Fiber-coupled laser pumps with low size, weight and power consumption (SWaP) have become more and more compelling for applications in both industrial and defense applications. This study presents an innovative approach employing the spectral beam combining technique and double-junction laser diode chips to create efficient, high-power, high-brightness fiber-coupled packages. We successfully demonstrated a wavelength-stabilized pump module capable of delivering over 560 W of ex-fiber power with an electro-optical conversion efficiency of 55% from a 135 μm diameter, 0.22 numerical aperture fiber. The specific mass and volume metrics achieved are 0.34
$\mathrm{kg}/\mathrm{kW}$ and 0.23
${\mathrm{cm}}^3/\mathrm{W}$, respectively. The module exhibits a stabilized spectrum with a 3.6 nm consistent interval of two spectral peaks and a 4.2 nm full width at half maximum across a wide range of operating currents.