To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Consider a pseudogroup on $( \mathbb{C} , 0)$ generated by two local diffeomorphisms having analytic conjugacy classes a priori fixed in $\mathrm{Diff} \hspace{0.167em} ( \mathbb{C} , 0)$. We show that a generic pseudogroup as above is such that every point has a (possibly trivial) cyclic stabilizer. It also follows that these generic groups possess infinitely many hyperbolic orbits. This result possesses several applications to the topology of leaves of foliations, and we shall explicitly describe the case of nilpotent foliations associated to Arnold’s singularities of type ${A}^{2n+ 1} $.
We show that generically a pseudogroup generated by holomorphic diffeomorphisms defined about $0\in \mathbb{C} $ is free in the sense of pseudogroups even if the class of conjugacy of the generators is fixed. This result has a number of consequences on the topology of leaves for a (singular) holomorphic foliation defined on a neighborhood of an invariant curve. In particular, in the classical and simplest case arising from local nilpotent foliations possessing a unique separatrix which is given by a cusp of the form $\{ {y}^{2} - {x}^{2n+ 1} = 0\} $, our results allow us to settle the problem of showing that a generic foliation possesses only countably many non-simply connected leaves.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.