To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Anorexia nervosa (AN) is characterized by sizable, widespread gray matter (GM) reductions in the acutely underweight state. However, evidence for persistent alterations after weight-restoration has been surprisingly scarce despite high relapse rates, frequent transitions to other psychiatric disorders, and generally unfavorable outcome. While most studies investigated brain regions separately (univariate analysis), psychiatric disorders can be conceptualized as brain network disorders characterized by multivariate alterations with only subtle local effects. We tested for persistent multivariate structural brain alterations in weight-restored individuals with a history of AN, investigated their putative biological substrate and relation with 1-year treatment outcome.
Methods
We trained machine learning models on regional GM measures to classify healthy controls (HC) (N = 289) from individuals at three stages of AN: underweight patients starting intensive treatment (N = 165, used as baseline), patients after partial weight-restoration (N = 115), and former patients after stable and full weight-restoration (N = 89). Alterations after weight-restoration were related to treatment outcome and characterized both anatomically and functionally.
Results
Patients could be classified from HC when underweight (ROC-AUC = 0.90) but also after partial weight-restoration (ROC-AUC = 0.64). Alterations after partial weight-restoration were more pronounced in patients with worse outcome and were not detected in long-term weight-recovered individuals, i.e. those with favorable outcome. These alterations were more pronounced in regions with greater functional connectivity, not merely explained by body mass index, and even increases in cortical thickness were observed (insula, lateral orbitofrontal, temporal pole).
Conclusions
Analyzing persistent multivariate brain structural alterations after weight-restoration might help to develop personalized interventions after discharge from inpatient treatment.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.