To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Retinoic acid-induced 1 (RAI1) is a dosage-sensitive gene implicated in a range of rare neuropsychiatric diseases.
Methods
This review provides a comprehensive overview of RAI1’s role, integrating both clinical and basic research on Smith–Magenis syndrome (SMS) and Potocki–Lupski syndrome (PTLS) while also summarising research progress on its involvement in spinocerebellar ataxia (SCA), autism spectrum disorder (ASD), schizophrenia, bipolar disorder and major depression. A systematic review of the literature was conducted using PubMed and EMBASE, following the PRISMA guidelines, with the protocol registered in PROSPERO (CRD42023474165).
Results
A total of 99 eligible studies on RAI1 were included. We presented detailed characterisations of SMS and PTLS patients, emphasising the crucial role of RAI1 haploinsufficiency and overexpression in their pathogenesis. Additionally, we summarised research progress on RAI1 in SCA, ASD, schizophrenia, bipolar disorder and major depression. Integrating findings from animal studies, particularly those examining the regulatory mechanisms of RAI1 in critical phenotypes, such as body weight, sleep and epilepsy, underscores the precise regulation of RAI1 expression in maintaining various nervous system functions.
Conclusions
Overall, this review contributes to the identification of RAI1-related neuropsychiatric diseases, with a particular emphasis on enhancing clinical diagnosis of SMS and PTLS in developing countries.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.