To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge-org.demo.remotlog.com
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Generative AI based on large language models (LLM) currently faces serious privacy leakage issues due to the wide range of parameters and diverse data sources. When using generative AI, users inevitably share data with the system. Personal data collected by generative AI may be used for model training and leaked in future outputs. The risk of private information leakage is closely related to the inherent operating mechanism of generative AI. This indirect leakage is difficult to detect by users due to the high complexity of the internal operating mechanism of generative AI. By focusing on the private information exchanged during interactions between users and generative AI, we identify the privacy dimensions involved and develop a model for privacy types in human–generative AI interactions. This can provide a reference for generative AI to avoid training private data and help it provide clear explanations of relevant content for the types of privacy users are concerned about.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.