To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In recent years, the study of the neural mechanisms of emotion in humans has constituted one of the most fertile research areas in cognitive neuroscience. Human neuropsychology has provided crucial insights in this domain. Careful examination of patients with neurological disorders showed that emotion, like memory, language, and so on, could be differentially affected by brain damage, whether caused by stroke, tumors, or other disease. Lesion studies give us not only insight into the constellation of emotion disabilities linked to specific brain regions but also valuable information about structural reorganization, functional compensation, and, possibly, recovery of the deficit over time. Following a concise methodological introduction to neuropsychology and the lesion method, this chapter will examine the principal findings derived from the application of the lesion method in patients with neuropsychological disorders, specifically those with isolated lesions of the amygdala, ventromedial prefrontal cortex, and the insula. The discussion will aim to elucidate the functional significance of these brain regions and their roles in emotional processes.
Maternal depression is associated with difficulties in understanding and adequately responding to children’s emotional signals. Consequently, the interaction between mother and child is often disturbed. However, little is known about the neural correlates of these parenting difficulties. Motivated by increasing evidence of the amygdala’s important role in mediating maternal behavior, we investigated amygdala responses to child sad and happy faces in mothers with remitted major depression disorder (rMDD) relative to healthy controls.
Methods
We used the sensitivity subscale of the emotional availability scales and functional magnetic resonance imaging in 61 rMDD and 27 healthy mothers to examine the effect of maternal sensitivity on mothers’ amygdala responses to their children’s affective facial expressions.
Results
For mothers with rMDD relative to controls, we observed decreased maternal sensitivity when interacting with their child. They also showed reduced amygdala responses to child affective faces that were associated with lower maternal sensitivity. Connectivity analysis revealed that this blunted amygdala response in rMDD mothers was functionally correlated with reduced activation in higher-order medial prefrontal areas.
Conclusions
Our results contribute toward a better understanding of the detrimental effects of lifetime depression on maternal sensitivity and associated brain responses. By targeting region-specific neural activation patterns, these results are a first step toward improving the prediction, prevention, and treatment of depression-related negative effects on mother–child interaction.
There are phenomenological similarities between social anxiety disorder (SAD) and posttraumatic stress disorder, such as a provoking aversive event, posttraumatic stress symptoms (e.g. intrusions) in response to these events and deficient (context-dependent) fear conditioning processes. This study investigated the neural correlates of context-dependent extinction recall and fear renewal in SAD, specifically in patients with intrusions in response to an etiologically relevant aversive social event.
Methods
During functional magnetic resonance imaging a two-day context-dependent fear conditioning paradigm was conducted in 54 patients with SAD and 54 healthy controls (HC). This included fear acquisition (context A) and extinction learning (context B) on one day, and extinction recall (context B) as well as fear renewal (contexts C and A) one day later. The main outcome measures were blood oxygen level-dependent responses in regions of interest and skin conductance responses.
Results
Patients with SAD showed reduced differential conditioned amygdala activation during extinction recall in the safe extinction context and during fear renewal in the acquisition context compared to HC. Patients with clinically relevant intrusions moreover exhibited hypoactivation of the ventromedial prefrontal cortex (vmPFC) during extinction learning, extinction recall, and fear renewal in a novel context, while amygdala activation more strongly decreased during extinction learning and increased during fear renewal in the acquisition context compared with patients without intrusions.
Conclusions
Our study provides first evidence that intrusions in SAD are associated with similar deficits in context-dependent regulation of conditioned fear via the vmPFC as previously demonstrated in posttraumatic stress disorder.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.