To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a theorem that computes, for any augmented operad $\mathcal{O}$, the stable homology of the Lie algebra of derivations of the free algebra $\mathcal{O}(V)$ with twisted bivariant coefficients (here stabilization occurs as $\dim(V)\to\infty$) out of the homology of the wheeled bar construction of $\mathcal{O}$; this can further be used to prove uniform mixed representation stability for the homology of the positive part of that Lie algebra with constant coefficients. This result generalizes both the Loday–Quillen–Tsygan theorem on the homology of the Lie algebra of infinite matrices and the Fuchs stability theorem for the homology of the Lie algebra of vector fields. We also prove analogous theorems for the Lie algebras of derivations with constant and zero divergence, in which case one has to consider the wheeled bar construction of the wheeled completion of $\mathcal{O}$. Similarly to how cyclic homology of an algebra A may be viewed as an additive version of the algebraic K-theory of A, our results hint at the additive K-theoretic nature of the wheeled bar construction.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.