To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bridging theory and practice in network data analysis, this guide offers an intuitive approach to understanding and analyzing complex networks. It covers foundational concepts, practical tools, and real-world applications using Python frameworks including NumPy, SciPy, scikit-learn, graspologic, and NetworkX. Readers will learn to apply network machine learning techniques to real-world problems, transform complex network structures into meaningful representations, leverage Python libraries for efficient network analysis, and interpret network data and results. The book explores methods for extracting valuable insights across various domains such as social networks, ecological systems, and brain connectivity. Hands-on tutorials and concrete examples develop intuition through visualization and mathematical reasoning. The book will equip data scientists, students, and researchers in applications using network data with the skills to confidently tackle network machine learning projects, providing a robust toolkit for data science applications involving network-structured data.
Community detection is one of the most important methodological fields of network science, and one which has attracted a significant amount of attention over the past decades. This area deals with the automated division of a network into fundamental building blocks, with the objective of providing a summary of its large-scale structure. Despite its importance and widespread adoption, there is a noticeable gap between what is arguably the state-of-the-art and the methods which are actually used in practice in a variety of fields. The Elements attempts to address this discrepancy by dividing existing methods according to whether they have a 'descriptive' or an 'inferential' goal. While descriptive methods find patterns in networks based on context-dependent notions of community structure, inferential methods articulate a precise generative model, and attempt to fit it to data. In this way, they are able to provide insights into formation mechanisms and separate structure from noise. This title is also available as open access on Cambridge Core.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.