To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Gut microbiota (GM) affects muscle homeostasis, and growing evidence indicates dysbiosis of GM may be a contributing factor in the pathogenesis of dystrophies. Furthermore, GM metabolites can interact with DNA methylation. Facioscapulohumeral muscular dystrophy (FSHD) is the second common dystrophy with hypomethylation of DR1 and 5P regions of D4Z4 repeat on 4qter.
Objective:
Considering alteration of GM may be a contributing factor, we investigated (i) GM alterations and (ii) the correlation of microbial-derived free fatty acids (FFAs) with methylation of DR1 and 5P regions in FSHD.
Methods:
Twenty-eight FSHD patients and 28 gender-age-matched controls were included. GM characterisation was performed through 16S-rRNA sequencing. Methylation levels of DR1 and 5P regions were assessed by bisulphite sequencing. Faecal and circulating FFAs including short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs) and long-chain fatty acids (LCFAs) were analysed with gas chromatography-mass spectrometry.
Results:
Altered GM was observed in patients, along with distinct profiles of faecal and circulating SCFAs, MCFAs and LCFAs. DR1 and 5P regions exhibited significant hypomethylation in FSHD compared to control. Hypomethylation correlated with faecal and circulating FFAs in patients, while no correlation was identified in healthy controls. The severely affected patients exhibited a notable increase in the prevalence of Pasteurellaceae, while the FFA profile was similar among mild and severely affected patients. This is the first study revealing that FSHD patients showed compositional and functional GM dysbiosis. A strong association between proximal D4Z4 hypomethylation with microbial-derived SCFAs was identified.
Conclusion:
These findings suggest that GM modulation with its metabolites could be a promising strategy for interventions in FSHD management.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.