Minimal kinematics identifies likelihood degenerations where the critical points are given by rational formulas. These rest on the Horn uniformization of Kapranov–Huh. We characterize all choices of minimal kinematics on the moduli space
$\mathcal{M}_{0,n}$. These choices are motivated by the CHY model in physics and they are represented combinatorially by 2-trees. We compute 2-tree amplitudes, and we explore extensions to non-planar on-shell diagrams, here identified with the hypertrees of Castravet–Tevelev.