To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Schizophrenia progresses through high-risk, first-episode, and chronic stages, each associated with altered spontaneous brain activity. Resting state functional MRI studies highlight these changes, but inconsistencies persist, and the genetic basis remains unclear.
Methods
A neuroimaging meta-analysis was conducted to assess spontaneous brain activity alterations in each schizophrenia stage. The largest available genome-wide association study (GWAS) summary statistics for schizophrenia (N = 53,386 cases, 77,258 controls) were used, followed by Hi-C-coupled multimarker analysis of genomic annotation (H-MAGMA) to identify schizophrenia-associated genes. Transcriptome-neuroimaging association and gene prioritization analyses were performed to identify genes consistently linked to brain activity alterations. Biological relevance was explored by functional enrichment.
Results
Fifty-two studies met the inclusion criteria, covering the high-risk (Nhigh-risk = 409, Ncontrol = 475), first-episode (Ncase = 1842, Ncontrol = 1735), and chronic (Ncase = 1242, Ncontrol = 1300) stages. High-risk stage showed reduced brain activity in the right median cingulate and paracingulate gyri. First-episode stage revealed increased activity in the right putamen and decreased activity in the left gyrus rectus and right postcentral gyrus. Chronic stage showed heightened activity in the right inferior frontal gyrus and reduced activity in the superior occipital gyrus and right postcentral gyrus. Across all stages, 199 genes were consistently linked to brain activity changes, involved in biological processes such as nervous system development, synaptic transmission, and synaptic plasticity.
Conclusions
Brain activity alterations across schizophrenia stages and genes consistently associated with these changes highlight their potential as universal biomarkers and therapeutic targets for schizophrenia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.