Modern experimental methods and instruments for X-ray spectral investigation of hot dense plasma provide complex information on environmental conditions in extreme states of matter. The basic spectroscopic conceptions for K-shell plasma diagnosis are outlined, the main characteristics of toroidally bent crystal spectrometers and vertical-dispersion instruments are briefly reviewed. Selected applications (monitoring and optimization of the emission from the femtosecond-laser-produced plasmas, characterization of colliding laser-exploded foils, spectral line merging, and continuum lowering in constrained-flow plasmas) demonstrate the usefulness of advanced spectroscopic methods for plasma diagnostics and fundamental research.