To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that in the space of $C^r$ maps $(r=2,\ldots ,\infty ,\omega )$ of a smooth manifold of dimension at least 4, there exist open regions where maps with infinitely many corank-2 homoclinic tangencies of all orders are dense. The result is applied to show the existence of maps with universal two-dimensional dynamics, that is, maps whose iterations approximate the dynamics of every map of a two-dimensional disk with an arbitrarily good accuracy. We show that maps with universal two-dimensional dynamics are $C^r$-generic in the regions under consideration.
We display a gallery of Lorenz-like attractors that emerge in a class ofthree-dimensional maps. We review the theory of Lorenz-like attractors for diffeomorphisms(as opposed to flows), define various types of such attractors, and find sufficientconditions for three-dimensional Henon-like maps to possess pseudohyperbolic Lorenz-likeattractors. The numerically obtained scenarios of the creation and destruction of theseattractors are also presented.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.