Chen, N.-C., & Ramos, G. (2018). Grounding Interactive Machine Learning Tool Design in How Non-Experts Actually Build Models. Proceedings of the 2018 Designing Interactive Systems Conference, 573–584.10.1145/3196709.3196729CrossRefGoogle Scholar
Zhang, J., Wu, X., & Sheng, V. S. (2016). Learning from Crowdsourced Labeled Data: A Survey. Artificial Intelligence Review, 46(4), 543576.10.1007/s10462-016-9491-9CrossRefGoogle Scholar
Zhou, X., Wang, Q., Wang, X., Tang, H., & Liu, X. (2023). Large Language Model Soft Ideologization via AI-Self-Consciousness [arXiv preprint]. arXiv:2309.16167. http://arxiv.org/abs/2309.16167Google Scholar
Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford, A., Amodei, D., Christiano, P., & Irving, G. (2020). Fine-Tuning Language Models from Human Preferences [arXiv preprint]. arXiv:1909.08593. http://arxiv.org/abs/1909.08593Google Scholar

Accessibility standard: WCAG 2.2 AAA

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×