To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $[a_1(x),a_2(x),a_3(x),\dots ]$ be the continued fraction expansion of an irrational number $x\in (0,1)$. Denote by $S_{n}(x):=\sum _{k=1}^{n} a_{k}(x)$ the sum of partial quotients of x. From the results of Khintchine (1935), Diamond and Vaaler (1986), and Philipp (1988), it follows that for Lebesgue almost every $x \in (0,1)$,
We investigate the Baire category and Hausdorff dimension of the set of points for which the above limit inferior and limit superior assume any prescribed values. We also conduct analogous analyses for the sum of products of consecutive partial quotients.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.