Skip to main content Accessibility help
×
Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-10-09T17:28:44.798Z Has data issue: false hasContentIssue false

3 - Privacy Identification of Human–Generative AI Interaction

Published online by Cambridge University Press:  19 September 2025

Dan Wu
Affiliation:
Wuhan University, China
Shaobo Liang
Affiliation:
Wuhan University, China
Get access

Summary

Generative AI based on large language models (LLM) currently faces serious privacy leakage issues due to the wide range of parameters and diverse data sources. When using generative AI, users inevitably share data with the system. Personal data collected by generative AI may be used for model training and leaked in future outputs. The risk of private information leakage is closely related to the inherent operating mechanism of generative AI. This indirect leakage is difficult to detect by users due to the high complexity of the internal operating mechanism of generative AI. By focusing on the private information exchanged during interactions between users and generative AI, we identify the privacy dimensions involved and develop a model for privacy types in human–generative AI interactions. This can provide a reference for generative AI to avoid training private data and help it provide clear explanations of relevant content for the types of privacy users are concerned about.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep Learning with Differential Privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 308–318. https://doi.org/10.1145/2976749.2978318CrossRefGoogle Scholar
Apthorpe, N., Varghese, S., & Feamster, N. (2019). Evaluating the Contextual Integrity of Privacy Regulation: Parents’ {IoT} Toy Privacy Norms Versus {COPPA}, 123–140. www.usenix.org/conference/usenixsecurity19/presentation/apthorpeGoogle Scholar
Baidoo-anu, D., & Ansah, L. O. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 7(1), 5262. https://doi.org/10.61969/jai.1337500CrossRefGoogle Scholar
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33, 18771901. https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.htmlGoogle Scholar
Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, Ú., Oprea, A., & Raffel, C. (2021). Extracting Training Data from Large Language Models. 30th USENIX Security Symposium, 2633–2650. www.usenix.org/conference/usenixsecurity21/presentation/carlini-extractingGoogle Scholar
Cascella, M., Montomoli, J., Bellini, V., & Bignami, E. (2023). Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios. Journal of Medical Systems, 47(1), 33. https://doi.org/10.1007/s10916–023-01925-4CrossRefGoogle ScholarPubMed
Chang, D., Krupka, E. L., Adar, E., & Acquisti, A. (2016). Engineering Information Disclosure: Norm Shaping Designs. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 587–597. https://doi.org/10.1145/2858036.2858346CrossRefGoogle Scholar
Chen, L., Sun, L., & Han, J. (2023). A Comparison Study of Human and Machine-Generated Creativity. Journal of Computing and Information Science in Engineering, 23(051012). https://doi.org/10.1115/1.4062232CrossRefGoogle Scholar
Choi, J. H., Hickman, K. E., Monahan, A. B., & Schwarcz, D. (2021). ChatGPT Goes to Law School. Journal of Legal Education, 71, 387.Google Scholar
Chua, H. N., Ooi, J. S., & Herbland, A. (2021). The Effects of Different Personal Data Categories on Information Privacy Concern and Disclosure. Computers & Security, 110, 102453. https://doi.org/10.1016/j.cose.2021.102453CrossRefGoogle Scholar
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A Large-scale Hierarchical Image Database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255. https://doi.org/10.1109/CVPR.2009.5206848CrossRefGoogle Scholar
Dockhorn, T., Cao, T., Vahdat, A., & Kreis, K. (2023). Differentially Private Diffusion Models [arXiv preprint]. arXiv:2210.09929. https://doi.org/10.48550/arXiv.2210.09929CrossRefGoogle Scholar
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., … Wright, R. (2023). Opinion Paper: “So What if ChatGPT Wrote It?” Multidisciplinary Perspectives on Opportunities, Challenges and Implications of Generative Conversational AI for Research, Practice and Policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642CrossRefGoogle Scholar
Dwork, C., & Roth, A. (2014). The Algorithmic Foundations of Differential Privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4), 211407. https://doi.org/10.1561/0400000042CrossRefGoogle Scholar
Estrada, S. (2023, March 1). A Startup CFO used ChatGPT to Build an FP&A tool: Here’s How It Went. Fortune. https://fortune.com/2023/03/01/startup-cfo-chatgpt-finance-tool/Google Scholar
Finn, R. L., Wright, D., & Friedewald, M. (2013). Seven Types of Privacy. In Gutwirth, S., Leenes, R., de Hert, P., & Poullet, Y. (eds.), European Data Protection: Coming of Age (pp. 332). Springer Netherlands. https://doi.org/10.1007/978-94-007-5170-5_1CrossRefGoogle Scholar
Fire, M., Goldschmidt, R., & Elovici, Y. (2014). Online Social Networks: Threats and Solutions. IEEE Communications Surveys & Tutorials, 16(4), 20192036. https://doi.org/10.1109/COMST.2014.2321628CrossRefGoogle Scholar
Golda, A., Mekonen, K., Pandey, A., Singh, A., Hassija, V., Chamola, V., & Sikdar, B. (2024). Privacy and Security Concerns in Generative AI: A Comprehensive Survey. IEEE Access, 12, 4812648144. https://doi.org/10.1109/ACCESS.2024.3381611CrossRefGoogle Scholar
Jancke, G., Venolia, G. D., Grudin, J., Cadiz, J. J., & Gupta, A. (2001). Linking Public Spaces: Technical and Social Issues. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 530–537. https://doi.org/10.1145/365024.365352CrossRefGoogle Scholar
Kelley, P. G., Cesca, L., Bresee, J., & Cranor, L. F. (2010). Standardizing Privacy Notices: An Online Study of the Nutrition Label Approach. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1573–1582. https://doi.org/10.1145/1753326.1753561CrossRefGoogle Scholar
Kimmel, D. (2023, May 16). ChatGPT Therapy Is Good, But It Misses What Makes Us Human. Columbia University Department of Psychiatry. www.columbiapsychiatry.org/news/chatgpt-therapy-is-good-but-it-misses-what-makes-us-humanGoogle Scholar
Kshetri, N. (2023). Cybercrime and Privacy Threats of Large Language Models. IT Professional, 25(3), 913. https://doi.org/10.1109/MITP.2023.3275489CrossRefGoogle Scholar
Leon, P. G., Ur, B., Wang, Y., Sleeper, M., Balebako, R., Shay, R., Bauer, L., Christodorescu, M., & Cranor, L. F. (2013). What Matters to Users? Factors That Affect Users’ Willingness to Share Information with Online Advertisers. Proceedings of the Ninth Symposium on Usable Privacy and Security, 1–12. https://doi.org/10.1145/2501604.2501611CrossRefGoogle Scholar
Leonard, A. (2023, September 16). “Dr. Google” Meets Its Match in Dr. ChatGPT. NPR. www.npr.org/sections/health-shots/2023/09/16/1199924303/chatgpt-ai-medical-adviceGoogle Scholar
Li, J., Cao, H., Lin, L., Hou, Y., Zhu, R., & El Ali, A. (2024). User Experience Design Professionals’ Perceptions of Generative Artificial Intelligence. Proceedings of the CHI Conference on Human Factors in Computing Systems, 1–18. https://doi.org/10.1145/3613904.3642114CrossRefGoogle Scholar
Liu, J., Lau, C. P., & Chellappa, R. (2023). DiffProtect: Generate Adversarial Examples with Diffusion Models for Facial Privacy Protection [arXiv preprint]. arXiv:2305.13625. https://doi.org/10.48550/arXiv.2305.13625CrossRefGoogle Scholar
Lu, L., McDonald, C., Kelleher, T., Lee, S., Chung, Y. J., Mueller, S., Vielledent, M., & Yue, C. A. (2022). Measuring Consumer-perceived Humanness of Online Organizational Agents. Computers in Human Behavior, 128, 107092. https://doi.org/10.1016/j.chb.2021.107092CrossRefGoogle Scholar
Maddison, L. (2023, April 4). Samsung Workers Made a Major Error by Using ChatGPT. TechRadar. www.techradar.com/news/samsung-workers-leaked-company-secrets-by-using-chatgptGoogle Scholar
Milne, G. R., Pettinico, G., Hajjat, F. M., & Markos, E. (2017). Information Sensitivity Typology: Mapping the Degree and Type of Risk Consumers Perceive in Personal Data Sharing. Journal of Consumer Affairs, 51(1), 133161. https://doi.org/10.1111/joca.12111CrossRefGoogle Scholar
Mu, Y., Zhang, Q., Hu, M., Wang, W., Ding, M., Jin, J., Wang, B., Dai, J., Qiao, Y., & Luo, P. (2023). EmbodiedGPT: Vision-Language Pre-Training via Embodied Chain of Thought. Advances in Neural Information Processing Systems, 36, 2508125094. https://proceedings.neurips.cc/paper_files/paper/2023/hash/4ec43957eda1126ad4887995d05fae3b-Abstract-Conference.htmlGoogle Scholar
Narayanan, A., & Shmatikov, V. (2008). Robust De-anonymization of Large Sparse Datasets. 2008 IEEE Symposium on Security and Privacy (Sp 2008), 111–125. https://doi.org/10.1109/SP.2008.33Google Scholar
Nissenbaum, H. (2004). Privacy as Contextual Integrity Symposium: Technology, Values, and the Justice System. Washington Law Review, 79(1), 119158.Google Scholar
Ouyang, S., Wang, S., Liu, Y., Zhong, M., Jiao, Y., Iter, D., Pryzant, R., Zhu, C., Ji, H., & Han, J. (2023). The Shifted and The Overlooked: A Task-oriented Investigation of User-GPT Interactions [arXiv preprint]. arXiv:2310.12418. https://doi.org/10.48550/arXiv.2310.12418CrossRefGoogle Scholar
Peris, C., Dupuy, C., Majmudar, J., Parikh, R., Smaili, S., Zemel, R., & Gupta, R. (2023). Privacy in the Time of Language Models. Proceedings of the 16th ACM International Conference on Web Search and Data Mining, 1291–1292. https://doi.org/10.1145/3539597.3575792CrossRefGoogle Scholar
Phelps, J., Nowak, G., & Ferrell, E. (2000). Privacy Concerns and Consumer Willingness to Provide Personal Information. Journal of Public Policy & Marketing, 19(1), 2741. https://doi.org/10.1509/jppm.19.1.27.16941CrossRefGoogle Scholar
Porter, J. (2023, November 6). ChatGPT Continues to Be One of the Fastest-Growing Services Ever. The Verge. www.theverge.com/2023/11/6/23948386/chatgpt-active-user-count-openai-developer-conferenceGoogle Scholar
Robinson, C. (2017). Disclosure of Personal Data in Ecommerce: A Cross-national Comparison of Estonia and the United States. Telematics and Informatics, 34(2), 569582. https://doi.org/10.1016/j.tele.2016.09.006Google Scholar
Rumbold, J. M. M., & Pierscionek, B. K. (2018). What Are Data? A Categorization of the Data Sensitivity Spectrum. Big Data Research, 12, 4959. https://doi.org/10.1016/j.bdr.2017.11.001CrossRefGoogle Scholar
Shalaby, W., Arantes, A., GonzalezDiaz, T., & Gupta, C. (2020). Building Chatbots from Large Scale Domain-specific Knowledge Bases: Challenges and Opportunities. 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), 1–8. https://doi.org/10.1109/ICPHM49022.2020.9187036CrossRefGoogle Scholar
Shvartzshnaider, Y., Tong, S., Wies, T., Kift, P., Nissenbaum, H., Subramanian, L., & Mittal, P. (2016). Learning Privacy Expectations by Crowdsourcing Contextual Informational Norms. Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 4, 209218. https://doi.org/10.1609/hcomp.v4i1.13271CrossRefGoogle Scholar
Smith, H. J., Dinev, T., & Xu, H. (2011). Information Privacy Research: An Interdisciplinary Review. MIS Quarterly, 35(4), 9891015. https://doi.org/10.2307/41409970CrossRefGoogle Scholar
Song, C., Ristenpart, T., & Shmatikov, V. (2017). Machine Learning Models that Remember Too Much. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 587–601. https://doi.org/10.1145/3133956.3134077CrossRefGoogle Scholar
Stokel-Walker, C. (2023). AI Chatbots Are Coming to Search Engines: Can You Trust the Results? Nature. https://doi.org/10.1038/d41586–023-00423-4CrossRefGoogle Scholar
Van Dis, E. A. M., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L. (2023). ChatGPT: Five Priorities for Research. Nature, 614(7947), 224226. https://doi.org/10.1038/d41586-023-00288-7CrossRefGoogle ScholarPubMed
The Vicuna Team. (2023, March 30). Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. LMSYS Org. https://lmsys.org/blog/2023-03-30-vicunaGoogle Scholar
Wolf, V., & Maier, C. (2024). ChatGPT Usage in Everyday Life: A Motivation-Theoretic Mixed-methods Study. International Journal of Information Management, 79, 102821. https://doi.org/10.1016/j.ijinfomgt.2024.102821CrossRefGoogle Scholar
Wong, R. Y., & Mulligan, D. K. (2019). Bringing Design to the Privacy Table: Broadening “Design” in “Privacy by Design” Through the Lens of HCI. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–17. https://doi.org/10.1145/3290605.3300492CrossRefGoogle Scholar
Wu, D., & Sun, G. (2023). The Credibility of the Results of Generative Intelligent Search. Journal of Library Science in China, 49(6), 5167. https://doi.org/10.13530/j.cnki.jlis.2023048Google Scholar
Zhang, C., Ippolito, D., Lee, K., Jagielski, M., Tramer, F., & Carlini, N. (2023). Counterfactual Memorization in Neural Language Models. Advances in Neural Information Processing Systems, 36, 3932139362.Google Scholar
Zhang, H., Chen, J., Jiang, F., Yu, F., Chen, Z., Li, J., Chen, G., Wu, X., Zhang, Z., Xiao, Q., Wan, X., Wang, B., & Li, H. (2023). HuatuoGPT, towards Taming Language Model to Be a Doctor [arXiv preprint]. arXiv:2305.15075. https://doi.org/10.48550/arXiv.2305.15075CrossRefGoogle Scholar
Zhang, Z., Jia, M., Lee, H.-P. (Hank), Yao, B., Das, S., Lerner, A., Wang, D., & Li, T. (2024). “It’s a Fair Game,” or Is It? Examining How Users Navigate Disclosure Risks and Benefits When Using LLM-Based Conversational Agents. Proceedings of the CHI Conference on Human Factors in Computing Systems, 1–26. https://doi.org/10.1145/3613904.3642385CrossRefGoogle Scholar

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×